
International Journal of Computer & Organization Trends –Volume 4 Issue 3 May to June 2014 

ISSN: 2249-2593                       http://www.ijcotjournal.org                         Page 33 

Solution of Multi-Objective Interval Solid 

Transportation Problems using Expected Value 
A.Nagarajan, K.Jeyaraman,S.Devi 

Professor,Department of Mathematics,  PSNA College of Engg. and Tech., Dindigul- 624 622., Tamil Nadu, India. 

Dean,Science and Humanities, PSNA College of Engg. and Tech., Dindigul- 624 622., Tamil Nadu, India 

Assistant Professor,Department of Mathematics,  PSNA College of Engg. and Tech., 

Dindigul- 624 622., Tamil Nadu, India
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minimized by using fuzzy programming approach. Numerical examples are provided to illustrate the approach.  
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1. Introduction 

 As a generalization of traditional TP, the Solid 

Transportation Problem (STP) was stated by Shell [1] 

in 1955, which, he considered the three item 

properties in the constraint set instead of two items 

namely source and destination. He also suggested the 

situations where the STP would arise, and four cases 

of STP were discussed according to the data given on 

the item properties and developed its solution 

procedure. Basu et al. [2] developed  an algorithm for 

finding the optimum solution for the solid fixed 

charge linear transportation problem. Although STP 

was forgotten for long time, because of existing 

advanced solution methodologies, recently it is 

receiving the attention of  many researchers of this 

field. Models and algorithms have been developed by 

many authors [3-9].  

        In literature, it was found that various effective 

algorithms were developed for solving transportation 

problems with the assumption that the coefficients of 

the objective function, source availability, destination 

demand and conveyance capacities are specified in a 

crisp manner. However, these conditions may not be 

satisfied always. Since in the present situation, the 

unit transportation costs are rarely constant. To deal  

the problems with ambiguous coefficients in 

mathematical programming, inexact and interval 

programming techniques have been developed by 

many authors [10- 13]. 

The STP in uncertain environment becomes 

important branch of optimization and a lot of models 

and algorithms have been presented for different 

problems by different authors [14, 15, 16, 17]. 

A.Nagarajan and K.Jeyaraman developed many 

models and methods for solving multi_ objective 

interval solid Transportation problems in stochastic 

environment[20,26,27,28,29,30],solution procedures 

for solid fixed cost bi-criterion indefinite quadratic 

transportation problem under stochastic environment 

[20]. S.K.Das et al. [21], developed the theory and 

methodology for multi-objective transportation 

problem with interval cost, source and destination 

parameters. Expected value of fuzzy variable and 

fuzzy expected value models presented by Baoding 

Liu and Yian-Kui Liu [22].  

The fuzzy set theory concept was first 

introduced by Zadeh [23]. Linear programming 

problems with several objective functions was solved 

by using fuzzy membership functions by Zimmerman 

[24] and he showed that the results obtained from 

fuzzy are always efficient. A special type of non-

linear membership function was used for the vector 

maximum linear programming problem [25].  

            In this paper, the idea of stochastic 

environment has been employed for MOISTP a 

method has been proposed to solve the MOISTP. 

Using expectation of random variables, we have 

constructed an equivalent crisp model to the given 

MOISTP. To obtain the solution of this equivalent 

problem, we have used fuzzy programming approach. 

In order to illustrate the  proposed  method,  

numerical examples are provided. 

            This paper is organized as follows. In Section 

2, the basic idea of  MOISTP has been given. In 

Section 3, definitions of interval arithmetic and 

related definitions have been given.  The formulation 

of crisp objective function and crisp constraint have 

been  given in the section-4 and section-5 

respectively. Expected value of  MOISTP is given in 

Section-6. Fuzzy programming approach for the 

solution of MOISTP is given in Section-7. The 
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numerical example is given in section 8 along with 

the solution to illustrate the approach.  

 

2.Multi-objective Interval Solid 

TransportationProblem (MOISTP) 

  

        The MOISTP is a generalization of the multi-

objective solid transportation problem in which input 

data are expressed as stochastic variables as well as 

stochastic intervals instead of point values. These 

types of problems arise only when uncertainty occurs 

in data. The decision makers consider it as more 

convenient to express it as intervals which can be 

stated as follows. 

 

Problem-I :  
 Minimize 

 Z
p

  =   


m

i 1




n

j 1




l

k 1

[c
p

Lijk , c
p

Rijk ] xijk ,             

                              p = 1, 2, 3,..., P     (1) 

subject to  




n

j 1




l

k 1

 xijk = [a Li , a Ri ] ,    

                    i = 1, 2, 3,…, m.              (2) 




m

i 1




l

k 1

 xijk = [b Lj , b Rj ] ,  

                    j =1, 2, 3, ..., n.                (3) 




m

i 1




n

j 1

xijk = [e Lk , e Rk  ] , 

                  k = 1, 2, 3, ... ,l.                 (4) 

with


m

i 1

a Li ≥


n

j 1

b Lj , 


m

i 1

a Ri ≥


n

j 1

b Rj ,


l

k 1

e Lk  ≥


n

j 1

b Lj , 


l

k 1

e Rk  ≥ 


n

j 1

b Rj  (non-

balanced condition).                                            (5) 

Where  [c
p

Lijk , c
p

Rijk ]  for p = 1, 2, 3,..., P are intervals 

representing the uncertain cost for the transportation 

problem; it can represent delivery time, quantity of 

goods delivered, under used capacity, etc. The source 

parameter lies between left limit a Li  and right limit a

Ri , similarly,  destination parameter lies between left 

limit b Lj  and right limit b Rj  and conveyance 

parameter lies between left limit e Lk  and right limit  e

Rk . 

 

  

Definition 2.1 [18, 19] 

         Let     (., /, +, - ) be a binary operation on the 

set of real numbers. If A and B  are closed intervals, 

then 

 AB = { a b: aA, bB }  (6)                                                                                           

defines a binary operation on  the set of closed 

intervals. In the case of division, it is assumed that 0

B. The interval operations  used in this research 

paper are as given below. 

 A + B = [a L , a R ]  +  [b L , b R  ]  

           =[a L +b L ,a R +b R ],                  (7)      

 A + B = a C , a W   +  b C , b W   

          =  a C +b C , a W +b W  , (8)                                       

kA  =  k[a L , a R ]  

      = [ka L , ka R ] for k ≥ 0,                  (9)                                                                   

kA  =   k[a L , a R ]  

      = k[a R , ka L ] for k < 0,  (10)                                                                 

KA = k a C ,a W   = ka C , k a W  , (11)          

where ‘k’ is real number. 

 

3. Order relation between Intervals 

     The order relations which represent the decision 

makers’ preference between interval costs are defined 

for the minimization problems. Let the uncertain 

costs from two alternatives be represented by 

intervals ‘A’ and ‘B’ respectively. It is assumed that 

the cost of each alternative is known only to lie in the 

corresponding interval. 

Definition 3.1   The   order relation ≤ LR  between A 

= [a L , a R ] and B =[b L , b R  ] is defined as  

 A ≤ LR B   iff   a L  ≤ b L  and  a R  ≤  b R , A < LR  B  

iff   A ≤ LR B  and A   B.(12)                                                                           

This order relation   ≤ LR  represents the decision 

makers’ preference for the alternative with lower 

minimum cost and maximum cost, i.e., if A ≤ LR B, 

then A is preferred to B. 

Definition 3.2  The order relation ≤ CW  between A = 

 a C , a W   and  

        B =  b C , b W   is defined as 

  A ≤ CW B   iff  a C ≤ b C  and  a W  ≤ b W  A< CW  B  iff  

A ≤ CW B  and  A   B.(13)                                                                        

 This order relation ≤ CW  represents the decision 

makers’ preference for the alternative with lower 
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expected cost and less uncertainty, i.e., if A  ≤ CW B, 

then A is preferred to B. 

  

4. Formulation of the crisp objective function 
        In this section, the formulation of  original 

interval objective function has been made as a crisp 

one. 

Definition 4.1  xijk 
0
  S is an optimal solution of 

the problem-I iff there is no other solution xijk S 

which satisfies Z(x) < LR Z(x 
0
)or Z(x) < CW Z(x 

0
). 

Theorem 4.1 It can be proved that A  ≤ RC  B iff   A 

≤ LR  B  or   A  ≤ CW  B,A < RC  B iff  A < LR B  or  A 

< CW  B, (14)                                                                      

where  the  order  relation  ≤ RC  is defined as 

 A  ≤ RC  B iff    a R  ≤  b R and  a C ≤ b C ,  A < RC B  

iff  A  ≤ RC  B   and  A   B.         

Using the theorem 4.1, Definition 4.1 is simplified as 

follows. 

Definition 4.2  x
0
  S is an optimal solution of the 

Problem-I iff there is no other solution x S which 

satisfies  

Z(x)  < RC  Z(x 
0
).The right limit  

Z
P

R ( x) of the interval objective function  in problem-

I is  derived from  the equations (8) and (11) as  

  Z
p

R (x) =


m

i 1




n

j 1




l

k 1

c
p

Cijk xijk + 


m

i 1




n

j 1




l

k 1

c
p

Wijk ijkx                 (15) 

where c
p

Cijk  is the centre and c
p

Wijk  is the half width 

of the coefficient of xijk   in Z
p

.  

In the case when xijk ≥ 0,  i = 1, 2, 3,…, m,  j = 1, 2, 3, 

..., n,  k = 1, 2, 3, …, l,   

      Z
P

R ( x) is modified as:     

  Z 
p

R  (x)  =   


m

i 1




n

j 1




l

k 1

c
p

Cijk  xijk + 


m

i 1




n

j 1




l

k 1

c
p

Wijk xijk.                               (16)                                 The 

centre of the objective function Z
p

C (x) for the 

Problem–I  can be defined as                                                     

  Z
p

C (x) = 


m

i 1




n

j 1




l

k 1

c
p

Cijk xijk. (17)                                                                                      

The solution set of the Problem-I   defined by 

Definition 4.2 is also  obtained as the Pareto optimal 

solution of the two multi-objective problem as: 

 

  Minimize { Z
p

R ,  Z
p

C }, p = 1, 2, 3,…,P,  

subject to the constraints (2) – (5)      respectively 

where Z
p

R  and  Z
p

C  are as stated as in equations (16) 

and (17). 

  

5. Formulation of the crisp constraint 
              

        By using the theory of interval arithmetic 

[18,19], the Problem-I is  converted into its 

equivalent form as follows .  

Problem -II:     

             Minimize 

  Z
p

  =   


m

i 1




n

j 1




l

k 1

[c
p

Lijk , c
p

Rijk ] xijk ,      

                       p= 1, 2, 3,..., P           (18) 

   subject to  

 


n

j 1




l

k 1

 xijk   a Li , 

                       i = 1, 2, 3,…,m.          (19) 

 


n

j 1




l

k 1

 xijk  a Ri ,      

                   i = 1, 2, 3,…,m.              (20) 




m

i 1




l

k 1

 xijk   b Lj ,     

                         j = 1, 2, 3, ..., n.   (21)                                                                                      




m

i 1




l

k 1

 xijk   b Rj ,   

                         j = 1,  2,  3, ...,  n.     (22)                                                                                         




m

i 1




n

j 1

 xijk  e Lk ,       

                      k = 1,2,3,…, l.  (23)                                                                        




m

i 1




n

j 1

 xijk   e Rk ,     

                                  k=1,2,3,…,l.                (24)    

 xijk≥0 ,for all i, j, k. 


m

i 1

a Li ≥


n

j 1

b Lj 


m

i 1

a Ri ≥




n

j 1

b Rj , xijk

*
e Lk  ≥



n

j 1

b Lj , 


l

k 1

e Rk ≥


n

j 1

b Rj                                          

  (non balanced condition).              (25) 
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6. Expected value of stochastic variable                    
  In this section, the expected value of a stochastic 

variable is defined.  

Definition 6.1  Let ‘ ’ be a random variable whose 

expected value  is defined by  

E[ ] = 


0

Pr { ≥ r }dr - 


0

Pr{ ≤ r }dr  

provided that at least one of the two integrals is finite  

where r   [14]. 

          Let ‘ ’ and ‘ ’ be random variables with 

finite expected values. For any values of ‘a’ and’ b’ it 

has been proved that  

        E[a  + b ] =  aE[ ]  + bE[ ].  i.e, the 

expected value operator has the linearity property.  

Theorem 6.1 Let ‘ ’ be a random variable whose 

probability density function ‘ ’ exists.   If the 

Lebesgue integral 




x (x)dx is finite, then it is 

arrived as   E[  ] = 




x (x)dx. 

6.1 Expected value model for MOISTP 

    The expected value model (EVM) which optimizes 

some expected objective function subjected to some 

expected constraints, for example ,minimizing the 

expected time, minimizing expected cost, 

maximizing expected profit etc. Normally if we want 

to find a decision with maximum expected return 

subjected to some expected constraints then we have 

the following EVM, 

 

max E [f(xijk , )]         subject to 

E [gj(xijk , )] ≤ 0 , j = 1,2,3,…, p 

Where . xijk  is a desicion vector ,   is a stochastic 

vector,  f(xijk , ) is the return function, gj(xijk, ) are 

stochastic constrained functions for j = 1,2,3,…, q. 

      

Definition 6.2 

A solution xijk is feasible if and only if  gl(xijk , ) ≤ 0 

, j = 1,2,3,…, p. A fesiable solution  is an optimal 

solution to EVM if E [f(𝑥𝑖𝑗𝑘
∗   , )] ≥ E [f(xijk , )]      

for any feasible solution xijk. 

 In n multiple objective problems we employ  the 

following expected value multiobjective 

programming(EVMOP). 

 

   

 

 

 max  E [f1(xijk , ),] , E [f2(xijk , ),]   

E [f3(xijk , ),]  ….E [ft(xijk , ),] subject to 

E [gl(xijk , )] ≤ 0 , l = 1,2,3,…, q where  

  fr(x , ) are return functions for  

  r = 1,2,3,….t. 

 

Definition 6.3 

A feasible solution 𝑥𝑖𝑗𝑘
∗  is said to be pareto optimal 

solution to EVOMP if there is no feasible solution   xijk 

such that  

E [fi(xijk , ),] ≥ E [f1(𝑥𝑖𝑗𝑘
∗   , ),]   

r = 1,2,3,….t 

 and E [fl(xijk , ),] > E [fi(𝑥𝑖𝑗𝑘
∗   , ),]   for at least one 

index l.The expected value model for the problem II 

defined in section 5 takes the form  

 

Problem - III:    Minimize 

Z
p

=


m

i 1




n

j 1




l

k 1

[c
p

Lijk , c
p

Rijk ] xijk  

                              p = 1, 2, 3,…,P, 

      subject to:  

E[


n

j 1




l

k 1

xijk - a Li  ]  ≥0,   i =1,2,3,…, m.      

E[


n

j 1




l

k 1

xijk - a Ri  ] ≤ 0, i =1,2,3,…, m.                                                           

E[


m

i 1




l

k 1

xijk – b Lj ] ≥ 0,  j =1,2,3, ..., n.  E[


m

i 1




l

k 1

xijk – b Rj ] ≤ 0,  j =1,2,3,..., n.  E[


m

i 1




n

j 1

xijk – 

e Lk ] ≥ 0,  k=1,2,3,…, l.   E[


m

i 1




n

j 1

xijk – e Rk ] ≤ 0 , k 

=1,2,3, …, l.                               

 where xijk ≥ 0 , for any i, j, k.  

 

        The problems proposed in the previous sections 

are constructed under stochastic environment. In 

order to find the suitable solution for the problems, 

the expected value, critical value or credibility 

measure must be calculated. If the stochastic 

parameters are complex, the computing objective 

values subject to the constraints becomes a time 

consuming one. Due to this, it is better to convert the 

models into their crisp equivalents by using the 

appropriate probability levels defined by the decision 

makers. 
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          By using the linearity of expected value 

operator of random variable, the Problem–III is 

equivalent to  

:     

Problem IV:  Minimize  

 Z
p

  =   


m

i 1




n

j 1




l

k 1

[c
p

Lijk , c
p

Rijk ] xijk  

                                 p = 1, 2, 3,…,P,  

       subject to: 

 


n

j 1




l

k 1

 xijk   E[a Li  ], i = 1,23,…, m. 




n

j 1




l

k 1

 xijk   E[a Ri  ], i =1,2,3,…, m.         




m

i 1




l

k 1

 xijk    E[b Lj ], j =1,2, 3, ..., n.      

 


m

i 1




l

k 1

 xijk    E[b Rj ] j =1,2, 3, ..., n.                          

 


m

i 1




n

j 1

 xijk   E [e Lk ] ,k =1,2,3,…, l.     

 


m

i 1




n

j 1

 xijk   E[e Rk ] , k =1,2,3, …, l.                                          

  where  xijk ≥ 0 , for any i, j, k. 

 

 

 

7.FuzzyProgramming approach for MOISTP 

   The MOISTP can be considered as a vector 

minimum problem. The first step to solve the 

problem is to assign, for each objective, two values U
p

and L
p

as upper and lower bounds, respectively, 

for the p-th objective, where U
p

is the highest 

acceptable level for achievement for the p-th 

objective,  L
p

is the aspired level of achievement for 

the p-th objective and d
p

= U
p

- L
p

is the 

degradation allowance for the p-th objective. Once 

the aspiration levels and degradation allowance for 

each objective have been specified, we have formed 

the fuzzy model and then convert the fuzzy model 

into a crisp model. The steps of the fuzzy 

programming approach may be summarized as 

follows. 

  

Algorithm:     

Step 1. Solve the  multi-objective interval solid 

transportation problem using one objective at a 

time(ignoring all others) subject to the given set of 

constraints by using any one of the suitable 

evolutionary technique. Let X
*1

= {x
1

ijk  }, X
*2

= {x

2

ijk }, X
*3

= {x
3

ijk },…, X
*P

 = {x
p

ijk  } be the optimum 

solutions for P different  single objective interval 

solid transportation problems. 

Step 2. From the results of step1, the values of all the 

objective functions  will be calculated at all these  ‘P’ 

optimal points. Then a payoff matrix is formed. The 

diagonal of the matrix  constitutes individual 

optimum minimum values for the P objectives.The 

‘X
*P

’’s are the individual optimal solutions and each 

of these are  used to determine the values of other 

individual objectives, thus the payoff matrix is 

developed as  follows:                         

          X
*1

             X
*2

     …          X
*P

  

Z
1
    Z

1
( X

*1
)    Z

1
(X

*2
)  ...  Z

1
 ( X

*P
) 

Z
2

   Z
2

( X
*1

)   Z
2

( X
*2

) … Z
2

( X
*P

)  

Z
3

   Z
3

( X
*1

)    Z
3

 ( X
*2

) … Z
3

( X
*P

) 

 

Z
p

  Z
p

( X
*1

)  Z
p

( X
*2

)  … Z
p

( X
*P

) 

 

We find the upper and lower bound for each 

objective from the payoff matrix. Here L
p

= Z
p

(X
*P

) and U
p

= max{  

  Z
p

( X
*1

), Z
p

( X
*2

), …, Z
p

( X
*P

)}. 

Step 3. The initial fuzzy model is given by the 

aspiration level with each objective as follows:  

Find xijk i =1,2,3,…,m, j =1,2,3,...,n and k=1,2,3,...,l, 

so as to satisfy Z
p

   L
p

 where p = 1, 2, 3,…,P, 

and the given constraints and non-negativity 

conditions.  

Step 4. For the multi-objective interval solid 

transportation, a membership function 
p (Z

p
) 

corresponding to p-th criterion is defined as  

 

                                    1      if  Z
p

   L
p p (Z

p
)=













pp

pp

LU

ZU
IfL

p
<Z

p
<U

p
 

                     0    if   Z
p    U

p
,  

 

where U
p  L

p
forall p. If U

p
= L

p
 for all p then

p (Z
p

) = 1 for all p. 

Step 5. Formulate a fuzzy linear programming 

problem. By using max-min operator, the equivalent 

fuzzy linear programming problem for the multi-

objective interval solid transportation problem is 

formulated  as follows:  
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   For  right limit of the objective function Z
P

R (x), the 

fuzzy linear programming problem is obtained as 

Maximize    

            subject to    




m

i 1




n

j 1




l

k 1

{c
p

Cijk +c
p

Wijk }xijk + 

     ( U
p

- L
p

)   U
p

, p = 1, 2, 3,...,P, with the 

given constraints and      0, where  = min {
p

(Z
p

)}. 

   For the centre of the objective function Z
p

C (x), the 

fuzzy linear programming problem is obtained as  

 

Maximize   

          subject to                                                    




m

i 1




n

j 1




l

k 1

c
p

Cijk xijk+ (U
p

- L
p

 )   U
p

, p = 

1, 2, 3,...,P, with the given constraints  and     0,  

where  

            = min {
p (Z

p
)}. 

Find out an optimal solution of the foregoing 

problem by using any existing  method. Substituting 

this optimal value in each objective we get an optimal 

compromise interval  of each objective.   

 

8. Numerical Example: 

When the objective function coefficients c
p

ijk ,source, 

destination and conveyance  parameters a i , b j and e

k are in the form of stochastic intervals, the MOISTP 

can be formulated as: 

Minimize 

 Z
p

  =   


m

i 1




n

j 1




l

k 1

[c
p

Lijk , c
p

Rijk ] xijk ,             

                              p = 1, 2, 3,..., P      

subject to  




n

j 1




l

k 1

 xijk = [a Li , a Ri ] ,    




m

i 1




l

k 1

 xijk = [b Lj , b Rj ] ,  




m

i 1




n

j 1

xijk = [e Lk , e Rk  ] ,  with 




m

i 1

a Li ≥


n

j 1

b Lj ,


m

i 1

a Ri ≥


n

j 1

b Rj ,


l

k 1

e Lk ≥




n

j 1

b Lj ,


l

k 1

e Rk  ≥ 


n

j 1

b Rj  (non-balanced 

condition). Where xijk ≥ 0 for any  i = 1, 2, 3, …, m, j 

= 1, 2, 3, …,n and k = 1, 2, 3, …,l, [c
1

Lijk , c
1

Rijk ] 

and[c
2

Lijk , c
2

Rijk ]  are interval cost matrices for the 

criterians 1 and 2 respectively (Tables-1 ,2,3,4). 

        Using equations  (16) and (17) and the 

expectation of random variables, the MOISTP is 

equivalent to    

minimize  

Z
p

R (x)=


m

i 1




n

j 1




l

k 1

[c
p

Cijk +c
p

Wijk ]xijk, 

Z
p

C (x) = 


m

i 1




n

j 1




l

k 1

[c
p

Cijk ]xijk,  

                    where p = 1, 2, 3, …,P, 

 subject to  

                


n

j 1




l

k 1

xijk   E[a Li  ], 

                 


n

j 1




l

k 1

xijk  E[a Ri  ],  

                 


m

i 1




l

k 1

 xijk    E[b Lj ],  

                 


m

i 1




l

k 1

 xijk    E[b Rj ],  

                 


m

i 1




n

j 1

 xijk    E [e Lk ] ,  

                 


m

i 1




n

j 1

 xijk   E[e Rk ] ,   

 where  xijk ≥ 0 , for any i = 1, 2, 3, …, m, j = 1, 2, 3, 

…,n and k = 1, 2, 3, …,l. The following numerical 

example illustrates the solution procedure of the 

foregoing problem. 

 

Example 3. Minimize 

 

Z
1
=



3

1i




3

1j




2

1k

[c
1

Lijk , c
1

Rijk ] xijk,     

Z
2

=


3

1i




3

1j




2

1k

[c
2

Lijk , c
2

Rijk ] xijk,    

subject to 



International Journal of Computer & Organization Trends –Volume 4 Issue 3 May to June 2014 

ISSN: 2249-2593                       http://www.ijcotjournal.org                         Page 39 




3

1j




2

1k

 x1jk = [N(32,5), N(90, 7)],  




3

1j




2

1k

 x2jk = [N(40,  5), N(95,7)],  

 


3

1j




2

1k

 x3jk = [N(36,7), N(98, 4)], 

 


3

1i




2

1k

 xi1k = [EXP (20), EXP (35)], 

 


3

1i




2

1k

 xi2k = [EXP (15), EXP (43)],  

 


3

1i




2

1k

 xi3k = [EXP (20), EXP (40)], 

 


3

1i




3

1j

xij1 = [U(25, 65), U(36, 80)],  

 


3

1i




3

1j

xij2 = [U(23,50), U(60, 80)].  

where  xijk ≥ 0 , for i , j = 1,2, 3, k = 1, 2.  

 

The equivalent deterministic MOISTP can be 

expressed as:  

 

 minimize 

Z
1

R (x)= 


3

1i




3

1j




2

1k

[c
1

Rijk ]xijk, 

Z
2

R (x)= 


3

1i




3

1j




2

1k

[c
2

Rijk ]xijk, 

Z
1

C (x) = 


3

1i




3

1j




2

1k

[c
1

Cijk ]xijk, 

Z
2

C (x) = 


3

1i




3

1j




2

1k

[c
2

Cijk ]xijk, 

subject to 




3

1j




2

1k

x1jk   32,


3

1j




2

1k

x1jk   90,


3

1j




2

1k

x2jk  40, 


3

1j




2

1k

x2jk   95,  




3

1j




2

1k

x3jk   36,


3

1j




2

1k

x3jk   98, 

 


3

1i




2

1k

xi1k  20, 


3

1i




2

1k

xi1k  35, 

 


3

1i




2

1k

xi2k   15,


3

1i




2

1k

xi2k  43, 

 


3

1i




2

1k

xi3k 20, 


3

1i




2

1k

xi3k   40, 

 


3

1i




3

1j

xij1  45, 


3

1i




3

1j

xij1  58,  




3

1i




3

1j

xij2 36.5,


3

1i




3

1j

xij2\  70.  

 

where  xijk ≥ 0,for i , j = 1, 2, 3, k = 1, 2,  

 

 c
1

Rijk , c
2

Rijk  c
2

Cijk  and c
2

Cijk  are given as       follows.  

Using fuzzy approach, the pareto optimal solution of 

the problem is obtained as x 111=19.0415,  

x 131=12.9585, x 211=5.9585, x 221=7.0,  

x 232 =27.0415, x 321=0.0415,  

x 322=35.9565,  = 0.5634 and other  

x ijk  are zeros.   

Z
1
 = [680.4324, 1287.403] and  

Z
2

= [671.7095, 1240.917].                     

  

9. Conclusion: This paper proposes a solution 

procedure for multi-objective interval solid 

transportation problem under stochastic environment 

using fuzzy programming approach. All source 

availability, destination demand and conveyance 

capacities have been taken as stochastic intervals for 

each criterion. Expectation of a random variable has 

been used to transform the  problem  into a classical 

multi-objective transportation problem where the 

objectives which are the right limit and centre of the 

interval objective functions are minimized. The main 

advantage of fuzzy programming is that, for a 

MOISTP with ‘p’ objective functions, this approach 

leads to p non-dominated solutions and one optimal 

compromise solution, whereas other algorithms leads 

to more than p non-dominated and dominated 

solutions from which the decision maker can choose 

a compromise solution.  
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Table–1. Interval cost matrix for first criterion   consisting of 3 sources, 3 destinations and 2 conveyances . 

                                                           

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table–2. Interval cost matrix for second criterion consisting of 3 sources, 3 destinations and conveyances . 

  

                                                                 j = 1  j = 2  j  = 3  

 

 

i = 1 

 

[N(7,  2 ),  

N(15,1)] 

  

[N(5, 1),                     

N(13, 4)] 

  

[ N(7, 1),                      

N(12, 2)] 

 

   

[N(9, 4 ), 

N(12, 1 )] 

  

[N(7, 2 ), 

N(22, 1 )]  

  

[N(9, 4 ),  

N(14, 2 )] 

 

 

i = 2 

 

[N(10, 2), 

N(14, 3)]     

  

[N(7, 2 ), 

N(12, 3 )] 

  

[N(7, 2 ),  

N(17, 1 ) ] 

 

  [N(9, 3 ), 

N(12, 4 )]  

 [N(5, 1 ), 

N(25, 4 )] 

 [N(5, 1 ), 

N(9, 2 )] 

 

i = 3 
[N(9, 2 ),  

N(24, 2 ) ] 

 [N(6, 3 ), 

N(15, 4 )] 

 [N(6, 2 ), 

N(15, 3 )] 

 

  [N(5, 2), 

N(25, 4 )]  

 [N(6,3), 

N(12, 3)] 

 [N(5,4 ), 

N(23,2)] 

 j = 1  j = 2  j  = 3  

 

i = 1 

[N(6, 2 ),  

N(14,1)] 

 [N(4, 1),                     

N(14, 4)] 

 [ N(8, 1),                      

N(13, 2)] 

 

  [N(7, 2 ), 

N(14, 3 )] 

 [N(6,1), 

N(20, 2 )]  

 [N(9, 2 ),  

N(15, 3 )] 

 

i = 2 

[N(9, 2), 

N(15, 4)]     

 [N(7, 3 ), 

N(11, 3)] 

 [N(5, 1 ),  

N(16, 2)] 

 

 

  [N(8, 2 ), 

N(12, 3 )]  

 [N(6, 1 ), 

N(23, 2 )] 

 [N(5, 1 ), 

N(9, 2 )] 

 

i = 3 

[N(8, 1 ),  

N(22, 4 )] 

 [N(5, 1 ), 

N(14, 2)] 

 [N(6,1), 

N(14, 2 )] 

 

 

  [N(5, 2), 

N(24, 2 )]  

 [N(6,2), 

N(11, 3)] 

 [N(7,1 ), 

N(21,3)] 
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Table – 3.  c
1

ijk  transportation cost for first criterion 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table- 4.  c
2

ijk transportation cost for second criterion. 
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