
International Journal of Computer & Organization Trends –Volume 4 Issue 3 May to June 2014

ISSN: 2249-2593 http://www.ijcotjournal.org Page 100

Test Case Generation and Minimization using

UML Activity Diagram in Model Driven

Environment

Ms. Hetal J. Thanki
#1

, Prof. S.M.Shinde
*2

#
(M.E. COMP), Department of computer engineering, JSCOE, Hadapsar, Pune. University of pune. India

Abstract— Test driven design (TDD) and design driven

testing (DDT) are used for test case generation. TDD

generates so many duplicated test cases at the end of the

project. DDT is novel approach to generate test cases

based on design model of application. Comparative study

indicates batter result using DDT. White-box traditional

regression testing depends on analysis of impact of

changes in source code. This practice minimizes the

amount of testing required to validate code changes but

they do not influence on requirement specification. Black-

box testing supports ability to test from higher level design

and requirement. Test optimal is a tool to generate test

cases based on model driven environment using UML

activity diagrams. Traditional approach generates many

numbers of large and duplicate test cases. Proposed

approach will minimize generated test cases and generate

optimal test suite using model driven testing. Changes in

design of project, modified activity diagram element will

identify common and uncommon test cases. Where

uncommon test cases are focused for further testing.

Filtering will lead to better available resource utilization

and will improve software project management.

Keywords—Activity diagram, Model driven testing,

Regression testing, Test minimization, common test cases,

uncommon test cases.

I. INTRODUCTION

Model based testing approaches support a top-down or

black box testing where design and requirement

models are used for test case generation. In this

approach test cases are developed by focusing on the

use of models rather than source code as its primary

artifact. Model-based testing approaches have been

developed to simplify the process of test development

and execution. Test occurs in every stage of software

development process. If some changes in model

design occurs than whole or part of test suite for some

project or functionality can be change. Much large

software has lots of test cases generated at the end of

design and development by developer and tester.

Different modules are developed by number of people;

this will lead to duplication of generated test cases. To

develop and execute large amount of test cases is very

time consuming task. It also increases cost of

organization and effort of people of organization. It is

necessary to reduce number of test cases in such a way

that it checks whole features of the software, cover

whole part of software and also reduce time and effort

of developer.

In our work test cases for different projects are

generated through a tool called test optimal tool. That

generated test cases are stored in either in excel file in

table format or in HTML format. Data of generated

files are extracted through code and store it into

database. Stored test cases are larger in number which

are minimized with the help of changes done in

original activity diagram of a project. Original and

modified activity diagrams are compared through

software to identify common and uncommon test

suites. We will test our project through different

activity diagram of number of projects of same

domain and finally analytics of change and

minimization is presented through graph. With the

advent of technology software becomes very crucial

part in all the institute and industries. To develop

particular software and to test it as per customer

requirement is very important because the software

which is not able to satisfy customer requirement after

development will leads to increase and waste of cost,

time and effort of all parts of organization. Model-

based test case generation is gaining acceptance to the

Design and implementation of new technique for

optimum number of test cases generation and

minimization using model driven testing.

Advantages of this are the early detection of faults,

reducing software development time etc. Reduce test

case suite RT may provide same structural coverage as

in original test suit OT with comparatively fewer test

cases. In recent times, researchers have considered

different UML diagrams for generating test cases.

Little work on the test case generation using activity

diagrams is reported in literatures. To increase the

productivity batter test case suit generation is very

important for any small or large software application.

To generate batter test cases of any project which

reduce number of test cases to be executed and also all

part coverage is necessary now a day. Traditional

software testing techniques consider only static view

of code which is not sufficient for testing dynamic

behavior of object-oriented system, use of code to test

an object-oriented system is complex and tedious task.

In contrast, models help software testers to understand

systems better way and test information only after

simple processing of models compared to code,

model-based test case generation can be planned at an

International Journal of Computer & Organization Trends –Volume 4 Issue 3 May to June 2014

ISSN: 2249-2593 http://www.ijcotjournal.org Page 101

early stage of the software development life cycle,

allowing to carry out coding and testing in parallel.

Due to that, model-based test case generation

methodology becomes an obvious choice in software

industries. Main advantage of this model is its

simplicity and ease of understanding the logic of the

system. Highly critical, large and very important

software application generation is task of

responsibility. If any failure occurs due to wrong basic

design of the whole software or part of the software

will lead to failure of project and very big loss to

organization. To overcome this problem testing is very

necessary part of software development life cycle. If

this testing is perform with the scratch level of system

development than faults, errors, bugs are detected at

early stage of software development. Model driven

testing and best test suite generation through different

techniques will help developer to increase productivity,

profit and decrease cost, time and efforts.

Filtering of test cases will minimize number of test

cases to be tested further. Based on highly critical part

of software risk factor can be specified for particular

test procedure or test case of activity diagram. Change

in that part of software affect whole operation of

software. This type of critical part must be test first to

identify effect of changes in critical part as early as

possible. If this test cases are given higher priority

than task can be easy to overcome failure and to

identify faults early. Recently Infosys develop a

software which identifies customer usage criteria and

based on that test case prioritization is done.

II. RELATED WORK

Our proposed work is to generate optimum test case

suit. By observing previous work of different authors

we divide this work in three parts like how Test cases

are generated for different domains, how platform

independent model transform to executable test cases

and how to minimize test cases using different criteria

which are given in our algorithm in latter part.

Different model driven testing techniques and its

comparison with different criteria like modeling

language used, tool support, the testing targets etc.

given in [1]. Roberto S. et al. [2] Authors have extend

TDE/UML is a tool to generate test cases based on

model driven environment using UML diagrams.

Traditional regression testing procedure is bottom- up

that depends on changes in source code. This

approach and model driven testing supports to

generate and prioritize test cases based on top-down

testing approach. This approach generates test cases

based on user defined concerns and depend on trace-

ability link between models, test cases and code and

also user defined properties associated with model

elements. It extends model based testing environment.

Testing of applications of different domains is

important and crucial task. Use of Web application

increases day by day. To test web application demand

of systematic methodology is increasing. Framework

for supporting such methodology which is loosely

coupled using different models is describe the system

under testing web application model is generated.

Based on web application model test case models are

generated. To describe the environment and process of

test execution test deployment and test control model

are generated. The test engine execute test cases

automatically and results are reflected to test case

models [3]. In network domain network management

interface model driven testing technique is developed

[4]. In this method from platform independent model

(PIM) and platform specific model (PSM) defined in

network management interface specification, test case

model and test scenario model constructed either

automatically or manually. Interface testing of 3G

mobile communication networks is done through

implemented automatic testing platform tool. Model

driven conformance method [5] is used for 3G

network management north bound interface to cope

with technological and specification changes. In this

method interface technology independent test model

(PIT) is transformed to interface specific test models

(PSTs) which can be used in conformance testing by

proper test tools. PIT is derived from platform

independent model. For Collaborative Embedded

System Design (for embedded domain) testing is key

issue. It is difficult to design test cases for Security

protocols for security critical application (security

domain) SecureMDD is combined with design of

functional and security test. By this method it is easy

to define test cases during modeling stage [14]. It also

generate runnable test for application. Case study is

described for open source data structure using zellers

algorithm for failing test case minimization which

reduce length of sequences of method calls [6]. Based

on analysis of relationship among testing requirement

and test cases, software faults and changes, priority of

testing requirements one method called regression test

case design is developed which achieves the function

of checking the regression test case suite [7]. To

generate batter test suit including longer test cases

which achieves higher fault detecting and higher

coverage of code experimental studies in a scenario of

specification based testing for reactive systems but

application of test case minimization will create

opposite effect [8]. Automatic test cases in software

product line [9] uses standard UML 2.0. Automatic

test case generation based on model driven

architecture is done through system model to test

model conversion and test model to test code

generation which is done through model to model

conversion method and model to code conversion

method respectively.

III. UML ACTIVITY DIAGRAM

"The Unified Modeling Language (UML) is a

language for specifying, visualizing, constructing, and

documenting the artifacts of software systems, as well

as for business modeling and other non-software

systems" [12].

International Journal of Computer & Organization Trends –Volume 4 Issue 3 May to June 2014

ISSN: 2249-2593 http://www.ijcotjournal.org Page 102

Activity diagram depicts flow of behavior of a

system that extracts the central idea from flowchart. It

applies to number of domain. The activity diagram

contains activity states that are made up of smaller

actions which are represented in the implementation

of a statement in a process or the performance of an

activity in a workflow [10,11]. To describe flow in

activity Nodes of activity diagram are used like Initial

node, Decision Merge node, Fork node, Join node ,

Final nodes
Fig. 1 shows general example of activity diagram

including whole control nodes. Where A1 to A7 are

activities or actions of activity diagram. Node A2 has

input and output pin. Activities in nodes A1, A2, A4,

A5 are concurrent activities. Activity path A4, A5 is

terminated with flow final node. Activity A2 and A3

are join through join node as shown in figure. All the

data or token of A2 and A3 are passed to A6. Detail

activity diagram with data store, loop, streaming

actions, expansion region, and buffer node can be

drown[12]. This activity diagram describes expected

behaviour of an operation.

IV. IMPLEMENTATION DETAIL

Test optimal tool is used to generate test cases from

activity diagram or state diagram of the project. That

output generated test cases are stored in EXCEL file

in table format or it will be in HTML format.

Proposed project extract test case data from activity

diagram of project through this files and store it in

database. Than this test cases are further analyze for

minimization and optimization with the help of

criteria mention in algorithm. Figure 3 Depicts

architectural design of the system. We will consider

different projects of same domain with activity

diagram and will do analysis of their model driven

testing using test-optimal and my dissertation. Manual

testing will be done in my dissertation.

Fig. 1: General example of activity diagram

Fig. 2: Test optimal tool

A. Block Diagram

Fig. 3: Proposed design

B. Algorithm

1. During editing of model, it is monitored for

changes and modifications in UML diagram

are recorded.

2. Based on OTS, MTS collected during edit

time structural and semantic changes are

identified. Then test cases are generated and

labeled as common (CO) and uncommon

(UC).

CO = CO U {A1}

UC = UC U {A2}

A1  changed test cases

A2  no change in test cases during model

modification

3. Uncommon test cases are filtered based on

comparison of OTS and MTS.

4. Execute UC first to test modification part of

activity diagram.

International Journal of Computer & Organization Trends –Volume 4 Issue 3 May to June 2014

ISSN: 2249-2593 http://www.ijcotjournal.org Page 103

V. RESULT

With the use of test-optimal software with our

project, It will generate Minimize number of test cases,

Test case analytics. Different graphs can be generated

through proposed system like Change in test cases

number with respect to changing activity diagram

element, various numbers of test cases for common

and uncommon test cases. Fig 2. Shows test optimal

tool. Draw original activity diagram and execute it.

Proposed system will back up original model. Now

modify original model (Activity diagram) and execute

it. Proposed system will compare two diagram and

divide original test suite in two parts like common and

uncommon test cases. Fig 4. Shows activity diagram

Hall booking with modified portion. Test suites,

common and uncommon test cases are represented in

Fig 5. Where test cases of modified part is shown in

uncommon part because that are the test cases which

we want to execute first to test modified part of design.

Fig 6. Shows graphical results for number of common

and uncommon test cases.

Fig 4. Shows activity diagram for Hall booking

Common test cases Uncommon

testcases

Fig. 5 Results for Hall booking system

Fig. 6 Number of common and uncommon test cases.

CONCLUSION AND FUTURE SCOPE

Software testing has been critical part of entire

SDLC where success of software projects is heavily

depends. Therefore there have been wide spread

efforts to improve SDLC practices especially during

testing. In our paper we present a model driven testing

approach with improved prioritization of test cases.

We have prioritized test cases based on various

criteria like code coverage, test and time efforts

required for executing test cases. We believe that such

prioritization of test cases will result in better

utilization of available resources and improved

software project management. Time complexity of

proposed project is depends on number of input value

(test cases).

In future test cases can be prioritize by considering

various domains for which software being developed

and profile of users.

REFERENCES

[1] Mohamed Mussa, Samir Ouchani, Waseem Al Sammane,

Abdelwahab Hamou-Lhadj, “A Survey of Model-

Driven Testing Techniques”, 2009 Ninth International
Conference on Quality Software, IEEE, pp 167-172, 2009

[2] Roberto S. Silva Filho, Christof J. Budnik, William M.

Hasling, Monica McKenna, Rajesh Subra-manyan,
“Supporting Concern-Based Regression Testing and

Prioritization in a Model-Driven Environment, 34th Annual

IEEE Computer Software and Applications Conference
Workshops, PP 323-328, 2010

[3] Nuo Li, Qin-qin Ma, Ji Wu, Mao-zhong Jin, Chao Liu, “A

Framework of Model-Driven Web Application Testing”,

Proceedings of the 30th Annual International Computer

Software and Applications Conference (COMPSAC'06),
IEEE, 2006

[4] Yinghui Chen, Limin Hou, Yichang Liu, Yongping Zhang,

Feng Qi, “Study and implementation of model driven testing
method for network management interface”, Proceedings of

ICCTA2009, pp. 259-263, IEEE, 2009

[5] Liu Yi-chang, Chen Ying-hui, Qi Feng, Qiu Xue-song, “A
Model-Driven Conformance Testing Method for 3G Network

Management North Bound Interface”, IEEE, pp. 323-326,

2010
[6] Yong Lei ; Andrews, J.H., “Minimization of randomized unit

test cases”, 16th IEEE International Symposium, pp. 267-276,

IEEE
[7] Wenhong Liu ; Xin Wu ; Yuheng Hao, “Research and

Application of Regression Test Case Design Methods Based

on the Analysis of the Relationship”, Fifth International
Conference, IEEE, pp. 233-236

CheckRegistered-

>No

CheckRegistered-

>yes

exit->exit

user->search

ViewHalls->No

ViewHalls->Ok

pay bill->yes

pay bill->no

booking->ok

Take recept-

>done

International Journal of Computer & Organization Trends –Volume 4 Issue 3 May to June 2014

ISSN: 2249-2593 http://www.ijcotjournal.org Page 104

[8] Fraser, G. ; Gargantini, A., “Experiments on the test case

length in specification based test case generation”, IEEE, pp.
18-26, 2009

[9] BeaBeatriz Pérez Lamancha, “Model-Driven Testing in

Software Product Lines”, Proc. ICSM 2009, Edmonton,
Canada, pp. 511-514, IEEE

[10] Yang Liu , Yafen Li, Pu Wang , “Design and Implementation

of Automatic Generation of Test Cases Based on Model
Driven Architecture”, 2010 Second International Conference

on Information Technology and Computer Science, 2010, pp.

344-347, IEEE

[11] Puneet E. Patel, Nitin N. Patil (2013). “Testcases Formation

using UML Activity Diagram”. 2013 International
Conference on Communication Systems and Network

Technologies, IEEE, pp. 884-889

[12] D. Pilone and N. Pitman. UML 2.0 in a Nutshell. OReilly,
June 2005.

[13] Kuzman Katkalov, Nina Moebius, Kurt Stenzel, Marian

Borek and Wolfgang Reif, Model-Driven Testing of Security
Protocols with SecureMDD, IEEE, 2012

[14] Matt Stephens and Doug Rosenberg, Design Driven Testing,

Test Smarter, Not Harder, Apress, 2010

