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Abstract – A dominating set D of a fuzzy graph G=( σ,µ) is a 

Strong non split dominating set if the induced fuzzy subgraph                

H=(<V-D>,σ,µ) is complete. The strong non split domination 

number γsns(G) of G is the minimum fuzzy cardinality of a 

strong non split dominating set. In this paper we study a strong 

non split dominating sets of fuzzy graphs and investigate the 

relationship of γsns(G) with other known parameter of G.    
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I. INTRODUCTION 

Kulli V.R. et.al introduced the concept of split 

domination and non-split domination in graphs [3]. 

Rosenfield introduced the notion of fuzzy graph and 

several fuzzy analogs of graph theoretic concepts such 

as path, cycles and connectedness[10]. A.Somasundram 

and S.Somasundram discussed domination in Fuzzy 

graphs[11]. Mahyoub Q.M. and Sonar N.D. discussed 

the split domination number of fuzzy graphs [6]. In this 

paper we discuss the strong non split domination 

number of fuzzy graph and obtained the relationship 

with other known parameter of G. 

 

II. PRELIMINARIES 

Definition:2.1 [2] 

Let G=(V,E) be a graph. A subset D of V is 

called a dominating set in G if every vertex in V-D is 

adjacent to some vertex in D. The domination number of 

G is the minimum cardinatliy taken over all dominating 

sets in G and is denoted by (G). 

 

Definition:2.2 [2] 

 A dominating set D of a fuzzy graph G=(σ,µ) is 

connected dominating set if the induced fuzzy sub graph 

H=(<D>,,µ) is connected. The minimum fuzzy 

cardinality of a connected dominating set of G is called 

the connected dominating number of G and is denoted 

by 𝛾𝑐(𝐺). 

 

Definition:2.3 [3] 

 A dominating set D of a graph G=(V,E) is a 

split dominating set if the induced subgraph <V-D> is 

disconnected. The split domination number s(G) of a 

graph G is the minimum cardinality of a split 

dominating set. 

Definition:2.4  [3] 

A dominating set D of a graph G=(V,E) is a 

non split dominating set if the induced subgraph          

<V-D> is connected. The non split domination number 

ns(G) of a graph G is the minimum cardinality of a non 

split dominating set. 

 

Definition:2.5 [4] 

 A  dominating set D of a graph G=(V,E) is a 

strong non split dominating set if the induced subgraph 

<V-D> is complete. The strong non split domination 

number sns(G) of a graph G is the minimum cardinality 

of a strong non split dominating set. 

 

Definition : 2.6 [10] 

 Let V be a finite non empty set. Let E be the 

collection of all two element subsets of V. A fuzzy 

graph G=(σ,µ) is a set with two functions σ :V→[0,1] 

and µ: E→[0,1] such that µ({u ,v})≤σ(u)σ(v) for all 

u,v  V. 

 

Definition : 2.7 [11] 

 Let G=( σ,µ) be a fuzzy graph on V and V1 V. 

Define σ1 on V1   by σ1(u)=σ(u)  for all u V1   and  µ1 on 

the collection E1 of two element subsets of V1 by  µ1({u 

,v}) = µ({u ,v}) for all u,v  V1, then (σ1,µ1) is called 

the fuzzy subgraph of G induced by V1 and is denoted 

by <V1>. 

 

Definition : 2.8 [11] 

 The fuzzy subgraph H=(V1,1,1) is said to be 

a spanning fuzzy subgraph of G=(V,,) if 1(u)=(u) 

for all uV1 and 1(u,v)≤(u,v) for all u,vV. Let G 

(V,,) be a fuzzy graph and 1 be any fuzzy subset of 

, i.e. , 1(u)≤(u) for all u. 

 

Definition : 2.9 [6] 

http://www.ijcotjournal.org/


International Journal of Computer & Organization Trends –Volume 4 Issue 3 May to June 2014 

ISSN: 2249-2593                       http://www.ijcotjournal.org                         Page 50 

A dominating set D of a fuzzy graph G=(,µ) is 

a split dominating set if the induced fuzzy subgraph 

H=(<V-D>,,µ) is disconnected.  

The split domination number 𝛾𝑠 𝐺  of G is the 

minimum fuzzy cardinality of a split dominating set. 

Definition : 2.10 [6] 

 A dominating set D of a fuzzy graph G=(σ,µ) is 

a non split dominating set if the induced fuzzy subgraph 

H=(<V-D>,σ',µ') is connected. 

          The non split domination number 𝛾𝑛𝑠 𝐺  of G is 

the minimum fuzzy cardinality of a non split dominating 

set. 

 

Definition : 2.11 

 A dominating set D of a fuzzy graph G=(σ,µ) is 

a strong non split dominating set if the induced fuzzy 

subgraph H=(<V-D>,σ',µ') is complete. 

          The strong non split domination number 𝛾𝑠𝑛𝑠 (𝐺) 

is the minimum fuzzy cardinality of a strong non split 

dominating set. 

 

Definition : 2.12 [11] 

 The order p and size q of a fuzzy graph 

G=(σ,µ) are defined to be p=∑uVσ(u) and q=∑(u ,v)E 

µ({u ,v}). 

 

Definition : 2.13 [11] 

An edge e={u ,v} of a fuzzy graph is called an 

effective edge if µ({u ,v}) = σ(u)  σ(v). 

 N(u) = { vV/ µ({u ,v}) = σ(u)  σ(v)} is 

called the neighborhood of u and N[u]=N(u)  {u} is 

the closed neighborhood of u. 

 The effective degree of a vertex u is defined to 

be the sum of the weights of the effective edges incident 

at u and is denoted by dE(u).  (𝑣)𝑣𝑁 𝑢  is called the 

neighborhood degree of u and is denoted by dN(u). The 

minimum effective degree                 

E(G)=min{dE(u)|uV(G)} and the maximum effective 

degree E (G) = max{dE(u)|uV(G)}. 

 

Definition : 2.14 [11] 

The complement of a fuzzy graph G denoted by 

𝐺  is defined to be 𝐺 = (, ) where   {𝑢, 𝑣} =
 𝑢   𝑣 −   𝑢, 𝑣  . 
 

Definition : 2.15 [11] 

Let :V→[0,1] be a fuzzy subset of V. Then 

the complete fuzzy graph on  is defined to be (,) 

where ({u,v})=(u)(v) for all uvE and is denoted 

by K. 

 

Definition : 2.16 [11] 

A fuzzy graph G=(,µ) is said to be bipartite if 

the vertex V can be partitioned into two nonempty sets 

V1 and V2 such that µ(v1,v2)=0 if v1,v2V1 or v1,v2V2. 

Further if (u,v)=(u)  (v) for all uV1 and vV2 

then G is called a complete bipartite graph and is 

denoted by 𝐾1
,2

 where 1 and 2 are, respectively, the 

restrictions of  to V1 and V2. 

 

Definition : 2.17 [11] 

A dominating set D of a fuzzy graph G is said 

to be a minimal dominating if no proper subset D of D 

is dominating set of G such that |D|<|D|. 

 

Proposition : 1 

 For fuzzy bipartite graph 𝐾1  ,2
, 

𝛾𝑠𝑛𝑠  𝐾1 ,2
 = 0. 

Proposition : 2 

 If the fuzzy graph G=2K2 with equal 

membership for all vertices and edges then 𝛾(𝐺 )=𝛾s(𝐺 ) 
= 𝛾ss(𝐺 ) = 𝛾ns(𝐺 )= 𝛾sns(𝐺 ) 
 

Proposition : 3 

 For any fuzzy path, 𝛾sns(Pp)=0. 

Proposition : 4 

 For any fuzzy cycle, 𝛾sns(Cp) = 0 

 

Theorem : 1 

For any fuzzy graph G=(,µ) 𝛾(𝐺) ≤ 𝛾𝑠𝑛𝑠 (𝐺). 

 

Proof 

 Let G=(,µ) be a fuzzy graph. Let D be the 

minimum dominating set. Dsns is the fuzzy strong non 

split dominating set. Dsns is also a dominating set but 

need not be a minimum fuzzy dominating set.  

 Therefore we get |D|≤|Dsns| 

 That is 𝛾(𝐺) ≤ 𝛾𝑠𝑛𝑠 (𝐺). 

 

Example 

 

 

 

 

 

 

 

 

 

 

 

Here D = {u3,u5} 𝐷𝑠𝑛𝑠 = {𝑢1, 𝑢6} 

𝛾(𝐺) = 0.6  𝛾𝑠𝑛𝑠 (𝐺) = 0.7 

 

Theorem : 2 

 For any fuzzy graph G=(,µ), 𝛾 𝐺 ≤
min{𝛾𝑠 𝐺 , 𝛾𝑠𝑛𝑠 (𝐺)} 

 

Proof : 
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 Let G=(,µ) be a fuzzy graph. D be the 

minimum fuzzy dominating set. Let Ds and Dsns the 

minimum fuzzy split dominating set and minimum 

fuzzy strong non split dominating set of G respectively. 

The cardinality of fuzzy dominating set need not 

exceeds either one of the minimum of cardinality of 

fuzzy split dominating set or fuzzy strong non split 

dominating set. 

 

Therefore |D| ≤ min {|Ds| , |Dsns|} 

Hence 𝛾 𝐺 ≤ min {𝛾𝑠 𝐺 , 𝛾𝑠𝑛𝑠 (𝐺)} 

 

 

 

 

 

 

 

Example : 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

D={u3,u5}, 𝛾 𝐺 = 0.6 

Ds={u1,u3}, 𝛾𝑠 𝐺 = 0.8 

Dsns={u1,u2}, 𝛾𝑠𝑛𝑠  𝐺 = 0.7 

 

Theorem : 3 

For any spanning fuzzy sub graph  

𝐻 =  , µ  of G=(,µ),  

 𝛾𝑠𝑛𝑠 (𝐻) ≥ 𝛾𝑠𝑛𝑠 (𝐺) 

 

Proof 

Let G=(,µ) be a fuzzy graph and let H(,µ) 

be the fuzzy spanning sub graph of G. Dsns(G) be the 

fuzzy minimum strong non-split dominating set of G. 

Dsns(G) is fuzzy strong non-split dominating set of H but 

not minimum. 

 Therefore  𝛾𝑠𝑛𝑠 (𝐻) ≥ 𝛾𝑠𝑛𝑠 (𝐺). 

 

 

 

 

 

 

 

Example 

Spanning fuzzy sub graph H of G (Fig (i)) 

 

 

 

 

 

 

 

 

 

 

 

𝛾𝑠𝑛𝑠 (𝐺) = 0.7, 𝛾𝑠𝑛𝑠 (𝐻) = 1.0 

 

Theorem : 4 

 For any complete fuzzy graph K then 𝛾 𝐺 =
𝛾𝑠𝑛𝑠  𝐺 = min{(𝑢)/𝑢𝑉} 

Proof 

Let G=(,µ) be a complete fuzzy graph 

therefore there is a strong arc between every pair of 

vertices. We remove any vertex having minimum 

cardinality, the resulting graph is complete.  

 

 Let {v} is minimum dominating set then <V-

D> is complete.  

Therefore,  

𝛾 𝐺 = 𝛾𝑠𝑛𝑠  𝐺 = min{(𝑢)/𝑢𝑉} 

 

Example : 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

𝛾 𝐺 = 𝛾𝑠𝑛𝑠  𝐺 = 0.1 

 

Theorem : 5 

 A strong non split dominating set D of G=(,µ) 

is minimal if and only if for each vD one of the 

following two conditions holds  

 (i) N(v)D=  

 (ii) There is a vertex uV-D 

 Such that N(u)D={v} 

 

Proof : 
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 Let D be a minimal strong non split dominating 

set and vD, then D=D-{v} is not a strong non-split 

dominating set and hence there exist uV-D such that u 

is not dominated by any element of D. If u=v we get (i) 

and if u≠v we get (ii). The converse is obvious.  
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