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Abstract This paper reports the design and simulation of z-

axis accelerometer having 8-spring configuration, thereby 

eliminating the undesired modes of oscillations, and allowing 

only the required mode of oscillation i.e. along the z-axis. 

Such design architecture of accelerometer with piezoresistive 

sensing elements in Wheatstone bridge configuration enables 

the device to produce the output signal free from 

nonidealities. In this structure the proof mass is nested in 

square frame interconnected by eight springs, two springs at 

the each four corners of the proof mass and that of the frame. 

The proposed structure of accelerometer is then 

mathematically modelled and simulated by FEM using 

COMSOL software to verify the design based on analytical 

formulation. 
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I. INTRODUCTION 

 

Micro-electro-mechanical engineering has brought forth many 

micro devices based on structured silicon. Gyroscopes [1] and 

accelerometers [2] are such devices the structures of which 

were realized by directional etching process known as wet 

bulk micro-machining [3]. Alternatively, deep reactive ion 

etching (DRIE) [4] and surface micro-machining [5] 

techniques were also employed for the fabrication of these 

inertial sensors. Since the wet bulk machining technology 

does not requires additional costly equipment, the device 

manufactured by this technique economically viable. By using 

wet bulk machining technique, the numbers of accelerometers 

[5] were brought into reality. These are: single axis 

accelerometers [2,6], dual axis accelerometers [5] and tri axis 

accelerometers [7,8,9] with high sensitivities. Aforesaid 

accelerometers are either capacitive sensing [8,9] or 

piezoresistive sensing devices [10]. In capacitive sensing 

devices, the capacitance values are very small i.e. in order of 

fF. Therefore, the readout circuit to be interfaced is very 

sophisticated. Of course, capacitive sensing devices have 

advantages such as low noise and almost insignificant electro-

magnetic field interaction effect, whereby distortion in the 

output signal is eliminated. The piezorestive sensing 

accelerometers, in other way, do not need such a sophisticated 

circuit as of capacitive sensing devices, but noise problem 

cannot be eliminated up to the negligible levels because of 

heating effect of piezoresistance for long duration operation of 

the device. This can be minimized by proper piesoresistive 

material selection and then its deposition with the adequate 

precaution. 

  

Considering the simplicity in structure of piezoresistive 

micro-accelerometer and ease in fabrication besides simple 

packaging technology, the objective of the present work is to 

design and model the proposed structure of the device. 

Aiming towards the efficient design concept, the modelling of 

the present design is carried out. The simple expressions of 

provided suspension springs are presented. Besides, the 

differential equation governing the dynamics of accelerometer 

is also reported keeping in mind the performance analysis of 

the same. Apart from these, the design concepts derived from 

analytical formulations are verified by using FEM based 

COMSOL Software. 

 

II. ACCELEROMETER STRUCTURE AND 

WORKING PRINCIPLE 

 

Schematic layout of micro-accelerometer is shown in Fig. 

1(a). It consists of a silicon frame and a central seismic mass 

nested in it interconnected by eight springs. The springs are 

attached in such a way as each pair of two springs is located at 

each corner of four cornered structure of seismic mass, 

configured orthogonally. Since the structure of accelerometer 

is to be realized by wet bulk micro-machining, the shape of 

mass is truncated pyramid in shape (Fig. 1(b)). The upper 

surface of the proof mass has larger area than that of lower 

one and all the eight springs are connected on top portion of 

seismic mass. The piezoresistances are placed on all of the 

eight springs at the locations where the stresses are the 

maximum at the event of external acceleration. The 

resistances are placed in such a way as they can form 

Wheatstone bridge (Fig. 1(c)). When external acceleration 

exerts on the proof mass, the mass deflects opposite to the 

direction of acceleration. As a result of this, all eight springs 

bend, thereby generating the stresses on resisters placed at 

owing to which the resistances vary. Such variations of the 

resistances are proportional to the external acceleration 

applied that can be recorded in term of output signal variation 

and hence the acceleration estimation.  
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III. DYNAMICS OF ACCELEROMETER 

 

With a view to studying the output signal of the accelerometer 

having multiple suspension system, the analysis of its 

dynamical behaviour is extremely important. The kinetics 

representing the eight spring suspension might give rise to 

different modes of oscillations. Possibly, it has three 

oscillation modes: the first is in the direction perpendicular to 

the surface of proof mass, second and third are shear 

oscillations showing tilt motion of proof mass. Governing 

these respective modes of oscillation, the lumped differential 

equations are written as [11], 

 

𝑚
𝑑2𝑧

𝑑𝑡2
+ 𝑏𝑧

𝑑𝑧

𝑑𝑡
+ 𝑘𝑧𝑧 = −𝑚𝑎𝑧 ,                                                 (1) 

 

𝐼𝜃𝑥

𝑑2𝜃𝑥

𝑑𝑡2
+ 𝑏𝜃𝑥

𝑑𝜃𝑥

𝑑𝑡
+  𝑘𝜃𝑥𝜃𝑥 = −𝑚𝑎𝑦𝑧𝑐  ,                              (2) 

 

 𝐼𝜃𝑦

𝑑2𝜃𝑦

𝑑𝑡2
+ 𝑏𝜃𝑦

𝑑𝜃𝑦

𝑑𝑡
+ 𝑘𝜃𝑦 𝜃𝑦 = −𝑚𝑎𝑥𝑧𝑐  ,                             (3) 

 

where 𝑎𝑥, 𝑎𝑦 and 𝑎𝑧 are the external accelerations along their 

respective axis exerted on the proof mass; 𝑚 is the proof mass 

value, 𝑏𝑧 is the squeeze film damping coefficient, 𝑏𝜃𝑥 is the 

shear damping coefficient in x-direction, and 𝑏𝜃𝑦 is the shear 

damping coefficient in y-direction. The spring constants 

representing different modes are denoted by 𝑘𝑧, 𝑘𝜃𝑥 and 𝑘𝜃𝑦. 

The notations 𝐼𝜃𝑥 and 𝐼𝜃𝑦 are the moments of inertia of proof 

mass about x- and y-axis respectively. 𝑧𝑐  is the distance of 

center of mass of proof mass. In order to analyze the device 

based on the Eqs. (1)-(3), the derivations of various 

parameters such as proof mass value, spring constants and 

damping coefficients included in these equations are 

necessary which are presented in subsequent subsections. 

 

A. Suspension elements 

 

The present accelerometer structure has eight-spring 

suspension system of proof mass interconnected with frame as 

shown by Fig. 1(a, b). The both ends of the springs are guided 

type as one end is fixed at the frame and other end is 

connected to proof mass. The spring constant is defined as the 

force applied per unit deflection of the spring. Keeping in 

view the definition of spring constant, we follow the strain 

energy method to derive stiffness of suspension beam. The 

strain energy, 𝑈, stored due to bending of the beam is given as 

[12], 

 

𝑈 =
1

2
𝐸𝐼 ∫ (

𝑑2𝑧

𝑑𝑥2
)

2
𝑙𝐵

0

𝑑𝑥.                                                              (4)  

 

Here, 𝐼 is the cross sectional area moment of inertia of the 

spring and 𝑧 is the vertical displacement of spring, 𝑙𝐵 is the 

length of the beam and 𝐸 is the Young’s modulus of the 

material. When external force is applied, the bending of the 

springs occurs, which is governed by equation, 

 

𝐸𝐼
𝑑2𝑧

𝑑𝑥2
= 𝑀𝑜 − 𝑥𝐹𝑧,                                                                      (5) 

 

the solution of which is expressed by, 

 

𝑧 =
1

𝐸𝐼
[
1

2
𝑀𝑜𝑥2 −

1

6
𝐹𝑧𝑥3 + 𝑁1𝑥 + 𝑁2] .                                  (6) 

 

Now applying the boundary conditions at the end point (𝑥 =
0) where beam is connected to the frame i.e. 𝑧 = 0 and  

𝑑𝑧 𝑑𝑥⁄ = 0, whereby 

 

𝑧 =
1

𝐸𝐼
[
1

2
𝑀𝑜𝑥2 −

1

6
𝐹𝑧𝑥3].                                                          (7) 

 

Similarly, we apply the boundary condition, 𝑑𝑧 𝑑𝑥⁄ = 0, at 

the point (𝑥 = 𝑙𝐵) where the spring is connected to the proof 

mass, thereby leading to relation between 𝑀𝑜 and 𝐹𝑧, written 

as, 

 

𝑀𝑜 =
1

2
𝑙𝐵𝐹𝑧.                                                                                    (8) 

 

After substituting the value of 𝑀𝑜 from (8) to (7), the latter 

gets converted to 

 

𝑧 =
𝐹𝑧𝑥2

12𝐸𝐼
[3𝑙𝐵 − 2𝑥].                                                                    (9) 

 

We now substitute Eq. (9) in (5) and then integrate the latter 

from 𝑥 = 0 to 𝑥 = 𝑙𝐵 to yield, 

 

𝑈 =
𝑙𝐵

3

24𝐸𝐼
𝐹𝑧

2.                                                                               (10) 

 

The Eq. (10) is differentiated with respect to force, 𝐹𝑧, to 

result in 

 

𝜕𝑈

𝜕𝐹𝑧

=
𝑙𝐵

3 𝐹𝑧

12𝐸𝐼
= 𝛿𝑧, 

 

which is rearranged as 

 

𝐹𝑧 =
12𝐸𝐼

𝑙𝐵
3 𝛿𝑧.                                                                               (11) 

By substituting, 𝐼 = 𝑤𝐵𝑡𝐵
3 12⁄ , Eq. (11) gives the value of 

spring constant, 𝑘𝑧 as 

 

𝑘𝑧 =
𝐸𝑤𝐵𝑡𝐵

3

𝑙𝐵
3 . 

 

The equation just above is for single spring. Therefore for 

eight-beam suspension the spring constant is given by, 
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𝑘𝑧 =
8𝐸𝑤𝐵𝑡𝐵

3

𝑙𝐵
3 .                                                                             (12) 

 

Here, 𝑤𝐵 and 𝑡𝐵 are the width and thickness of the flexure 

beam respectively. Likewise, the tilt motion spring constants 

for eight beam suspension can be written as [6], 

 

𝑘𝜃𝑥 =
1

6
[𝑙𝐵

2 + 3𝑎1𝑙𝐵 + 3𝑎1
2 + 3𝑎2

2]𝑘𝑧,                                   (13) 

 

𝑘𝜃𝑦 =
1

6
[𝑙𝐵

2 + 3𝑎1𝑙𝐵 + 3𝑎1
2 + 3𝑎2

2]𝑘𝑧 ,                                   (14) 

 

where 𝑎1 and 𝑎2 denote the positions of springs with respect 

to the center of upper surface of proof mass [6,11].  

 

B. Seismic mass calculation 

 

The mass of truncated pyramid shape proof mass is calculated 

by simply integrating over the volume of the same. That is 

given by [11], 

 

𝑚 = ∭ 𝜌 𝑑𝑥𝑑𝑦𝑑𝑧 =
1

3
𝜌𝑡𝑤

(𝑐1
3 − 𝑐2

3)

(𝑐1 − 𝑐2)
.                                (15) 

 

Here, 𝜌 is the density of material, 𝑐1 is the dimension of upper 

portion of proof mass and 𝑐2 is that of lower face of proof 

mass whereas 𝑡𝑤 is the thickness of wafer (Fig. 1(b)). 

 

C. Center of gravity of seismic mass  

 

Since the center of gravity of proof mass is beneath the top 

surface of the same at 𝑧𝑐, that can be evaluated by [11] 

 

𝑧𝑐 =
∭ 𝜌 𝑧 𝑑𝑥𝑑𝑦𝑑𝑧

∭ 𝜌 𝑑𝑥𝑑𝑦𝑑𝑧
,  

 

𝑧𝑐 =
𝑡𝑤(3𝑐1

2 − 4√2𝑐1𝑡𝑤 + 3𝑡𝑤
2 )

2(3𝑐1
2 − 3√2𝑐1𝑡𝑤 + 2𝑡𝑤

2 )
.                                           (16) 

 

D. Moments of inertia 

 

The moments of inertial incorporated in Eqs. (2) and (3) are 

calculated by following expression. Both the moments of 

inertia 𝐼𝜃𝑥 and 𝐼𝜃𝑦 about the axes x and y are equal. These are 

expressed as [6] 

𝐼𝜃𝑥 = 𝐼𝜃𝑦 =
1

60
𝜌𝑡𝑤(5𝑐1

4 − 10√2𝑐1
3𝑡𝑤 + 40𝑐1

2𝑡𝑤
2 − 40√2𝑐1𝑡𝑤

3

+ 28𝑡𝑤
4 ).                                                       (17) 

 

E. Frequency modes 

 

In the eight spring suspended proof mass, there may be 

number of oscillation modes. There are, however, three modes 

of vibrations that are dominants as are incorporated in Eqs. 

(1)-(3). The resonance frequencies corresponding to these 

modes are written as, 

 

 

𝑓𝑧 =
1

2𝜋
√

𝑘𝑧

𝑚
,                                                                                (18) 

 

𝑓𝑥 =
1

2𝜋
√

𝑘𝜃𝑥

𝐼𝜃𝑥

,                                                                             (19) 

 

𝑓𝑦 =
1

2𝜋
√

𝑘𝜃𝑦

𝐼𝜃𝑦

.                                                                             (20) 

 

 

F. Damping estimation 

 

Within the encapsulated accelerometer device, if the air is 

present, the motion of proof mass is hindered as a result of 

viscous force experienced by mass. In the bottom surface of 

proof mass, when it moves downwards, the gap between the 

mass and lower encapsulation surfaces reduces, thereby 

causing squeeze film damping. At the same time upper 

encapsulated gap increases resulting in rarefaction of air. 

Consequently, the pressure gradient within the encapsulation 

space is generated. Such a rarefaction and compression 

mechanism of air, introduces the viscous force, whereby the 

device characteristics is influenced. Therefore, the estimation 

of squeeze film damping is very essential for accurate analysis 

and design of accelerometer. For this purpose, the damping is 

calculated by the following expressions [6] of damping force, 

moments and corresponding spring actions as a result of direct 

and tilt motions of seismic mass.   

 

 

𝐹𝑜 =
64𝑃𝑎𝑎𝑏𝜎

𝜋6

𝛿ℎ

ℎ𝑜

∑
𝑚2 + (

𝑛
𝛽

)
2

(𝑚𝑛)2 {[𝑚2 + (
𝑛
𝛽

)
2

]

2

+
𝜎2

𝜋4}𝑚,𝑛 𝑜𝑑𝑑

 ,   

(21) 

 

𝐹1 =
64𝑃𝑎𝑎𝑏𝜎2

𝜋8

𝛿ℎ

ℎ𝑜

∑
1

(𝑚𝑛)2 {[𝑚2 + (
𝑛
𝛽

)
2

]

2

+
𝜎2

𝜋4}𝑚,𝑛 𝑜𝑑𝑑

 ,   

(22) 

 

where 𝐹𝑜 and 𝐹1 are the respective viscous force and spring 

force generated by z-axis movement of proof mass arisen due 

to viscoelastic nature of gas. At the same time the damping 

moments generated by the air due to tilt motion of proof mass 

about respective x- and y-axis are written as [6], 
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𝑀𝑜,𝜃𝑥
=

16𝑃𝑎𝑎𝑏3𝜎

𝜋6

𝜃𝑥

ℎ𝑜

∑
𝑚2 + (

𝑛
𝛽

)
2

(𝑚𝑛)2 {[𝑚2 + (
𝑛
𝛽

)
2

]

2

+
𝜎2

𝜋4}𝑚 𝑜𝑑𝑑,
𝑛 𝑒𝑣𝑒𝑛

 ,    

(23) 

 

𝑀1,𝜃𝑥
=

16𝑃𝑎𝑎𝑏3𝜎2

𝜋8

𝜃𝑥

ℎ𝑜

∑
1

(𝑚𝑛)2 {[𝑚2 + (
𝑛
𝛽

)
2

]

2

+
𝜎2

𝜋4}
𝑚 𝑒𝑣𝑒𝑛,

𝑛 𝑜𝑑𝑑

 ,   

(24) 

 

𝑀𝑜,𝜃𝑦
=

16𝑃𝑎𝑎3𝑏𝜎

𝜋6

𝜃𝑦

ℎ𝑜

∑
𝑚2 + (

𝑛
𝛽

)
2

(𝑚𝑛)2 {[𝑚2 + (
𝑛
𝛽

)
2

]

2

+
𝜎2

𝜋4}𝑚 𝑜𝑑𝑑,
𝑛 𝑒𝑣𝑒𝑛

 ,    

(25) 

 

𝑀1,𝜃𝑦
=

16𝑃𝑎𝑎3𝑏𝜎2

𝜋8

𝜃𝑦

ℎ𝑜

∑
1

(𝑚𝑛)2 {[𝑚2 + (
𝑛
𝛽

)
2

]

2

+
𝜎2

𝜋4}
𝑚 𝑒𝑣𝑒𝑛,

𝑛 𝑜𝑑𝑑

 .   

(26) 

 

Here the squeeze number, 𝜎, is defined by 

 

𝜎 = 12
𝜇𝑎2ω

𝑃𝑎ℎ𝑜
2

 .                                                                             (27) 

 

Other notations included in Eqs. (21)-(27) are: 𝑃𝑎 −pressure at 

which the device is sealed, 𝑎 −length of plate, 𝑏 −width of 

plate, ℎ𝑜 −initial spacing between stator and moving plates,  

𝛽 −aspect ratio,  𝑏/𝑎, ω − frequency of moving plate 

responding electrical signal and 𝜇 −viscosity of gas medium. 

 

IV. PIEZORESISTIVE SENSING ELEMENT 

 
There are several ways of sensing mechanisms of acceleration 

such as piezoelectric, capacitive, tunneling current besides 

piezoresistive one. Out of these, the application of 

piezoresistive sensing element is the easiest way for this 

purpose. Therefore, we describe latter sensing mechanism 

keeping in view the change in resistance at the event of 

external acceleration. If the piezoresister is placed at the 

springs and external acceleration is exerted on the seismic 

mass, the springs bend thereby causing the generation of stress 

on the springs. Because of stress generation on the springs, the 

piezoresister placed on changes that change in resistance is the 

function of external acceleration. This is being discussed in 

detail as follows. The piezoresister can be related with the 

stresses generated on the spring as [10, 11], 

 
∆𝑅

𝑅
= 𝜋𝑙𝜎𝑙 + 𝜋𝑡𝜎𝑡 + 𝜋𝑠𝜎𝑠 ,                                                       (28) 

 

 
(a) 

 

 
(b) 

 

 
(c) 

 

Fig. 1 (a) Wheatstone bridge placement of piezoresistors 

on the eight springs, (b) the truncated pyramid shape 

proof mass structure of accelerometer and (c) Wheatstone 

bridge configuration of piezoresistors placed on springs 

and biasing scheme 

 

where 𝜋𝑙, 𝜋𝑡 and 𝜋𝑠 are respective longitudinal, transverse and 

shearing piezo coefficients; 𝜎𝑙, 𝜎𝑡 and 𝜎𝑠 are the stresses 

generated along their respective directions. 𝑅 and ∆𝑅 are the 

resistance under stress and change in resistance due to stress 

respectively. 
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In the present design of accelerometer, eight beams are 

located in <110> direction and sixteen resisters are placed in 

the same diction. Therefore, piezo-coefficients, 𝜋𝑙, 𝜋𝑡 and 𝜋𝑠 

in <110> directions can be written in terms of more 

fundamental piezo-coefficients, 𝜋11, 𝜋12 and 𝜋44, as, 

 

𝜋𝑙 < 110 > =
1

2
[𝜋11 + 𝜋12 + 𝜋44],                                     (28𝑎) 

 

𝜋𝑡 < 110 > =
1

2
[𝜋11 + 𝜋12 − 𝜋44],                                    (28𝑏) 

 

𝜋𝑠 < 110 > = 0,                                                                       (28𝑐) 

 

Since the coefficients 𝜋11 and 𝜋12, are small enough in 

comparison with 𝜋44, the former coefficients may be ignored, 

whereby Eqs. (28a-b) are approximated as,  

 

𝜋𝑙 < 110 > =
1

2
𝜋44,                                                               (28𝑑) 

 

𝜋𝑡 < 110 > = −
1

2
𝜋44.                                                           (28𝑒) 

 

As a result, (28) takes the form as, 

 
∆𝑅

𝑅
=

1

2
𝜋44[𝜎𝑙 − 𝜎𝑡].                                                                  (29) 

 

Since, the deflections of the springs are assumed to be along 

the z-direction, the transverse stress, 𝜎𝑡 = 0, Considering this, 

Eq. (29) is again simplified as,  

 
∆𝑅

𝑅
=

1

2
𝜋44𝜎𝑙 .                                                                               (30) 

 

In Eq. (30), 𝜎𝑙 has to be derived as a function of external 

acceleration for calculating the change in the resistance. The 

stress distribution along the beam length can be determined by 

the formula [12], 

 

𝜎𝑙 = 𝜎𝑥 =
𝑡𝐵𝐸

2(1 − 𝜈2)
(

𝑑2𝑧

𝑑𝑥2
).                                                   (31) 

 

Now differentiating the Eq. (9) twice with respect to 𝑥 and 

then putting its value in Eq. (31) to have  

 

𝜎𝑙 =
3𝑚𝑎𝑧

8𝑡𝐵
2𝑤𝑏

(𝑙𝐵 − 2𝑥).                                                               (32) 

Here we have assumed that the Poisson’s ratio, 𝜈, is very less 

than unity. The sensitivity in wheat stone bridge configuration 

of the resistances is defined as. 

 

𝑆 =
3𝜋44𝑚𝑙𝐵

8𝑡𝐵
2𝑤𝑏

𝑉𝑖𝑛 .                                                                      (32𝑎) 

 

which is static sensitivity. 

V. VON MISSES STRESS 

 

von-Mises stress is normally studied to estimate the 

failure/yield of structural parts. This criterion states that 

failure occurs when the energy of distortion of structure 

reaches the same energy for yield/failure in uniaxial tension. 

Mathematically, Mises stress is expressed by [10]  

 

1

2
√(𝜎𝑥𝑥 − 𝜎𝑦𝑦)

2
+ (𝜎𝑥𝑥 − 𝜎𝑧𝑧)2 + (𝜎𝑦𝑦 − 𝜎𝑧𝑧)

2
 ≥ 𝜎𝑚. 

 

Here 𝜎𝑚 is the fracture strength. 

 

VI. EQUIVALENT CIRCUIT MODEL OF 

ACCELEROMETER 

 

In order to facilitate the steady state analysis of the 

accelerometer by inducting the damping and spring action 

arising due to environmental effect, we represent the Eq, (1) in 

terms of equivalent circuit elements as [11], 

 

𝐶
𝑑2𝜑

𝑑𝑡2
+

1

𝑅𝑧

𝑑𝜑

𝑑𝑡
+

1

𝐿
𝜑 = 𝐼 = −𝑚𝑎𝑧 ,                                      (33) 

 

 
 

Fig. 2 Equivalent circuit model representing squeeze-film 

damping that includes the compressibility effect of the gas 

films at top and bottom of the proof mass 

 

where, by comparing (33) with (1), we denote capacitance 

𝐶 ≡ 𝑚, the resistance 𝑅𝑧 ≡ 𝑏𝑧
−1 and inductance 𝐿 ≡ 𝑘𝑧

−1. At 

the same time, the potential 𝜑 could be represented by 

displacement 𝑧 and current 𝐼 by external force as indicated in 

Eq. (33). To find out the circuit elements, we represent their 
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configuration with the help of damping expressions (21) and 

(22) by truncating the series up to the first order terms as 

illustrated by Fig.2. As per Fig. 2, the resistance component 

due to squeeze film damping and inductance as a result of 

spring action owing to squeezing of air column for the top 

surface of seismic mass are written as, 

 

𝑅1,1
𝑡𝑧 =

𝜔ℎ𝑜𝜋2(4𝜋4 + 𝜎2)

128𝑃𝑎𝑐1
2𝜎

,                                                       (34) 

 

and 

 

𝐿1,1
𝑡𝑧 =

ℎ𝑜𝜋4(4𝜋4 + 𝜎2)

64𝑃𝑎𝑐1
2𝜎2

,                                                           (35) 

 
respectively and for the bottom surface of seismic the 

parameters 𝑅1,1
𝑏𝑧  and 𝐿1,1

𝑏𝑧  can be obtained merely by replacing 

𝑐1 by 𝑐2 in respective equations (34) and (35). We, now, take 

Laplace transform of (1) by considering elemental 

configuration shown in Fig. 2, the same equation is expressed 

by  

 

𝑧(𝑠) = −
𝑚𝑎𝑧

[𝑚𝑠2 + (
𝑠

𝑅1,1
𝑡𝑧 + 𝑠𝐿1,1

𝑡𝑧 +
𝑠

𝑅1,1
𝑏𝑧 + 𝑠𝐿1,1

𝑏𝑧 ) + 𝑘𝑧]

,            

(36) 

 

where, 𝑅1,1
𝑏  and 𝐿1,1

𝑏  belong to bottom portion of proof mass of 

accelerometer. By replacing the Laplace parameter 𝑠 by 𝑗𝜔, 

the Eq. (36) is expressed in phase and amplitude forms as, 

 

𝑧(𝑗𝜔) = −𝐴𝑇
𝑧 (𝜔) exp [𝑗𝜑𝑇

𝑧 (𝜔)],                                              (37) 

 

Here, amplitude 𝐴𝑇(𝜔) is defined as 

 

𝐴𝑇
𝑧 (𝜔) = −

𝑎𝑧

√(𝐷𝑅
𝑧)2 + (𝐷𝐼

𝑧)2
 ,                                                 (38) 

 

and the phase is expressed by 

 

𝜑𝑇
𝑧 (𝜔) = − tan−1 (

𝐷𝐼
𝑧

𝐷𝑅
𝑧).                                                          (39) 

 

The remaining notations are defined as follows, 

 

𝐷𝑅
𝑧 = [(𝜔𝑧

2 − 𝜔2)

−
𝜔

𝑚
{𝐴𝑡

𝑧(𝜔) sin 𝜙𝑡
𝑧(𝜔)

+ 𝐴𝑏
𝑧 (𝜔) sin 𝜙𝑏

𝑧(𝜔)}], 

 

𝐷𝐼
𝑧 = [

𝜔

𝑚
{𝐴𝑡

𝑧(𝜔) cos 𝜙𝑡
𝑧(𝜔) + 𝐴𝑏

𝑧 (𝜔) cos 𝜙𝑏
𝑧(𝜔)}], 

 

𝐴𝑡
𝑧(𝜔) =

1

√(𝑅1,1
𝑡𝑧 )2 + 𝜔2(𝐿1,1

𝑡𝑧 )2

, 

 

𝜙𝑡
𝑧(𝜔) = − tan−1 (

𝜔𝐿1,1
𝑡𝑧

𝑅1,1
𝑡𝑧 ), 

 

𝐴𝑏
𝑧 (𝜔) =

1

√(𝑅1,1
𝑏𝑧 )2 + 𝜔2(𝐿1,1

𝑏𝑧 )2

, 

 

𝜙𝑏
𝑧(𝜔) = − tan−1 (

𝜔𝐿1,1
𝑏𝑧

𝑅1,1
𝑏𝑧

), 

 

Following the similar procedure, the frequency response 

considering Eq. (2) is expressed by the equation, 

 

𝜃𝑥(𝑗𝜔) = −𝐴𝑇
𝑥 (𝜔) exp [𝑗𝜑𝑇

𝑥(𝜔)].                                           (40) 

 

Here, the amplitude and phase components are defined as, 

 

𝐴𝑇
𝑥 (𝜔) = −

𝑚𝑎𝑦𝑧𝑐/𝐼𝜃𝑥

√(𝐷𝑅
𝑥)2 + (𝐷𝐼

𝑥)2
 ,                                                (41) 

 

and 

 

𝜑𝑇
𝑥(𝜔) = − tan−1 (

𝐷𝐼
𝑥

𝐷𝑅
𝑥) ,                                                         (42) 

 

respectively. The remaining notations are expressed by 

 

𝐷𝑅
𝑥 = [(𝜔𝑥

2 − 𝜔2)

−
𝜔

𝐼𝜃𝑥

{𝐴𝑡
𝑥(𝜔) sin 𝜙𝑡

𝑥(𝜔)

+ 𝐴𝑏
𝑥(𝜔) sin 𝜙𝑏

𝑥(𝜔)}], 

 

𝐷𝐼
𝑥 = [

𝜔

𝐼𝜃𝑥

{𝐴𝑡
𝑥(𝜔) cos 𝜙𝑡

𝑥(𝜔) + 𝐴𝑏
𝑥(𝜔) cos 𝜙𝑏

𝑥(𝜔)}], 

 

 

𝐴𝑡
𝑥(𝜔) =

1

√(𝑅1,1
𝑡𝑥 )2 + 𝜔2(𝐿1,1

𝑡𝑥 )2

, 

 

 

𝜙𝑡
𝑥(𝜔) = − tan−1 (

𝜔𝐿1,1
𝑡𝑥

𝑅1,1
𝑡𝑥 ), 

 

 

𝐴𝑏
𝑥(𝜔) =

1

√(𝑅1,1
𝑏𝑥 )2 + 𝜔2(𝐿1,1

𝑏𝑥 )2

, 
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𝜙𝑏
𝑥(𝜔) = − tan−1 (

𝜔𝐿1,1
𝑏𝑥

𝑅1,1
𝑏𝑥

). 

 

 

𝑅1,1
𝑡𝑥 =

𝜋2ℎ𝑜(25𝜋4 + 𝜎2)𝜔

20𝑃𝑎𝑐1
4𝜎

,                                                     (43) 

 

 

𝐿1,1
𝑡𝑥 =

𝜋4ℎ𝑜(25𝜋4 + 𝜎2)

4𝑃𝑎𝑐1
4𝜎2

.                                                         (44) 

 

Here, 𝑅1,1
𝑏𝑥  and 𝐿1,1

𝑏𝑥  parameters for back surface of proof mass 

can be obtained after replacing 𝑐1 by 𝑐2 in Eqs. (43) and (44) 

respectively.  

 

It is now appropriate to derive the formula of sensitivity at the 

steady state. As per Fig. xx and equations (30) and (32) the 

sensitivity, 𝑆, of accelerometer in z-direction is written as, 

 

𝑆 =
𝑉𝑜

𝑎𝑧

= 2
∆𝑅

𝑅𝑎𝑧

𝑉𝑖𝑛 , 

 

which is rewritten more explicitly as 

 

𝑆 = 3𝜋44 (
𝐸𝑡𝐵

𝑙𝐵
2

𝛿𝑧

𝑎𝑧

) 𝑉𝑖𝑛 .                                                             (45) 

 

Here, 𝛿𝑧 is deflection of proof mass in z-direction and can be 

replaced by the magnitude of 𝑧(𝑗𝜔). For static deflection, i.e. 

for 𝜔 = 0, Eq. (45) gets converted to (32a). With a view to 

validating the aforementioned model, we use COMSOL 

software to simulate the proposed structure of the 

accelerometer by FEM, the results of which are discussed in 

the subsequent section. 

 

VII. FEM SIMULATION 

 

For FEM simulation, we used COMSOL software wherein the 

proposed structure was messed. The messing was performed 

sector wise (Fig. 3). The outer fixed frame of the device was 

messed by free tetrahedral elements with a normal size and the 

springs are meshed by free triangular with a fine element size. 

Similarly, the truncated pyramid shape of proof mass structure 

was also meshed with a tetrahedral element with normal size. 

The boundary conditions were applied to fix the frame part of 

the structure. Next to this the software was run for modal 

analysis. Three main resonance modes were depicted as 

shown by Fig. 4. Fig. 4(a) exhibits the vibration mode along 

the z-axis having frequency 9.78 kHz which is very close to 

the analytically calculated frequency 9.837 kHz. This is the 

frequency of primary mode. Others two oscillation modes 

(Fig. 4(b, c)) have larger frequencies i.e. 17.068 kHz which 

are very close to those calculated analytically for both the 

modes about the x- and y-axes as shown in Table-1. 

 

 

 

TABLE-1 COMPARISON OF THEORY AND FEM SIMULATION      

                       MODAL FREQUENCIES 

 

Modes of axis Theory (kHz) FEM (kHz) 

z-axis 9.837 9.7803 

y-axis 17.29 17.068 

x-axis 17.29 17.074 

 

 
Fig. 3 Meshed model of accelerometer 
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Fig. 4 FEM simulated modes of oscillations: (a) along z-

axis frequency, 9.78 kHz (b) about y-axis frequency, 

17.068 kHz and (c) about x-axis frequency, 17.074 kHz 

 

Besides, we also calculated the stress and von Misses stress 

distribution on the flexure spring. The same is given in Figs. 

5(a) and 5(b) respectively Normal stress distribution obtained 

by FEM simulation is graphically illustrated in Fig. 6. The 

theoretical results of stress are also shown in this figure. From 

this figure it is evident that the analytical results match well 

simulated one. Similarly, the von Misses stress results 

calculated by analytical formulation and those obtained by 

software are shown in Fig. 7. The figure exhibits that both the 

results match well with each other. 

 

The detail analysis of the proposed architecture of 

accelerometer reveals that the other modes of vibrations are 

for away from the principal mode of operation. The analytical 

modal frequencies are very close to those obtained by FEM 

simulation. This validates the present mathematical model. 

Based on these analyses, optimized design parameters of the 

device are listed in Table-II. Considering these parameters, the 

accelerometer characteristics are calculated. 

 

 
(a) 

 
(b) 

 

Fig. 5 FEM simulated stress distribution along the surface 

of the springs due deflection of proof mass along the z-

axis: (a) normal stress distribution and (b) von Misses 

stress distribution 

 

 
Fig. 6 Stress distribution along the length of springs 

 

 

 
Fig. 7 von Mises stress distribution along the length of 

springs 
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TABLE-II DESIGN PARAMETERS OF ACCELEROMETER 

 

Parameters Theoretical Values 

Sensitivity 0.0128 mV/g/V 

Numbers of axis Single axis (z-axis) 

Natural frequency, 𝑓 ~10 kHz 

Thickness of mass, 𝑡𝑤  350 μm 

𝑐1  2020 μm 

𝑐2  1505.02 μm 

Proof mass, 𝑚 2.58x10-6 kg 

Spring constant, 𝑘𝑧  9837.96 

Young’s modulus, 𝐸 1.69x1011 Pa 

𝜈 0.0625 

Silicon resistivity, 𝜌   2329 kg/m3 

Flexural length, 𝑙𝐵 300 µm 

Flexural width, 𝑤𝐵 100 µm 

Thickness, 𝑡𝐵 12.5 µm 

Poly-Si sheet resistance, 𝜌𝑠 40 Ω/ 

Resistance, 𝑅 500 Ω 

Resistor length, 𝑙𝑟  150 µm 

Resistor width, 𝑤𝑟 12 µm 

Resistor thickness, 𝑡𝑟 0.5 µm 

Input voltage, 𝑉𝑖𝑛 1 volt 

 

Fig. 8(a) exhibits the amplitude plot of the accelerometer 

considering the gap ℎ𝑜 between the proof mass and electrode 

as a parameter. This shows that as ℎ𝑜 increases the amplitude 

vs frequency plot approaches to ideal characteristic. This is 

due to the fact that the damping reduces with increase of ℎ𝑜, 

thereby increasing the amplitude at the resonance. The effect 

is more pronounces at the resonance. At the same time, the 

corresponding phase spectral response (Fig. 8(b)), reveals that 

the effect of  ℎ𝑜 is more pronounced around the resonance. 

The Phase at the resonance is −𝜋/2 and about this the phase 

is seriously affected by, ℎ𝑜.  

 

 
(a) 

 
(b) 

 
Fig. 8 Amplitude and phase frequency responses of 

accelerometer along the z-axis for different values of 𝒉𝒐: 

(a) amplitude and (b) phase 

 

Since other two modes of oscillations have equal frequencies, 

we have calculated spectral response of only one mode i.e, 

around x-axis. The angular amplitude is graphically illustrated 

by Fig. 9(a). This figure is also calculated for different values 

of  ℎ𝑜. From this figure it is evident that as ℎ𝑜 increase, the 

amplitude at resonance increases. This is because the damping 

reduces with increase of ℎ𝑜. The corresponding phase plot 

(Fig. 9(b)) also shows the expected results where the 

contribution of ℎ𝑜 is around the resonance.   

 

Fig.10 has been calculated for sensitivity variation with 

frequency for different values of gap separation, ℎ𝑜. This 

figure shows that the sensitivity is the maximum at the 

resonance frequency. The sensitivity increases as we increase, 

ℎ𝑜. This is due to the reason that with increase of ℎ𝑜 

damping decreases thereby leading to increase in 

sensitivity. 
 

 
(a) 
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(b) 

 

Fig. 9 Amplitude and phase variations with frequency 

considering 𝒉𝒐 as a parameter (about x-axis): (a) 

amplitude and (b) phase 

 

 

 
 

Fig. 10 Sensitivity variation with frequency (along z-axis) 

at different values of 𝒉𝒐  

 
VIII. CONCLUSIONS 

 

The proposed structure of accelerometer having multiple 

suspensions has been designed by performing analytical 

modeling. The compact formulations reported have been 

verified FEM analysis. The modal analyses of the 

accelerometer architecture shows that theory based 

frequencies are appreciably close to those obtained by FEM. 

The Von Misses stresses and normal stresses calculated from 

formulations and FEM based evaluation are in close 

agreement with each other. This verifies the present 

formulation. The offers the maximum sensitivity if it is 

operated at resonance frequency. The device having narrow 

gap between the proof mass and the adjacent electrode causes 

the device to experience higher damping force, whereby the 

device becomes less sensitive. 
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