International Journal of Computer
& Organization Trends

Research Article | Open Access | Download PDF

Volume 3 | Issue 1 | Year 2013 | Article Id. IJCOT-V3I3P301 | DOI : https://doi.org/10.14445/22492593/IJCOT-V3I3P301

Escape Time Fractals of Inverse Tangent Function


Rajeshri Rana and Yashwant Singh Chauhan

Citation :

Rajeshri Rana and Yashwant Singh Chauhan, "Escape Time Fractals of Inverse Tangent Function," International Journal of Computer & Organization Trends (IJCOT), vol. 3, no. 1, pp. 13-18, 2013. Crossref, https://doi.org/10.14445/22492593/IJCOT-V3I3P301

Abstract

The generation of fractals and study of the dynamics of transcendental function is one of emerging and interesting field of research nowadays. We introduce in this paper the complex dynamics of inverse tangent functio n for 2 and applied Ishikawa iteration to generate new Relative Superior Mandelbrot sets and Relative Superior Julia sets. Our results are entirely different from those existing in the literature of transcendental function

Keywords

Complex dynamics, Relative Superior Julia set, Relative Superior Mandelbrot set.

References

[1] W. Bergweiler, Iteration of meromorphic func tions. Bull. Amer. Math. Soc. (N. S.) 29 (1993), 151 – 188.
[2] W. Bergweiler and A Ereneko, “Dynamics of a higher dimensional analog of the trigonometric functions”, Bull. Amer. Math. Soc. (N. S.)1 (2010), 35 - 38.
[3] B. Branner, The Mandelbrot Set , Proceedings of Symposia in Applied Mathematics39 (1989), 75 - 105. Published as Chaos and Fractals: The Mathematics Behind the Computer Graphics .
[4] Yashwant S Chauhan, Rajeshri Rana and Ashish Negi. “New Jul ia Sets of Ishikawa Iterates”, International Journal of Computer A pplications 7(13):34 – 42, October 2010. Published By Foundation of Computer Science.ISBN: 978 - 93 - 80746 - 97 - 5 .
[5] R. L. Devaney and M. Krych, “Dynamics of exp( z )”, Ergodic Theory Dynam. Systems4 (1984), 35 – 52.
[6] Robert L. Devaney, Folkert Tangerman, “ Dynamics of entire functionsnear the essential singularity ”, Ergodic Theory and DynamicalSystems 6 4 (1986) 489 – 503.
[7] R. L. Devaney and F. Tangerman, “Dynamics of entire functions near the essential Singularity”, Ergodic Theory Dynam. Systems 6 (1986), 489 – 503.
[8] Rober t L. Devaney, “An Introduction to Chaotic Dynamical Systems”, Second Edition, 1989, Perseus Books Publishing, Reading, MA.
[9] Robert L. Devaney, Xavier Jarque, and M ?onica Moreno Rocha, “Indecomposable continua andMisiurewicz points in exponential dynamics” , Internat. J. Bifur. Chaos Appl. Sci. Engrg. 15(2005), no. 10, 3281 – 3293.
[10] Adrien Douady and John Hubbard, “Etude dynamique des polynˆomes complexes”, Pr ?epublications math ?ematiques d’Orsay 2 (1984) and 4 (1985).
[11] A Ereneko, “Iteration of entire functions”, Dynamical Systems and Ergodic theory, Banach Center Publ. 23, Polish Sc. Pub. , Warsaw 1989, 339 - 345.
[12] Pierre Fatou, “Sur Iteration des functions transcendantes entires”, Acta Math 47(1926), 337 - 378.
[13] S . I s h i ka w a, “ F i x e d po i n t s by a n e w it e r a ti on m e t hod ”, P r o c . A m e r . M a t h. S o c . 44 ( 1974 ) , 14 7 - 150.
[14] B . B . M ande l b r o t , “ T he F r a c t al G e o m e t r y o f N a t u r e”, W . H . F r ee m an, N ew Y o r k , 1983.
[15] Curt McMullen, “Area and Hausdorff dimension of Julia sets of entire functions”, Transactions of the American Mathematical Society 300 1 (1987), 329 – 342.
[16] J. Milnor, “Dynamics in One Complex Variable: Third Edition”, Princeton University Press, 2006.
[17] H . P e it g en and P . H . R i c h t e r , T he B eau t y o f F r a c t a l s , S p r i n g e r - V e r l a g , B e r li n , 1986.
[18] Rajeshri Rana, Yashwant S Chauhan and Ashish Negi. “Non Linear Dynamics of Ishikawa Iteration”, International Journal of Computer Applications 7(13):43 – 49, October 2010. Published By Foundation of Computer Science.ISBN: 978 - 93 - 80746 - 97 - 5.
[19] Rajeshri Rana, Yashwant S Chauhan and Ashish Negi. “Ishikawa Iterates for Logarithmic Function”, International Journal of Comp uter Applications 15(5):47 - 56, February 2011. Published By Foundation of Computer Science. ISBN: 978 - 93 - 80747 - 50 - 1.
[20] G. Rottenfuser and D. Schleicher, “ Escaping points of the cosine family” , ArXIV Math. DS/0403012 (2004)
[21] D. Schleicher, “The dynamical fine structure of iterated cosine maps and a dimension Paradox”, Duke Math. J. 136 (2007), 343 – 356.
[22] Dierk Schleicher and Johannes Zimmer, “ Escaping Points of Exponential Maps” , Journal of the London Mathematical Society (2) 67(2003), 380 – 400.