
International Journal of Computer & Organization Trends (IJCOT) – Volume 9 Issue 3 – May - June 2019

ISSN: 2249-2593 http://www.ijcotjournal.org Page 1

Sentiment Classification Of Movie Review And

Twitter Data Using Machine Learning
Prafulla Mohapatra

1
, Rohit Kumar Singh

2
, Shashank Pandey

3
, PrashanthAnand Kumar

4
, Mrs.Asha K N

5

5
Assistant Professor

1,2,3,4,5
Department of Computer Science & Engineering , Dr. Ambedkar Institute of Technology, Bengaluru-56, India

Abstract— Over three billion people use some form of

social media in their day to day lives. Therefore, it is not

unwise to say that social media is one of the single

largest collection of data about humans present, in the

world currently. Sentiment analysis is one of the most

common operations done on social media data. In this

paper, we perform sentiment analysis, using a variety of

vectorizers and classifiers to see which combination

yields the highest accuracy. Analysis is performed on

Twitter and movie review data. The two data sets are

inherently different and therefore there could be a

difference between the accuracies. The front end of this

application is web based. Twitter and movie review data

are collected from two API’s in real time and then the

different tweets/reviews are classified as either being

positive or negative. This is then presented in the form

of a donut graph.

Keywords — Sentiment Analysis, Machine Learning,

Information Retrieval, Opinion Mining and Natural

language processing.

I. INTRODUCTION

Sentiment is the emotion attached to a sentence; it can

be a positive emotion or a negative emotion. Sentiment

analysis is described as the ability to associate a specific

sentiment (or emotion) to a particular sentence,

paragraph, or even a whole document. Sentiment

analysis offers any organization, the ability to monitor

various social media sites in real time and act

accordingly. It can be used to get to know about the

current trends and topics and then at the end, make an

educated choice while selecting among different

products, services or even human beings!

In the past decade, new forms of communication, such

as micro blogging and text messaging have emerged and

becomeubiquitous. While there is no limit to the range

of information conveyed by tweets and texts, it‘s

difficult to deduce any valuable inferences from this

corpus. These ‗tweets and texts‘ are often short and are

used to share opinions and sentiments that people have,

about what is going on in the world around them. There

has been another major development in the last twenty

years - reviews. The number of avenues to put forth

one‘s opinion about a certain thing has increased

tenfold. The ‗things‘ here can refer to anything from

food/décor of a restaurant, movie or product reviews

from Amazon. These reviews can be collated, pre-

processed and then finally analysed to find interesting,

relevant patterns. Patterns that will help us discern

general public discourse associated with a particular

subject.

Our paper aims to use huge amounts of data from two

digital API‘s – Movie db and Twitter API, and along

with sophisticated machine learning techniques, creates

a web application which uses sentiment analysis to show

the opinion / polarity associated with a subject. Data

here refers to the thousands of online posts available.

The result is then visually represented using various

graphs which any user can use, to get the relevant

information by a mere glance. The user would enter a

word and theapplication would show the public opinion

associated with that word or a phrase through appealing

visuals.

Thus our application acts as a one stop shop at which

user can get information about a person, product or a

service. Information is presented in an aesthetically

pleasing way and is gotten through analysing

experiences shared by thousands of other people on a

digital platform. People need not have multiple apps and

have to personally go through several reviews to get a

clear picture about a particular thing; they can achieve it

in a fraction of the time by a click.

II. OVERVIEW

This project involves making a Web application that

performs sentiment analysis on social media and movie

review data. Data analytics where sentiment analysis

takes place is the backend of the system. We use python

language to build this, mainly using Jupyter notebooks,

for their simplicity and robust performance. Data was

collected, and then pre-processed, to make sure it‘s in

the optimal state before advanced algorithms were

applied to it. Then different vectorizers were used along

with different classifiers to check which combination

yields the best possible accuracy on the data sets. Each

classifier‘s optimal value of the select parameter was

found and then, that value was applied in its final

iteration. Various natural language processing

http://www.ijcotjournal.org/

International Journal of Computer & Organization Trends (IJCOT) – Volume 9 Issue 3 – May - June 2019

ISSN: 2249-2593 http://www.ijcotjournal.org Page 2

operations like stemming, lemmatization etc. were

performed to see if there was an increase in accuracy.

Finally, the accuracies achieved on the two data sets

were compared to see if there was a disparity present.

Then different operations were performed, to try and

reduce the disparity

.

Web application was chosen as the frontend, because,

the data is safer against the instances of personal system

crashes and the data would still be accessible in the

cloud next time we log into the web application system.

To develop the python web application we have used

Flask framework. We have created an instinct_flask.py

file, which acts as a local server, which is regularly used

to set up the routes that will become the application's

points of interaction. This file also acts as a REST

(Representational State Transfer) API which allows

communication between a web-based client and server

that employs representational state transfer (REST)

constraints. We have used basic html and css files to

design the front end. We represent the sentiment using a

donut chart with proper illustration for positive and

negative tweets. The donut chart is drawn using the

Google Chart API which is an interactive Web service

that creates graphical charts from user-supplied data.

The real time tweets are acquired using Tweetpy

which is an open-sourced, hosted on GitHub and enables

Python to communicate with Twitter platform and use

its API. It helps us to acquire a certain number of tweets

from the Twitter based on a given query. Movie db is a

similar API used to acquire movie reviews. Our web

application allows the user to search twitter or movie

sites for relevant topics (The topic here can be a name,

place, person or an event) and present the user with the

perception of the said topic by the people, based on our

sentiment classifier.

III. DATA

A. Twitter data

The dataset is taken by combining 1,600,000 tweets

with emoticons pre-removed. The dataset was collected

using the Twitter API for use in the paper [1].

In their approach, they assumed that any tweet with

positive emoticons, like :), were positive, and tweets

with negative emoticons, like :(, were negative. They

used the Twitter Search API to collect these tweets by

using keyword search. The no of Positive and negative

tweets are the same.

B. Movie review data

25000 reviews are provided and as the twitter data, the

positive and negative reviews are equally divided. The

reviews are roughly 4-5 lines each.

IV. DATA PRE-PROCESSING

A. Pre-processing for twitter data

a) HTML encoding: In general, HTML encoding has

not been converted to text, that is:
'inLOveeee<3 and it hurts '

‗<‘ is an html tag(less than), we have to convert it into

the desired form (‗<‘).

The following command decodes it:

𝑒𝑥 = 𝐵𝑒𝑎𝑢𝑡𝑖𝑓𝑢𝑙𝑆𝑜𝑢𝑝(𝑑𝑓𝑡𝑟𝑎𝑖𝑛. 𝑡𝑒𝑥𝑡[2204], ′𝑙𝑥𝑚𝑙′)
𝑝𝑟𝑖𝑛𝑡(𝑒𝑥. 𝑔𝑒𝑡_𝑡𝑒𝑥𝑡())
‘in LOveeee <3 and it hurts ‘

b) Removal of mentions:Mentions (@name) don‘t

add to the sentiment of the tweet.

'@angry_barista I baked you a cake

but I atedit '

The following code removes them:

𝑟𝑒. 𝑠𝑢𝑏(𝑟′@[𝐴 − 𝑍𝑎 − 𝑧0 − 9_]
+ ′, ′′, 𝑑𝑓𝑡𝑟𝑎𝑖𝑛. 𝑡𝑒𝑥𝑡[22])

' I baked you a cake but I ated it '

c) Removal of links:Links also don't add value to the

sentiment of the tweet, hence must be removed.
"@switchfoothttp://twitpic.com/2y1zl

- Awww, that's a bummer. You shoulda

got David Carr of Third Day to do it.

;D"

The following code removes them:

𝑟𝑒. 𝑠𝑢𝑏(′� 𝑡𝑡𝑝𝑠?�://[^�]�+�′,�′′,�𝑑𝑓𝑡𝑟𝑎𝑖𝑛. 𝑡𝑒𝑥𝑡[0])
"@switchfoot -Awww, that's a bummer.

You shoulda got David Carr of Third

Day to do

it. ;D"

Links can also start with ‗www‘.

The following code removes such links:

𝑟𝑒. 𝑠𝑢𝑏(′𝑤𝑤𝑤.�[^�]�+�′,�′′,�𝑑𝑓𝑡𝑟𝑎𝑖𝑛. 𝑡𝑒𝑥𝑡[79])
'wonders why someone that u like so

much can make you so unhappy in a

split seccond . depressed . '

d) Removal of non-letter characters:Numbers,

punctuations or any other special characters are not

useful, however the content of the hash tag could be

useful, therefore only the hash tag is let go, the content

succeeded by the hash tag is kept just as it is.
'@Kenichan I dived many times for the

ball. Managed to save 50% The rest

go out of bounds'

The following code removes them:

𝑟𝑒. 𝑠𝑢𝑏("[^𝑎 − 𝑧𝐴 − 𝑍]", " ", 𝑑𝑓𝑡𝑟𝑎𝑖𝑛. 𝑡𝑒𝑥𝑡[2])
' Kenichan I dived many times for the

ball Managed to save The rest

go out of bounds'

http://www.ijcotjournal.org/
http://twitpic.com/2y1zl

International Journal of Computer & Organization Trends (IJCOT) – Volume 9 Issue 3 – May - June 2019

ISSN: 2249-2593 http://www.ijcotjournal.org Page 3

e) Expansion of negation words:While removing

punctuations, ‗can‘t‘ becomes ‗can t‘, which is

problematic as can and can't are understood as similar

by the learning process. To take care of that all such

words, we manually expand them into their constituent

words.

"@nationwideclass no, it's not

behaving at all. i'm mad. why am i

here? because I can't see you all

over there. "

The following code handles them:

negations_dic = {"isn't":"is not", "aren't":"are not",
"wasn't":"was not",
"weren't":"werenot","haven't":"havenot","hasn't":"ha
snot","hadn't":"hadnot","won't":"will not",
"wouldn't":"would not", "don't":"do not",
"doesn't":"doesnot","didn't":"did not",
"can't":"cannot","couldn't":"couldnot","shouldn't":"sh
ouldnot","mightn't":"might not", "mustn't":"must
not"}
𝑛𝑒𝑔_𝑝𝑎𝑡𝑡𝑒𝑟𝑛 = 𝑟𝑒. 𝑐𝑜𝑚𝑝𝑖𝑙𝑒(𝑟′\𝑏(′

+ ′|′. 𝑗𝑜𝑖𝑛(𝑛𝑒𝑔𝑎𝑡𝑖𝑜𝑛𝑠_𝑑𝑖𝑐. 𝑘𝑒𝑦𝑠())
+ 𝑟′)\𝑏′)

neg_handled = neg_pattern.sub(lambda x:
negations_dic[group()], dftrain.text[4])
"@nationwideclass no, it's not

behaving at all. i'm mad. why am i

here? because I can not see you all

over there. "

f) Removal of extra spaces: Sometimes unnecessary

white spaces have been created because of the removal

of unwanted characters, we will tokenize and join

together to remove unnecessary white spaces.

𝑒𝑥𝑡𝑟𝑎_𝑠𝑝𝑎𝑐𝑒𝑠 =
𝑟𝑒. 𝑠𝑢𝑏("[^𝑎 −�𝑧 −�𝑍]", " ", 𝑑𝑓𝑡𝑟𝑎𝑖𝑛. 𝑡𝑒𝑥𝑡[2])'
Kenichan I dived many times for the

ball

Managed to save The rest go out

of bounds'

B. Pre-processing for movie review data

The following code is used to remove the punctuations
which contribute nothing to the sentiment of the text.

𝑟𝑒𝑣𝑖𝑒𝑤𝑠
= [𝑟𝑒. 𝑠𝑢𝑏("(\.)|(\;)|(\:)|(\!)|(\?)|(\,)|(\")|(\()|(
\))|(\[)|(\])|(
\𝑑+)", "", 𝑙𝑖𝑛𝑒. 𝑙𝑜𝑤𝑒𝑟()) 𝑓𝑜𝑟 𝑙𝑖𝑛𝑒 𝑖𝑛 𝑟𝑒𝑣𝑖𝑒𝑤𝑠]
The following code is used to remove break tags (<br

\>), which are found throughout the reviews.

reviews
= [re.sub("(<br\s*/><br\s*/>)|(\-)|(\/)"," ",line)
for line in reviews]

V. TRAINING ANDTEST DATA SPLIT

The data is firstly divided to training and test sets. Then

the some of the data is further taken out of the training

data is to be validation data. The difference between

validation and test being that validation is part of the

training data when it‘s fit into the vectorizer and

transformed, however the test data isn‘t present, and is

transformed based on the training data. Since there are

1.6 million tweets, 1 per cent is enough to be test data

and validation data. In the case of movie reviews there

are 25,000 data instances, hence we use a 25-75 split for

both validation sets. 25,000 reviews were used as test

cases. Accuracies were checked for different values of

the select parameter in each classifier to see which the

optimal value for the parameter is. For logistic

regression the parameter is c (Inverse of regularization

strength; must be a positive float, smaller values specify

stronger regularization), for multinomial NB its alpha

(Additive (Laplace/Lidstone) smoothing parameter (0

for no smoothing)) and finally for linear svc it‘s again c

(Penalty parameter C of the error term).

VI. RESULTS

Two vectorizers namely, Count and Tf-Idf vectorizers

were used along with 3 classifiers namely Logistic

regression, Multinomial NB and Linear SVC. Different

values of c/alpha parameters were used for each of the

classifiers for the validation data sets to see which yields

the highest accuracy. Then various nlp (Natural

language processing) techniques were applied before

Logistic regression was used to classify to see which

technique yields the highest accuracy, then that

technique was applied before classifiers to compare

accuracies between the classifiers. These techniques are:

removal of stopwords as shown in [5], Stemming (Porter

stemmer is used as in [2]) and finally, Lemmatization

(as used in [3]) and n-grams (shown in [4]). For the

final accuracy, stopwords were removed, lemmatization

was performed with ngram= (1, 2) and test data was

used.

A. Accuracies found with count vectorizer on Twitter

data.

Fig.1 Logistic regression, for ngram= (1, 2) together with
lemmatization, accuracies for different 'c' values.

http://www.ijcotjournal.org/

International Journal of Computer & Organization Trends (IJCOT) – Volume 9 Issue 3 – May - June 2019

ISSN: 2249-2593 http://www.ijcotjournal.org Page 4

B. Accuracies found with Tf-Idf vectorizer on Twitter

data.

Fig. 2 Multinomial NB, for ngram= (1, 2) together with

lemmatization, accuracies for different 'c' values.

Fig. 3 Linear SVC, for ngram= (1, 2) together with

lemmatization, accuracies for different 'c' values.

Fig. 4 Final Accuracy

Fig. 5 Logistic regression, for ngram= (1, 2) together

with lemmatization, accuracies for different 'c'

values.

Fig. 6 Multinomial NB, for ngram= (1, 2) together

with lemmatization, accuracies for different 'c'

values.

Fig. 7 Linear SVC, for ngram= (1, 2) together with

lemmatization, accuracies for different 'c' values.

Fig. 8 Final Accuracy

http://www.ijcotjournal.org/

International Journal of Computer & Organization Trends (IJCOT) – Volume 9 Issue 3 – May - June 2019

ISSN: 2249-2593 http://www.ijcotjournal.org Page 5

TABLE 1: ACCURACIES WITH DIFFERENT NLP TECHNIQUES USING LOGISTIC REGRESSION WITH COUNT VECTORIZER

 Accuracies for different values of ―c‖

0.01 0.05 0.25 0.5 1

Initial 78.87% 79.65% 79.96% 79.93% 79.84%

After removing
stopwords

76.64% 77.45% 77.62% 77.68% 77.50%

With Stemming 78.93% 79.72% 79.87% 79.84% 79.86%

With
Lemmatization

79.41% 79.92% 80.26% 80.31% 80.17%

With Stemming
and ngram=(1,2)

81.09% 82.10% 82.45% 82.17% 82.05%

With
Lemmatization and
ngram=(1,2)

79.28% 81.72% 82.47% 82.18% 82.02%

TABLE 2: ACCURACIES WITH DIFFERENT NLP TECHNIQUES USING LOGISTIC REGRESSION WITH TF-IDF VECTORIZER

 Accuracies for different values of ―c‖

0.01 0.05 0.25 0.5 1

Initial 76.02% 77.24% 77.90% 77.91% 78.02%

After removing
stopwords

76.11% 77.41% 78.11% 78.11% 78.18%

With Stemming 78.39% 79.39% 79.86% 80.05% 80.09%

With
Lemmatization

77.55% 78.88% 79.55% 79.76% 79.89%

With stemming and
ngram=(1,2)

77.18% 79.62% 81.08% 81.62% 82.17%

With
Lemmatization and
ngram=(1,2)

78.28% 80.81% 81.02% 81.24% 81.78%

C. Accuracies found with count vectorizer on Movie

Review data.

Fig. 9 Logistic regression, for ngram= (1, 2) together with

lemmatization, accuracies for different 'c' values

Fig. 10 Multinomial NB, for ngram= (1, 2) together with

lemmatization, accuracies for different 'c' values.

http://www.ijcotjournal.org/

International Journal of Computer & Organization Trends (IJCOT) – Volume 9 Issue 3 – May - June 2019

ISSN: 2249-2593 http://www.ijcotjournal.org Page 6

Fig. 11 Linear SVC, for ngram= (1, 2) together with

lemmatization, accuracies for different 'c' values.

Fig. 12 Final Accuracy

Fig.23 Logistic regression, for ngram= (1, 2) together with

lemmatization, accuracies for different 'c' values.

Fig. 14 Multinomial NB, for ngram= (1, 2) together with

lemmatization, accuracies for different 'c' values.

Fig. 15 Linear SVC, for ngram= (1, 2) together with
lemmatization, accuracies for different 'c' values.

Fig.16 Final Accuracy

http://www.ijcotjournal.org/

International Journal of Computer & Organization Trends (IJCOT) – Volume 9 Issue 3 – May - June 2019

ISSN: 2249-2593 http://www.ijcotjournal.org Page 7

TABLE 3: ACCURACIES WITH DIFFERENT NLP TECHNIQUES USING LOGISTIC REGRESSION WITH COUNT VECTORIZER

 Accuracies for different values of ―c‖

0.01 0.05 0.25 0.5 1

Initial 86.89% 88.81% 88.22% 88.06% 87.82%

After removing
stopwords

87.44% 88.13% 87.68% 87.39% 87.17%

With
Stemming

87.36% 88.06% 87.68% 87.6% 87.23%

With
Lemmatization

88 % 88.52 % 88.51 % 88.32 % 88.04 %

With stemming
and

ngram=(1,2)

88.99% 89.64% 89.84% 89.71% 89.71%

With

Lemmatization

and
ngram=(1,2)

88.99%

89.68%

89.90%

90.01%

90.01%

TABLE 4: ACCURACIES WITH DIFFERENT NLP TECHNIQUES USING LOGISTIC REGRESSION WITH TF-IDF VECTORIZER

 Accuracies for different values of ―c‖

0.01 0.05 0.25 0.5 1

Initial 82.76% 85.2% 87.16% 87.96% 88.36%

After removing

stopwords
84.97% 85.72% 87.24% 88.06% 88.65%

With

Stemming
83.61% 85.53% 87.68% 88.19% 88.75%

With

Lemmatization
83.88% 85.37% 87.61% 88.19% 88.86%

With stemming
and

ngram=(1,2)

85.42% 86.11% 87.79% 88.64% 89.36%

With

Lemmatization

and
ngram=(1,2)

84.73%

85.98%

87.6%

88.25%

89.18%

VII. OBSERVATIONS

A. Observations on the accuracies across the two data

sets

Although stopwords help increase the accuracy for

some parameter values, this doesn‘t happen for all

values with their being a decrease in the case of some.

However removing stopwords does speed up the fitting

and transformation process(understandable, since

removing words means less features which in turn

means less time needed for fitting and transformation).

Across the two data sets, there is an increase in accuracy

with stemming and lemmatization, in both data sets,

although which one shows better results is arguable.

There‘s a marked increase in accuracy when ngram= (1,

2) is applied. From the graphs we can see that, the trend

of accuracies for different parameter values remains

roughly the same for each classifier (this statement

remains true across the two datasets). For example Fig

1, Fig 5, Fig 9 and Fig 13 all look similar because they

all implement logistic regression classifier.

http://www.ijcotjournal.org/

ISSN: 2249-2593 http://www.ijcotjournal.org Page 8

International Journal of Computer & Organization Trends (IJCOT) – Volume 9 Issue 3 – May - June 2019

B. Observations on the similarities and differences

between the two data sets.

Between the 2 data sets, the accuracy is significantly

more in the case of movie reviews compared to the

tweets, even though, there are significantly more

tweets. There could be many reasons for this, one

being, the words are spelled correctly in reviews and

hence there is one feature made for one word, whereas

in the case of tweets, a word can be spelled in multiple

(often wrong!)ways. Another reason could be that

there are simply more words (i.e. features) there in

each review than those are there in each tweet. This

would help classify a review better.

The ‗final accuracy‘ graphs are roughly similar,

showing that the behaviour of classifier remains

similar throughout different vectorizers and datasets

(for example, accuracies for Multinomial NB are

always (marginally) lesser than that of the other two

classifiers).

The optimal value of the parameter (be it c or alpha)

doesn‘t remain roughly similar across the two data sets

but varies when different vectorizers are used, with Tf-

Idf Vectorizer having larger optimal parameter values

than their Count Vectorizer counterparts.

VIII. ADDITIONAL NOTES

The accuracy was checked on the twitter data

without any pre-processing or nlp operations with

Textblob‘s inbuilt ‗sentiment‘ method. It was found to

be about 61.17%.

To bridge the gap between twitter and movie review

data accuracies, two different spell checking functions

were applied to each word. Since it was estimated to

take more than 2 days to complete the process, the

experiment was performed with 10,000 tweets. There

was no significant improvement to be found with

either function. The two spell checking functions are,

textblob‘s ‗correct‘ function and a function based on

Peter Norvig‘s algorithm (https://norvig.com/spell-

correct.html). The latter has a supposed accuracy of

around 80% to 90%.

IX. CONCLUSION AND FUTURE SCOPE

More research can be made on how the parameter

values of each classifier affect the accuracy. The

reason behind why Tf-Idf vectorizers have a larger

optimal parameter value than that of Count Vectorizer

can thus be found out. Since there was no

improvement with spelling correction, it can be

inferred that the most likely reason for the higher

accuracy is the larger number of words present in the

reviews. Although it could also be the correct grammar

(with the right syntax) that yields the movie reviews its

higher accuracy. A lot of research is present in

literature for detecting sentiment from the text. Still

however, there is a huge scope of improvement of

these existing sentiment analysis models. Existing

sentiment analysis models can be improved further

with more semantic and common sense knowledge.

X. FRONT END SNIPPETS

Fig. 17

Fig. 18

REFERENCES

[1] Go, A., Bhayani, R., & Huang, L. (2009). Twitter sentiment

classification using distant supervision. CS224N project report,

Stanford, 1(12), 2009.

[2] Willett, P. (2006). The Porter stemming algorithm: then and now.

Program, 40(3), 219-223.

[3] Karimov, R., Samkova, M., Nikitina, S., & Akinin, A. (2016). Using a

hybrid algorithm for lemmatization of a diachronic corpus. In CEUR

workshop proceedings (Vol. 1886, pp. 1-8).

[4] Church, K. W. AT&T Bell Laboratories Murray Hill, NJ USA kwc@

research. att. com.

[5] Saif, H., Fernandez, M., He, Y., & Alani, H. (2014). On stopwords,

filtering and data sparsity for sentiment analysis of twitter.

http://www.ijcotjournal.org/

