Research Article | Open Access | Download PDF
Volume 4 | Issue 3 | Year 2014 | Article Id. IJCOT-V8P301 | DOI : https://doi.org/10.14445/22492593/IJCOT-V8P301
The Strong Split Domination Number of Fuzzy Graphs
C.Y.Ponnappan , P.Surulinathan , S. Basheer Ahamed
Citation :
C.Y.Ponnappan , P.Surulinathan , S. Basheer Ahamed, "The Strong Split Domination Number of Fuzzy Graphs," International Journal of Computer & Organization Trends (IJCOT), vol. 4, no. 3, pp. 1-4, 2014. Crossref, https://doi.org/10.14445/22492593/IJCOT-V8P301
Abstract
A dominating set D of a fuzzy graph G=( ?,µ) is a strong split dominating set if the induced fuzzy subgraph H=(,??,µ?) is totally disconnected. The strong split domination number ?ss(G) of G is the minimum fuzzy cardinality of a strong split dominating set. In this paper we study a strong split dominating sets of fuzzy graphs and investigate the relationship of ?ss(G) or ?ss with other known parameter of G.
Keywords
Fuzzy graphs, fuzzy domination, split fuzzy domination number, strong split fuzzy domination number.
References
1. Harary, E., 1969. Graph Theory. Addison Wesley, Reading, MA.
McAlester, M.L.N., 1988. Fuzzy intersection graphs. Comp.
Math. Appl. 15(10), 871-886.
2. Haynes, T.W., Hedetniemi S.T. and Slater P.J. (1998).
Fundamentals of domination in graphs, Marcel Dekker Inc. New
York, U.S.A.
3. Kulli, V.R. and Janakiram B. (1997). The non split domination
number of graph. Graph Theory notes of New York. New York
Academy of Sciences, XXXII, pp. 16-19.
4. Kulli, V.R. and Janakiram B. (2000). The non-split domination
number of graph. The Jounral of Pure and Applied Math. 31(5).
Pp. 545-550.
5. Kulli, V.R. and Janakiram B. (2003). The strong non-split
domination number of a graph. International Journal of
Management and Systems. Vol. 19, No. 2, pp. 145-156.
6. Mahioub Q.M. and Soner N.D. (2007), “The split domination
number of fuzzy graph “Accepted for publication in Far East
Journal of Applied Mathematics”.
7. Mordeson J.N. and Nair P.S. “Fuzzy Graph and Fuzzy
Hypergraph” Physica-Verilog, Heidelberg (2001).
8. Ore, O. (1962). Theory o Graphs. American Mathematical
Society Colloq. Publi., Providence, RI, 38.
9. Ponnappan C.Y, Surulinathan .P, Basheer Ahamed .S, “The
strong split domination number of fuzzy graphs” International
Journal of Computer & Organization Trends – Volume 8
Number 1 – May 2014.
10. Rosenfeld, A., 1975. Fuzzy graphs. In : Zadeh, L.A., Fu, K.S.,
Shimura, M. (Eds.), Fuzzy Sets and Their Applications. Academic Press, New York.
11. Somasundaram, A., and Somasundaram, S., Domination in fuzzy
graphs, Pattern Recognit. Lett. 19(9) 1998), 787-791.