The Strong non Split Domination Number of Fuzzy Graphs

C.Y.Ponnappan¹, S. Basheer Ahamed², P. Surulinathan³

¹ Department of Mathematics, Government Arts College Paramakudi, Tamilnadu, India ² Department of Mathematics, P.S.N.A. College of Engineering and Technology, Dindigul, Tamilnadu, India. ³ Department of Mathematics, Lathamathavan Engineering college, Kidaripatti, Alagarkovil, Madurai-625301,Tamilnadu,India.

Abstract – A dominating set D of a fuzzy graph G=(σ , μ) is a Strong non split dominating set if the induced fuzzy subgraph H=(<V-D>, σ' , μ') is complete. The strong non split domination number $\gamma_{sns}(G)$ of G is the minimum fuzzy cardinality of a strong non split dominating set. In this paper we study a strong non split dominating sets of fuzzy graphs and investigate the relationship of $\gamma_{sns(G)}$ with other known parameter of G.

Keywords – Fuzzy graphs , Fuzzy domination ,Split fuzzy domination number , Strong Split fuzzy domination number, strong non split domination number.

I. INTRODUCTION

Kulli V.R. et.al introduced the concept of split domination and non-split domination in graphs [3]. Rosenfield introduced the notion of fuzzy graph and several fuzzy analogs of graph theoretic concepts such as path, cycles and connectedness[10]. A.Somasundram and S.Somasundram discussed domination in Fuzzy graphs[11]. Mahyoub Q.M. and Sonar N.D. discussed the split domination number of fuzzy graphs [6]. In this paper we discuss the strong non split domination number of fuzzy graph and obtained the relationship with other known parameter of G.

II. PRELIMINARIES

Definition: 2.1 [2] Let G=(V,E) be

Let G=(V,E) be a graph. A subset D of V is called a dominating set in G if every vertex in V-D is adjacent to some vertex in D. The domination number of G is the minimum cardinatliy taken over all dominating sets in G and is denoted by γ (G).

Definition:2.2 [2]

A dominating set D of a fuzzy graph $G=(\sigma,\mu)$ is connected dominating set if the induced fuzzy sub graph $H=(\langle D \rangle, \sigma', \mu')$ is connected. The minimum fuzzy cardinality of a connected dominating set of G is called the connected dominating number of G and is denoted by $\gamma_c(G)$.

Definition:2.3 [3]

A dominating set D of a graph G=(V,E) is a split dominating set if the induced subgraph $\langle V-D \rangle$ is disconnected. The split domination number $\gamma_s(G)$ of a graph G is the minimum cardinality of a split dominating set.

Definition:2.4 [3]

A dominating set D of a graph G=(V,E) is a non split dominating set if the induced subgraph $\langle V-D \rangle$ is connected. The non split domination number $\gamma_{ns}(G)$ of a graph G is the minimum cardinality of a non split dominating set.

Definition:2.5 [4]

A dominating set D of a graph G=(V,E) is a strong non split dominating set if the induced subgraph $\langle V-D \rangle$ is complete. The strong non split domination number $\gamma_{sns}(G)$ of a graph G is the minimum cardinality of a strong non split dominating set.

Definition : 2.6 [10]

Let V be a finite non empty set. Let E be the collection of all two element subsets of V. A fuzzy graph $G=(\sigma,\mu)$ is a set with two functions $\sigma :V \rightarrow [0,1]$ and $\mu: E \rightarrow [0,1]$ such that $\mu(\{u,v\}) \leq \sigma(u) \land \sigma(v)$ for all $u, v \in V$.

Definition : 2.7 [11]

Let G=(σ,μ) be a fuzzy graph on V and V₁ \subseteq V. Define σ_1 on V₁ by $\sigma_1(u)=\sigma(u)$ for all $u \in V_1$ and μ_1 on the collection E₁ of two element subsets of V₁ by $\mu_1(\{u,v\}) = \mu(\{u,v\})$ for all $u,v \in V_1$, then (σ_1,μ_1) is called the fuzzy subgraph of G induced by V₁ and is denoted by $\langle V_1 \rangle$.

Definition : 2.8 [11]

The fuzzy subgraph $H=(V_1,\sigma_1,\mu_1)$ is said to be a spanning fuzzy subgraph of $G=(V,\sigma,\mu)$ if $\sigma_1(u)=\sigma(u)$ for all $u \in V_1$ and $\mu_1(u,v) \le \mu(u,v)$ for all $u,v \in V$. Let G (V,σ,μ) be a fuzzy graph and σ_1 be any fuzzy subset of μ , i.e., $\sigma_1(u) \le \sigma(u)$ for all u.

Definition : 2.9 [6]

A dominating set D of a fuzzy graph $G=(\sigma,\mu)$ is a split dominating set if the induced fuzzy subgraph $H=(\langle V-D \rangle, \sigma', \mu')$ is disconnected.

The split domination number $\gamma_s(G)$ of G is the minimum fuzzy cardinality of a split dominating set. *Definition* : 2.10 [6]

A dominating set D of a fuzzy graph $G=(\sigma,\mu)$ is a non split dominating set if the induced fuzzy subgraph $H=(\langle V-D \rangle, \sigma', \mu')$ is connected.

The non split domination number $\gamma_{ns}(G)$ of G is the minimum fuzzy cardinality of a non split dominating set.

Definition : 2.11

A dominating set D of a fuzzy graph $G=(\sigma,\mu)$ is a strong non split dominating set if the induced fuzzy subgraph $H=(\langle V-D \rangle, \sigma', \mu')$ is complete.

The strong non split domination number $\gamma_{sns}(G)$ is the minimum fuzzy cardinality of a strong non split dominating set.

Definition : 2.12 [11]

The order p and size q of a fuzzy graph $G=(\sigma,\mu)$ are defined to be $p=\sum_{u\in V}\sigma(u)$ and $q=\sum_{(u,v)\in E} \mu(\{u,v\})$.

Definition : 2.13 [11]

An edge $e=\{u, v\}$ of a fuzzy graph is called an effective edge if $\mu(\{u, v\}) = \sigma(u) \land \sigma(v)$.

$$\begin{split} N(u) &= \{ v \in V / \ \mu(\{u,v\}) = \sigma(u) \land \sigma(v) \} \text{ is } \\ \text{called the neighborhood of } u \text{ and } N[u] = N(u) \cup \{u\} \text{ is } \\ \text{the closed neighborhood of } u. \end{split}$$

The effective degree of a vertex u is defined to be the sum of the weights of the effective edges incident at u and is denoted by dE(u). $\sum_{v \in N(u)} \sigma(v)$ is called the neighborhood degree of u and is denoted by dN(u). The minimum effective degree $\delta_E(G) = \min\{dE(u)|u \in V(G)\}\)$ and the maximum effective degree $\Delta_E(G) = \max\{dE(u)|u \in V(G)\}\)$.

Definition : 2.14 [11]

The complement of a fuzzy graph G denoted by \overline{G} is defined to be $\overline{G} = (\sigma, \overline{\mu})$ where $\overline{\mu}(\{u, v\}) = \sigma(u) \wedge \sigma(v) - \mu(\{u, v\}).$

Definition : 2.15 [11]

Let $\sigma:V\rightarrow[0,1]$ be a fuzzy subset of V. Then the complete fuzzy graph on σ is defined to be (σ,μ) where $\mu(\{u,v\})=\sigma(u)\wedge\sigma(v)$ for all $uv\in E$ and is denoted by K_{σ} .

Definition : 2.16 [11]

A fuzzy graph $G=(\sigma,\mu)$ is said to be bipartite if the vertex V can be partitioned into two nonempty sets V₁ and V₂ such that $\mu(v_1,v_2)=0$ if $v_1,v_2 \in V_1$ or $v_1,v_2 \in V_2$. Further if $\mu(\mathbf{u}, \mathbf{v}) = \sigma(\mathbf{u}) \land \sigma(\mathbf{v})$ for all $\mathbf{u} \in V_1$ and $\mathbf{v} \in V_2$ then G is called a complete bipartite graph and is denoted by K_{σ_1, σ_2} where σ_1 and σ_2 are, respectively, the restrictions of σ to V_1 and V_2 .

Definition : 2.17 [11]

A dominating set D of a fuzzy graph G is said to be a minimal dominating if no proper subset D' of D is dominating set of G such that |D'| < |D|.

Proposition : 1

For fuzzy bipartite graph K_{σ_1,σ_2} , $\gamma_{sns}(K_{\sigma_1,\sigma_2}) = 0.$

Proposition : 2

If the fuzzy graph G=2K₂ with equal membership for all vertices and edges then $\gamma(\bar{G}) = \gamma_{s}(\bar{G})$ = $\gamma_{ss}(\bar{G}) = \gamma_{ns}(\bar{G}) = \gamma_{sns}(\bar{G})$

Proposition : 3

For any fuzzy path, $\gamma_{sns}(P_p)=0$.

Proposition: 4

For any fuzzy cycle, $\gamma_{sns}(C_p) = 0$

Theorem : 1

For any fuzzy graph $G=(\sigma,\mu) \gamma(G) \leq \gamma_{sns}(G)$.

Proof

Let $G=(\sigma,\mu)$ be a fuzzy graph. Let D be the minimum dominating set. D_{sns} is the fuzzy strong non split dominating set. D_{sns} is also a dominating set but need not be a minimum fuzzy dominating set.

Therefore we get $|D| \le |D_{sns}|$ That is $\gamma(G) \le \gamma_{sns}(G)$.

Example

Theorem : 2

For any fuzzy graph $G=(\sigma,\mu), \gamma(G) \leq \min\{\gamma_s(G), \gamma_{sns}(G)\}$

Proof:

Let $G=(\sigma,\mu)$ be a fuzzy graph. D be the minimum fuzzy dominating set. Let D_s and D_{sns} the minimum fuzzy split dominating set and minimum fuzzy strong non split dominating set of G respectively. The cardinality of fuzzy dominating set need not exceeds either one of the minimum of cardinality of fuzzy split dominating set or fuzzy strong non split dominating set.

Therefore $|\mathbf{D}| \le \min \{|\mathbf{D}_{s}|, |\mathbf{D}_{sns}|\}$ Hence $\gamma(G) \le \min\{\varphi_{s}(G), \varphi_{sns}(G)\}$

Example :

$$D=\{u_{3},u_{5}\}, \ \gamma(G) = 0.6$$

$$D_{s}=\{u_{1},u_{3}\}, \ \gamma_{s}(G) = 0.8$$

$$D_{sns}=\{u_{1},u_{2}\}, \ \gamma_{sns}(G) = 0.7$$

Theorem : 3

For any spanning fuzzy sub graph $H = (\sigma', \mu')$ of $G=(\sigma, \mu)$, $\gamma_{sns}(H) \ge \gamma_{sns}(G)$

Proof

Let $G=(\sigma,\mu)$ be a fuzzy graph and let $H(\sigma',\mu')$ be the fuzzy spanning sub graph of G. $D_{sns}(G)$ be the fuzzy minimum strong non-split dominating set of G. $D_{sns}(G)$ is fuzzy strong non-split dominating set of H but not minimum.

Therefore $\gamma_{sns}(H) \geq \gamma_{sns}(G)$.

Example

Spanning fuzzy sub graph H of G (Fig (i))

Theorem : 4

For any complete fuzzy graph K_{σ} then $\gamma(G) = \gamma_{sns}(G) = \min\{\sigma(u)/u \in V\}$ *Proof*

Let $G=(\sigma,\mu)$ be a complete fuzzy graph therefore there is a strong arc between every pair of vertices. We remove any vertex having minimum cardinality, the resulting graph is complete.

Let $\{v\}$ is minimum dominating set then <V- D> is complete.

Therefore,

$$\gamma(G) = \gamma_{sns}(G) = \min\{\sigma(u)/u \in V\}$$

Example :

Theorem : 5

A strong non split dominating set D of $G=(\sigma,\mu)$ is minimal if and only if for each $v\in D$ one of the following two conditions holds

> (i) $N(v) \cap D = \varphi$ (ii) There is a vertex $u \in V-D$ Such that $N(u) \cap D = \{v\}$

Proof:

Let D be a minimal strong non split dominating set and $v \in D$, then D'=D-{v} is not a strong non-split dominating set and hence there exist $u \in V$ -D' such that u is not dominated by any element of D'. If u=v we get (i) and if u \neq v we get (ii). The converse is obvious.

ACKNOWLEDGEMENT

Thanks are due to the referees for their valuable comments and suggestions.

References

- Harary, E., 1969. Graph Theory. Addison Wesley, Reading, MA. McAlester, M.L.N., 1988. Fuzzy intersection graphs. Comp. Math. Appl. 15(10), 871-886.
- Haynes, T.W., Hedetniemi S.T. and Slater P.J. (1998). Fundamentals of domination in graphs, Marcel Dekker Inc. New York, U.S.A.
- 3. Kulli, V.R. and Janakiram B. (1997). The non split domination number of graph. Graph Theory notes of New York. New York Academy of Sciences, XXXII, pp. 16-19.
- Kulli, V.R. and Janakiram B. (2000). The non-split domination number of graph. The Jounral of Pure and Applied Math. 31(5). Pp. 545-550.
- Kulli, V.R. and Janakiram B. (2003). The strong non-split domination number of a graph. International Journal of Management and Systems. Vol. 19, No. 2, pp. 145-156.
- Mahioub Q.M. and Soner N.D. (2007), "The split domination number of fuzzy graph "Accepted for publication in Far East Journal of Applied Mathematics".
- 7. Mordeson J.N. and Nair P.S. "Fuzzy Graph and Fuzzy Hypergraph" Physica-Verilog, Heidelberg (2001).
- 8. Ore, O. (1962). Theory o Graphs. American Mathematical Society Colloq. Publi., Providence, RI, 38.
- Ponnappan C.Y, Surulinathan .P, Basheer Ahamed .S, "The strong split domination number of fuzzy graphs" International Journal of Computer & Organization Trends – Volume 8 Number 1 – May 2014.
- Rosenfeld, A., 1975. Fuzzy graphs. In : Zadeh, L.A., Fu, K.S., Shimura, M. (Eds.), Fuzzy Sets and Their Applications. Academic Press, New York.
- 11. Somasundaram, A., and Somasundaram, S., Domination in fuzzy graphs, Pattern Recognit. Lett. 19(9) 1998), 787-791.