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Abstract— Over three billion people use some form of 

social media in their day to day lives. Therefore, it is not 

unwise to say that social media is one of the single 

largest collection of data about humans present, in the 

world currently. Sentiment analysis is one of the most 

common operations done on social media data. In this 

paper, we perform sentiment analysis, using a variety of 

vectorizers and classifiers to see which combination 

yields the highest accuracy. Analysis is performed on 

Twitter and movie review data. The two data sets are 

inherently different and therefore there could be a 

difference between the accuracies. The front end of this 

application is web based. Twitter and movie review data 

are collected from two API’s in real time and then the 

different tweets/reviews are classified as either being 

positive or negative. This is then presented in the form 

of a donut graph. 

 

Keywords — Sentiment Analysis, Machine Learning, 

Information Retrieval, Opinion Mining and Natural 

language processing. 

I. INTRODUCTION 

Sentiment is the emotion attached to a sentence; it can 

be a positive emotion or a negative emotion. Sentiment 

analysis is described as the ability to associate a specific 

sentiment (or emotion) to a particular sentence, 

paragraph, or even a whole document. Sentiment 

analysis offers any organization, the ability to monitor 

various social media sites in real time and act 

accordingly. It can be used to get to know about the 

current trends and topics and then at the end, make an 

educated choice while selecting among different 

products, services or even human beings! 

In the past decade, new forms of communication, such 

as micro blogging and text messaging have emerged and 

becomeubiquitous. While there is no limit to the range 

of information conveyed by tweets and texts, it‘s 

difficult to deduce any valuable inferences from this 

corpus. These ‗tweets and texts‘ are often short and are 

used to share opinions and sentiments that people have, 

about what is going on in the world around them. There 

has been another major development in the last twenty 

years - reviews. The number of avenues to put forth 

one‘s opinion about a certain thing has increased 

tenfold. The ‗things‘ here can refer to anything from 

food/décor of a restaurant, movie or product reviews 

from Amazon. These reviews can be collated, pre- 

processed and then finally analysed to find interesting, 

relevant patterns. Patterns that will help us discern 

general public discourse associated with a particular 

subject. 

Our paper aims to use huge amounts of data from two 

digital API‘s – Movie db and Twitter API, and along 

with sophisticated machine learning techniques, creates 

a web application which uses sentiment analysis to show 

the opinion / polarity associated with a subject. Data 

here refers to the thousands of online posts available. 

The result is then visually represented using various 

graphs which any user can use, to get the relevant 

information by a mere glance. The user would enter a 

word and theapplication would show the public opinion 

associated with that word or a phrase through appealing 

visuals. 

Thus our application acts as a one stop shop at which 

user can get information about a person, product or a 

service. Information is presented in an aesthetically 

pleasing way and is gotten through analysing 

experiences shared by thousands of other people on a 

digital platform. People need not have multiple apps and 

have to personally go through several reviews to get a 

clear picture about a particular thing; they can achieve it 

in a fraction of the time by a click. 

 

II. OVERVIEW 

This project involves making a Web application that 

performs sentiment analysis on social media and movie 

review data. Data analytics where sentiment analysis 

takes place is the backend of the system. We use python 

language to build this, mainly using Jupyter notebooks, 

for their simplicity and robust performance. Data was 

collected, and then pre-processed, to make sure it‘s in 

the optimal state before advanced algorithms were 

applied to it. Then different vectorizers were used along 

with different classifiers to check which combination 

yields the best possible accuracy on the data sets. Each 

classifier‘s optimal value of the select parameter was 

found and then, that value was applied in its final 

iteration.  Various  natural  language  processing 
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operations like stemming, lemmatization etc. were 

performed to see if there was an increase in accuracy. 

Finally, the accuracies achieved on the two data sets 

were compared to see if there was a disparity present. 

Then different operations were performed, to try and 

reduce the disparity 

. 

Web application was chosen as the frontend, because, 

the data is safer against the instances of personal system 

crashes and the data would still be accessible in the 

cloud next time we log into the web application system. 

To develop the python web application we have used 

Flask framework. We have created an instinct_flask.py 

file, which acts as a local server, which is regularly used 

to set up the routes that will become the application's 

points of interaction. This file also acts as a REST 

(Representational State Transfer) API which allows 

communication between a web-based client and server 

that employs representational state transfer (REST) 

constraints. We have used basic html and css files to 

design the front end. We represent the sentiment using a 

donut chart with proper illustration for positive and 

negative tweets. The donut chart is drawn using the 

Google Chart API which is an interactive Web service 

that creates graphical charts from user-supplied data. 

The real time tweets are acquired using Tweetpy 

which is an open-sourced, hosted on GitHub and enables 

Python to communicate with Twitter platform and use 

its API. It helps us to acquire a certain number of tweets 

from the Twitter based on a given query. Movie db is a 

similar API used to acquire movie reviews. Our web 

application allows the user to search twitter or movie 

sites for relevant topics (The topic here can be a name, 

place, person or an event) and present the user with the 

perception of the said topic by the people, based on our 

sentiment classifier. 

III. DATA 

 

A. Twitter data 

The dataset is taken by combining 1,600,000 tweets 

with emoticons pre-removed. The dataset was collected 

using the Twitter API for use in the paper [1]. 

In their approach, they assumed that any tweet with 

positive emoticons, like :), were positive, and tweets 

with negative emoticons, like :(, were negative. They 

used the Twitter Search API to collect these tweets by 

using keyword search. The no of Positive and negative 

tweets are the same. 

 

B. Movie review data 

25000 reviews are provided and as the twitter data, the 

positive and negative reviews are equally divided. The 

reviews are roughly 4-5 lines each. 

IV. DATA PRE-PROCESSING 

 

A. Pre-processing for twitter data 

a) HTML encoding: In general, HTML encoding has 

not been converted to text, that is: 
'inLOveeee&lt;3 and it hurts ' 

‗&lt‘ is an html tag(less than), we have to convert it into 

the desired form (‗<‘). 

The following command decodes it: 

𝑒𝑥 = 𝐵𝑒𝑎𝑢𝑡𝑖𝑓𝑢𝑙𝑆𝑜𝑢𝑝(𝑑𝑓𝑡𝑟𝑎𝑖𝑛. 𝑡𝑒𝑥𝑡[2204], ′𝑙𝑥𝑚𝑙′) 
𝑝𝑟𝑖𝑛𝑡(𝑒𝑥. 𝑔𝑒𝑡_𝑡𝑒𝑥𝑡( )) 
‘in LOveeee <3 and it hurts ‘ 

b) Removal of mentions:Mentions (@name) don‘t 

add to the sentiment of the tweet. 

'@angry_barista I baked you a cake 

but I atedit ' 

The following code removes them: 

𝑟𝑒. 𝑠𝑢𝑏(𝑟′@[𝐴 − 𝑍𝑎 − 𝑧0 − 9_] 
+ ′, ′′, 𝑑𝑓𝑡𝑟𝑎𝑖𝑛. 𝑡𝑒𝑥𝑡[22]) 

' I baked you a cake but I ated it ' 

c) Removal of links:Links also don't add value to the 

sentiment of the tweet, hence must be removed. 
"@switchfoothttp://twitpic.com/2y1zl 

- Awww, that's a bummer. You shoulda 

got David Carr of Third Day to do it. 

;D" 

The following code removes them: 

𝑟𝑒. 𝑠𝑢𝑏(′� 𝑡𝑡𝑝𝑠?�://[^�]�+�′,�′′,�𝑑𝑓𝑡𝑟𝑎𝑖𝑛. 𝑡𝑒𝑥𝑡[0]) 
"@switchfoot -Awww, that's a bummer. 

You shoulda got David Carr of Third 

Day to do 

it. ;D" 

Links can also start with ‗www‘. 

The following code removes such links: 

𝑟𝑒. 𝑠𝑢𝑏(′𝑤𝑤𝑤.�[^�]�+�′,�′′,�𝑑𝑓𝑡𝑟𝑎𝑖𝑛. 𝑡𝑒𝑥𝑡[79]) 
'wonders why someone that u like so 

much can make you so unhappy in a 

split seccond . depressed . ' 

d) Removal of non-letter characters:Numbers, 

punctuations or any other special characters are not 

useful, however the content of the hash tag could be 

useful, therefore only the hash tag is let go, the content 

succeeded by the hash tag is kept just as it is. 
'@Kenichan I dived many times for the 

ball. Managed to save 50% The rest 

go out of bounds' 

The following code removes them: 

𝑟𝑒. 𝑠𝑢𝑏("[^𝑎 − 𝑧𝐴 − 𝑍]", " ", 𝑑𝑓𝑡𝑟𝑎𝑖𝑛. 𝑡𝑒𝑥𝑡[2]) 
' Kenichan I dived many times for the 

ball Managed to save   The rest 

go out of bounds' 
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e) Expansion of negation words:While removing 

punctuations, ‗can‘t‘ becomes ‗can t‘, which is 

problematic as can and can't are understood as similar 

by the learning process. To take care of that all such 

words, we manually expand them into their constituent 

words. 

"@nationwideclass no, it's not 

behaving at all. i'm mad. why am i 

here? because I can't see you all 

over there. " 

The following code handles them: 

negations_dic = {"isn't":"is not", "aren't":"are not", 
"wasn't":"was not", 
"weren't":"werenot","haven't":"havenot","hasn't":"ha 
snot","hadn't":"hadnot","won't":"will not", 
"wouldn't":"would not", "don't":"do not", 
"doesn't":"doesnot","didn't":"did not", 
"can't":"cannot","couldn't":"couldnot","shouldn't":"sh 
ouldnot","mightn't":"might not", "mustn't":"must 
not"} 
𝑛𝑒𝑔_𝑝𝑎𝑡𝑡𝑒𝑟𝑛 = 𝑟𝑒. 𝑐𝑜𝑚𝑝𝑖𝑙𝑒(𝑟′\𝑏(′ 

+ ′|′. 𝑗𝑜𝑖𝑛(𝑛𝑒𝑔𝑎𝑡𝑖𝑜𝑛𝑠_𝑑𝑖𝑐. 𝑘𝑒𝑦𝑠()) 
+ 𝑟′)\𝑏′) 

neg_handled = neg_pattern.sub(lambda  x: 
negations_dic[group()], dftrain.text[4]) 
"@nationwideclass no, it's not 

behaving at all. i'm mad. why am i 

here? because I can not see you all 

over there. " 

f) Removal of extra spaces: Sometimes unnecessary 

white spaces have been created because of the removal 

of unwanted characters, we will tokenize and join 

together to remove unnecessary white spaces. 

𝑒𝑥𝑡𝑟𝑎_𝑠𝑝𝑎𝑐𝑒𝑠 = 
𝑟𝑒. 𝑠𝑢𝑏("[^𝑎 −�𝑧 −�𝑍]", " ", 𝑑𝑓𝑡𝑟𝑎𝑖𝑛. 𝑡𝑒𝑥𝑡[2])' 
Kenichan I dived many times for the 

ball 

Managed to save The rest go out 

of bounds' 

B. Pre-processing for movie review data 

 
The following code is used to remove the punctuations 
which contribute nothing to the sentiment of the text. 

𝑟𝑒𝑣𝑖𝑒𝑤𝑠 
= [𝑟𝑒. 𝑠𝑢𝑏("(\. )|(\; )|(\: )|(\!)|(\? )|(\, )|(\")|(\()|( 
\))|(\[)|(\])|( 
\𝑑+)", "", 𝑙𝑖𝑛𝑒. 𝑙𝑜𝑤𝑒𝑟()) 𝑓𝑜𝑟 𝑙𝑖𝑛𝑒 𝑖𝑛 𝑟𝑒𝑣𝑖𝑒𝑤𝑠] 
The following code is used to remove break tags (<br 

\>), which are found throughout the reviews. 

reviews 
= [re.sub("(<br\s*/><br\s*/>)|(\-)|(\/)"," ",line) 
for line in reviews] 

V. TRAINING ANDTEST DATA SPLIT 

The data is firstly divided to training and test sets. Then 

the some of the data is further taken out of the training 

data is to be validation data. The difference between 

validation and test being that validation is part of the 

training data when it‘s fit into the vectorizer and 

transformed, however the test data isn‘t present, and is 

transformed based on the training data. Since there are 

1.6 million tweets, 1 per cent is enough to be test data 

and validation data. In the case of movie reviews there 

are 25,000 data instances, hence we use a 25-75 split for 

both validation sets. 25,000 reviews were used as test 

cases. Accuracies were checked for different values of 

the select parameter in each classifier to see which the 

optimal value for the parameter is. For logistic 

regression the parameter is c (Inverse of regularization 

strength; must be a positive float, smaller values specify 

stronger regularization), for multinomial NB its alpha 

(Additive (Laplace/Lidstone) smoothing parameter (0 

for no smoothing)) and finally for linear svc it‘s again c 

(Penalty parameter C of the error term). 

 

VI. RESULTS 

Two vectorizers namely, Count and Tf-Idf vectorizers 

were used along with 3 classifiers namely Logistic 

regression, Multinomial NB and Linear SVC. Different 

values of c/alpha parameters were used for each of the 

classifiers for the validation data sets to see which yields 

the highest accuracy. Then various nlp (Natural 

language processing) techniques were applied before 

Logistic regression was used to classify to see which 

technique yields the highest accuracy, then that 

technique was applied before classifiers to compare 

accuracies between the classifiers. These techniques are: 

removal of stopwords as shown in [5], Stemming (Porter 

stemmer is used as in [2]) and finally, Lemmatization 

(as used in [3]) and n-grams (shown in [4]). For the 

final accuracy, stopwords were removed, lemmatization 

was performed with ngram= (1, 2) and test data was 

used. 

A. Accuracies found with count vectorizer on Twitter 

data. 
 

Fig.1 Logistic regression, for ngram= (1, 2) together with 
lemmatization, accuracies for different 'c' values. 
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B. Accuracies found with Tf-Idf vectorizer on Twitter 

data. 
 

 

 

 

Fig. 2 Multinomial NB, for ngram= (1, 2) together with 

lemmatization, accuracies for different 'c' values. 

 

 

 

Fig. 3 Linear SVC, for ngram= (1, 2) together with 

lemmatization, accuracies for different 'c' values. 

 

 

 

 

Fig. 4 Final Accuracy 

Fig. 5 Logistic regression, for ngram= (1, 2) together 

with lemmatization, accuracies for different 'c' 

values. 

 

Fig. 6 Multinomial NB, for ngram= (1, 2) together 

with lemmatization, accuracies for different 'c' 

values. 
 

Fig. 7 Linear SVC, for ngram= (1, 2) together with 

lemmatization, accuracies for different 'c' values. 

 

 

Fig. 8 Final Accuracy 
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TABLE 1: ACCURACIES WITH DIFFERENT NLP TECHNIQUES USING LOGISTIC REGRESSION WITH COUNT VECTORIZER 

 

 
 Accuracies for different values of ―c‖ 

0.01 0.05 0.25 0.5 1 

Initial 78.87% 79.65% 79.96% 79.93% 79.84% 

After removing 
stopwords 

76.64% 77.45% 77.62% 77.68% 77.50% 

With Stemming 78.93% 79.72% 79.87% 79.84% 79.86% 

With 
Lemmatization 

79.41% 79.92% 80.26% 80.31% 80.17% 

With Stemming 
and ngram=(1,2) 

81.09% 82.10% 82.45% 82.17% 82.05% 

With 
Lemmatization and 
ngram=(1,2) 

79.28% 81.72% 82.47% 82.18% 82.02% 

 

 

 

TABLE 2: ACCURACIES WITH DIFFERENT NLP TECHNIQUES USING LOGISTIC REGRESSION WITH TF-IDF VECTORIZER 

 

 
 Accuracies for different values of ―c‖ 

0.01 0.05 0.25 0.5 1 

Initial 76.02% 77.24% 77.90% 77.91% 78.02% 

After removing 
stopwords 

76.11% 77.41% 78.11% 78.11% 78.18% 

With Stemming 78.39% 79.39% 79.86% 80.05% 80.09% 

With 
Lemmatization 

77.55% 78.88% 79.55% 79.76% 79.89% 

With stemming and 
ngram=(1,2) 

77.18% 79.62% 81.08% 81.62% 82.17% 

With 
Lemmatization and 
ngram=(1,2) 

78.28% 80.81% 81.02% 81.24% 81.78% 

 

C. Accuracies found with count vectorizer on Movie 

Review data. 

 

Fig. 9 Logistic regression, for ngram= (1, 2) together with 

lemmatization, accuracies for different 'c' values 

Fig. 10 Multinomial NB, for ngram= (1, 2) together with 

lemmatization, accuracies for different 'c' values. 
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Fig. 11 Linear SVC, for ngram= (1, 2) together with 

lemmatization, accuracies for different 'c' values. 

 

 

Fig. 12 Final Accuracy 
 

 

 

Fig.23 Logistic regression, for ngram= (1, 2) together with 

lemmatization, accuracies for different 'c' values. 

Fig. 14 Multinomial NB, for ngram= (1, 2) together with 

lemmatization, accuracies for different 'c' values. 

 

 

Fig. 15 Linear SVC, for ngram= (1, 2) together with 
lemmatization, accuracies for different 'c' values. 

 

 

Fig.16 Final Accuracy 
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TABLE 3: ACCURACIES WITH DIFFERENT NLP TECHNIQUES USING LOGISTIC REGRESSION WITH COUNT VECTORIZER 

 

 
 Accuracies for different values of ―c‖ 

0.01 0.05 0.25 0.5 1 

Initial 86.89% 88.81% 88.22% 88.06% 87.82% 

After removing 
stopwords 

87.44% 88.13% 87.68% 87.39% 87.17% 

With 
Stemming 

87.36% 88.06% 87.68% 87.6% 87.23% 

With 
Lemmatization 

88 % 88.52 % 88.51 % 88.32 % 88.04 % 

With stemming 
and 

ngram=(1,2) 

88.99% 89.64% 89.84% 89.71% 89.71% 

With 

Lemmatization 

and 
ngram=(1,2) 

 

88.99% 
 

89.68% 
 

89.90% 
 

90.01% 
 

90.01% 

 

TABLE 4: ACCURACIES WITH DIFFERENT NLP TECHNIQUES USING LOGISTIC REGRESSION WITH TF-IDF VECTORIZER 

 
 Accuracies for different values of ―c‖ 

0.01 0.05 0.25 0.5 1 

Initial 82.76% 85.2% 87.16% 87.96% 88.36% 

After removing 

stopwords 
84.97% 85.72% 87.24% 88.06% 88.65% 

With 

Stemming 
83.61% 85.53% 87.68% 88.19% 88.75% 

With 

Lemmatization 
83.88% 85.37% 87.61% 88.19% 88.86% 

With stemming 
and 

ngram=(1,2) 

85.42% 86.11% 87.79% 88.64% 89.36% 

With 

Lemmatization 

and 
ngram=(1,2) 

 

84.73% 
 

85.98% 
 

87.6% 
 

88.25% 
 

89.18% 

 

VII. OBSERVATIONS 

 

A. Observations on the accuracies across the two data 

sets 

Although stopwords help increase the accuracy for 

some parameter values, this doesn‘t happen for all 

values with their being a decrease in the case of some. 

However removing stopwords does speed up the fitting 

and transformation process(understandable, since 

removing words means less features which in turn 

means less time needed for fitting and transformation). 

Across the two data sets, there is an increase in accuracy 

with stemming and lemmatization, in both data sets, 

although which one shows better results is arguable. 

 

There‘s a marked increase in accuracy when ngram= (1, 

2) is applied. From the graphs we can see that, the trend 

of accuracies for different parameter values remains 

roughly the same for each classifier (this statement 

remains true across the two datasets). For example Fig 

1, Fig 5, Fig 9 and Fig 13 all look similar because they 

all   implement   logistic   regression   classifier. 
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B. Observations on the similarities and differences 

between the two data sets. 

Between the 2 data sets, the accuracy is significantly 

more in the case of movie reviews compared to the 

tweets, even though, there are significantly more 

tweets. There could be many reasons for this, one 

being, the words are spelled correctly in reviews and 

hence there is one feature made for one word, whereas 

in the case of tweets, a word can be spelled in multiple 

(often wrong!)ways. Another reason could be that 

there are simply more words (i.e. features) there in 

each review than those are there in each tweet. This 

would help classify a review better. 

The ‗final accuracy‘ graphs are roughly similar, 

showing that the behaviour of classifier remains 

similar throughout different vectorizers and datasets 

(for example, accuracies for Multinomial NB are 

always (marginally) lesser than that of the other two 

classifiers). 

The optimal value of the parameter (be it c or alpha) 

doesn‘t remain roughly similar across the two data sets 

but varies when different vectorizers are used, with Tf- 

Idf Vectorizer having larger optimal parameter values 

than their Count Vectorizer counterparts. 

 

VIII. ADDITIONAL NOTES 

The accuracy was checked on the twitter data 

without any pre-processing or nlp operations with 

Textblob‘s inbuilt ‗sentiment‘ method. It was found to 

be about 61.17%. 

To bridge the gap between twitter and movie review 

data accuracies, two different spell checking functions 

were applied to each word. Since it was estimated to 

take more than 2 days to complete the process, the 

experiment was performed with 10,000 tweets. There 

was no significant improvement to be found with 

either function. The two spell checking functions are, 

textblob‘s ‗correct‘ function and a function based on 

Peter Norvig‘s algorithm (https://norvig.com/spell- 

correct.html). The latter has a supposed accuracy of 

around 80% to 90%. 

 

IX. CONCLUSION AND FUTURE SCOPE 

More research can be made on how the parameter 

values of each classifier affect the accuracy. The 

reason behind why Tf-Idf vectorizers have a larger 

optimal parameter value than that of Count Vectorizer 

can thus be found out. Since there was no 

improvement with spelling correction, it can be 

inferred that the most likely reason for the higher 

accuracy is the larger number of words present in the 

reviews. Although it could also be the correct grammar 

(with the right syntax) that yields the movie reviews its 

higher accuracy. A lot of research is present in 

literature for detecting sentiment from the text. Still 

however, there is a huge scope of improvement of 

these existing sentiment analysis models. Existing 

sentiment analysis models can be improved further 

with more semantic and common sense knowledge. 

 

X. FRONT END SNIPPETS 

 

 
Fig. 17 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 18 
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