
International Journal of Computer & Organization Trends (IJCOT) Volume 8 Issue 1 – February 2018

ISSN: 2249-2593 http://www.ijcotjournal.org Page 18

An Efficient Difficult Keyword Prediction

using Clustered Based Model View Similarity

Matrix
Palakurthi Sahitya

1
, E. Deepthi

2

Final M.Sc. Student
1
, Lecturer

 2

1, 2
 M. Sc Computer Science, Chaitanya Women’s PG College, Old Gajuwaka, Visakhapatnam

Andhra Pradesh

Abstract:

To the best of our knowledge, there has not

been any work on predicting or analysing the

difficulties of queries over databases. Researchers

have proposed some methods to detect difficult

queries over plain text document collections.

However, these techniques are not applicable to our

problem since they ignore the structure of the

database. In particular, as mentioned earlier, a

Keyword query interface must assign each query

term to a schema element in the database. It must

also distinguish the desired result type. We

empirically show that direct adaptations of these

techniques are ineffective for structured data. In this

paper we are propose topic based cluster search

algorithm for search of keyword in the database. By

implementing this technique we can improve more

efficiency of query oriented keyword search.

Keywords: Keyword, Clustering Data Mining,

Query Searching, Difficult Keyword.

I. INTRODUCTION

The classical iterated query processing is

easy to manipulate, the disadvantage is it gives low

performance on modern CPUs due to lack of locality

and frequent instruction mispredictions. Several

techniques proposed in the past to improve this

situation, but some techniques are frequently

outperformed a user forms a query according to his

information need and a number of documents are

presented to the user by the retrieval system in

response to the query. Calculating the process of

quality outcome using Query performance prediction

of a retrieval system in response to a user’s query

without any relevance information. Compared to the

long survey of developing retrieval models to

improve performance in IR, research on predicting

query performance is still in its early stage. However,

some associations are starting to realize the

importance of this problem and a number of new

methods have been proposed for prediction recently .

However, accurate performance prediction with

zero-judgment is not an easy task. The major

difficulty of performance prediction comes from the

fact that many factors, such as the query, the ranking

function and the collection, have an impact on

retrieval performance. Each factor affects

performance to a different degree and the overall

effect is hard to predict accurately. The ability to

predict query performance has the potential of a

fundamental impact both on the user and the

retrieval system.

Question interfaces (KQIs) for databases

have attracted a lot of attention within the last

decade because of their flexibility and easy use in

looking and exploring the data. Since any entity in

an exceedingly information set that contains the

question keywords may be a potential answer,

keyword queries typically have several potential

answers. KQIs should determine the information

desires behind keyword queries and rank the

answers so the required answers seem at the highest

of the list. Unless otherwise noted, we tend to ask

keyword query as question within the remainder of

this paper. Some of the difficulties of answering a

query are as follows: First, unlike queries in

languages like SQL, users do not normally specify

the desired schema element(s) for each query term.

For instance, query Q1: Godfather on the IMDB

database (http://www.imdb.com) does not specify if

the user is interested in movies whose title is

Godfather or movies distributed by the Godfather

Company. Thus, a KQI must find the desired

attributes associated with each term in the query.

Second, the schema of the output is not specified,

i.e., users do not give enough information to single

out exactly their desired entities . For example, Q1

may return movies or actors or producers. We

present a more complete analysis of the sources of

difficulty and ambiguity There are cooperative

efforts to produce standard benchmarks and analysis

platforms for keyword search strategies over

databases.

One effort is that the data-centric track of

INEX Workshop wherever KQIs square measure

evaluated over the well-known IMDB information

set that contains structured info regarding movies

and other people in show business. Queries were

provided by participants of the workshop. Another

effort is that the series of linguistics Search

Challenges (SemSearch) at linguistics Search

Workshop, where {the information the info the

information} set is that the Billion Triple Challenge

International Journal of Computer & Organization Trends (IJCOT) Volume 8 Issue 1 – February 2018

ISSN: 2249-2593 http://www.ijcotjournal.org Page 19

data set at http://vmlion25.deri.de. it's extracted from

completely different structured data sources over the

online like Wikipedia. The queries square measure

taken from Yahoo! keyword question log. Users

have provided relevancy judgments for each

benchmark. These results indicate that even with

structured information, finding the specified answers

to keyword queries remains a tough task. additional

apparently, looking nearer to the ranking quality of

the most effective playacting methods on each

workshops, we tend to notice that all of them have

been playacting terribly poorly on a set of queries.

For instance, take into account the question ancient

Rome era over the IMDB data set. Users would

really like to check data regarding movies that state

ancient Rome. For this question , the state-of the- art

XML search ways that we tend to enforced come

rankings of significantly lower quality than their

average ranking quality over all queries.

Hence, some queries area unit more

difficult than others. Moreover, regardless of that

ranking method is employed; we tend to cannot

deliver an inexpensive ranking for these queries.

Table one lists a sample of such arduous queries

from the 2 benchmarks. Such a trend has been

additionally observed for keyword queries over text

document collections. It is necessary for a KQI to

acknowledge such queries and warn the user or use

various techniques like question reformulation or

question suggestions. it's going to additionally use

techniques like question results diversification . To

the most effective of our data, there has not been any

work on predicting or analysing the difficulties of

queries over databases. Researchers have projected

some ways to sight tough queries over plain text

document collections. However, these techniques

aren't applicable to our drawback since they ignore

the structure of the information. above all, as

mentioned earlier, a KQI should assign every

question term to a schema element(s) within the

information. It should additionally distinguish the

specified result type(s). we tend to through empirical

observation show that direct diversifications of these

techniques area unit ineffective for structured data.

II. RELATED WORK

Y. Luo, X. Lin, W. Wang, and X. Zhou, In

this paper, we study the effectiveness and the

efficiency issues of answering top-k keyword query

in relational database systems. We propose a new

ranking formula by adapting existing IR techniques

based on a natural notion of virtual document.

Compared with previous approaches, our new

ranking method is simple yet effective, and agrees

with human perceptions. We also study efficient

query processing methods for the new ranking

method, and propose algorithms that have minimal

accesses to the database. We have conducted

extensive experiments on large-scale real databases

using two popular RDBMSs. The experimental

results demonstrate significant improvement to the

alternative approaches in terms of retrieval

effectiveness and efficiency. V. Ganti, Y. He, and D.

Xin,, Keyword search over entity databases (e.g.,

product, movie databases) is an important problem.

Current techniques for keyword search on databases

may often return incomplete and imprecise results.

On the one hand, they either require that relevant

entities contain all (or most) of the query keywords,

or that relevant entities and the query keywords

occur together in several documents from a known

collection. Neither of these requirements may be

satisfied for a number of user queries. Hence results

for such queries are likely to be incomplete in that

highly relevant entities may not be returned.

On the other hand, although some returned

entities contain all (or most) of the query keywords,

the intention of the keywords in the query could be

different from that in the entities. Therefore, the

results could also be imprecise. To remedy this

problem, in this paper, we propose a general

framework that can improve an existing search

interface by translating a keyword query to a

structured query. Specifically, we leverage the

keyword to attribute value associations discovered in

the results returned by the original search interface G.

Bhalotia, A. Hulgeri, C. Nakhe, S. Chakrabarti, and

S. Sudarshan, With the growth of the Web, there has

been a rapid increase in the number of users who

need to access online databases without having a

detailed knowledge of the schema or of query

languages; even relatively simple query languages

designed for non-experts are too complicated for

them. We describe BANKS, a system which enables

keyword-based search on relational databases,

together with data and schema browsing. BANKS

enables users to extract information in a simple

manner without any knowledge of the schema or any

need for writing complex queries. A user can get

information by typing a few keywords, following

hyperlinks, and interacting with controls on the

displayed results. A. Trotman and Q. Wang

 This paper presents an overview of the

INEX 2011 Data-Centric Track. Having the ad hoc

search task running its second year, we introduced a

new task, faceted search task, which goal is to

provide the infrastructure to investigate and evaluate

different techniques and strategies of recommending

facet-values to aid the user to navigate through a

large set of query results and quickly identify the

results of interest. The same IMDB collection as last

year was used for both tasks. A total of 9 active

participants contributed a total of 60 topics for both

tasks and submitted 35 ad hoc search runs and 13

faceted search runs. A total of 38 ad hoc search

topics were assessed, which include 18 subtopics for

13 faceted search topics. We discuss the setup for

International Journal of Computer & Organization Trends (IJCOT) Volume 8 Issue 1 – February 2018

ISSN: 2249-2593 http://www.ijcotjournal.org Page 20

both tasks and the results obtained by their

participants. S. C. Townsend, Y. Zhou, and B. Croft

We develop a method for predicting query

performance by computing the relative entropy

between a query language model and the

corresponding collection language model. The

resulting clarity score measures the coherence of the

language usage in documents whose models are

likely to generate the query. We suggest that clarity

scores measure the ambiguity of a query with respect

to a collection of documents and show that they

correlate positively with average precision in a

variety of TREC test sets. Thus, the clarity score

may be used to identify ineffective queries, on

average, without relevance information. We develop

an algorithm for automatically setting the clarity

score threshold between predicted poorly-

performing queries and acceptable queries and

validate it using TREC data. In particular, we

compare the automatic thresholds to optimum

thresholds and also check how frequently results as

good are achieved in sampling experiments that

randomly assign queries to the two classes. Clarity-

score-based: The methods based on the concept of

clarity score assume that users are interested in a

very few topics, so they deem a query easy if its

results belong to very few topic(s) and therefore,

sufficiently distinguishable from other documents in

the collection.

III. PROPOSED SYSTEM

The main objective of proposed system is to

perform the efficient query search and reduce the

time complexity of in the searching process. In this

paper we are proposed an efficient query searching

process i.e. topic based cluster search algorithm. By

implementing this algorithm we can get efficient

search result and also reduce time for searching the

query. Before performing the search the query we

can take sample document and search query in that

documents. The implementation procedure of topic

based cluster algorithm is as follows.

Text Pre-processing:

 In the text pre-processing we can get only

text formatted data for searching query. Before

performing search operations we can get all

documents and reduce all tag in that document. After

getting each document text we can find out relative

frequency (Rfreq) of each document. Before finding

relative frequency we also find local and global

frequency of each word in the document. The local

frequency (Lfreq)of each can be calculated by number

of occurrence of each word in the document. After

finding local frequency of each word in the

document we can find out global frequency(Gfreq) .

Using both frequencies we can find out relative

frequency of each document by using following

formula.

 Rfreq =Lfreq + Gfreq /2.0

After finding relative frequency we can calculate

document weight of each document by using

following formula.

 N=size of each document

 Lfreq= Local frequency of each word in the

document

 Gfreq =Global Freqency of each document

 Weight (W)=Lfreq * Math.Log(N/Gfreq) +0.01

By using that formula we can calculate each

document weight. After we can create MVS Matrix

of each document to other documents.

Build MVS Matrix:

 In the generation of MVS matrix we can calculate

cosine similarity each document to other document.

Based on MVS matrix we can perform the

clusterization of documents. The cosine similarity of

any two document can be find by using following

equation.

 d1= Total number of words in first document

 d2= total number of words in second document

 dprd= d1*d2

 d1sqr = d1*d1

 d2sqr d2*d2

 dsqrprd =d1sqr * d2sqr

 sim=dprd/dsqrprd

By using those formulas we find out each document

cosine similarity and also we generate matrix

formatted data. likewise we can calculate cosine

similarity of each document to other document and

arranged in the form matrix.

k means clustering algorithm for grouping

related documents:

 By calculating of MVS matrix we can

perform the clusterization process. By performing

clusterization process we can grouping all relating

document into single group. Before performing

clusterization we get all cosine similarity of each

document to other document. Based on cosine

similarity of each document we can perform

clusterization process. The step of clusterization

process is as follows.

1. Enter the number of cluster for performing

clustering of document.

2. After that finding number of documents are

available in the database.

International Journal of Computer & Organization Trends (IJCOT) Volume 8 Issue 1 – February 2018

ISSN: 2249-2593 http://www.ijcotjournal.org Page 21

3. Randomly choose the centroid of document

based on number of clusters we want.

4. After finding centroid document we can get

cosine similarity of each centroid document.

5. After that we can also get remaining

document of cosine similarity.

6. Find out distance of each centroid to other

document based on cosine similarity by using

following formula

for (int i=0;i<docs.size();i++)

 {

 int minInd =0;

 double mindis=0;

 for(int j=0;j<k;j++)

 {

 double dis =

cosSim(docs.get(i),getCentriod(clusturs[j]));

 if(j==0 || mindis>dis)

 {

 minInd=j;

 mindis=dis;

 }

 }

 clusturs[minInd].add(docs.get(i));

 }.

By using that code we can find out related

documents in a group. After grouping all related

document into group perform the searching

operation in those groups and get only query

matched document.

Topic based searching process:

 In this module we perform the searching

operation of query in the document. In this we can

get each cluster document and convert into text

format. After that we can search each word in that

cluster and find out the word id existing in that

group or not. So that if the word is existing in the

that cluster we display that document in the cluster.

Likewise we can search all cluster document and get

only the query related cluster document. By

implementing those concepts we can get more

effective search result and also time complexity for

performing search operation.

IV. CONCLUSIONS

 In this paper we are proposed a novel

problem for performing effective searching

operation in documents. By implementing this

concept we can improve more efficiency of

searching operation and also reduce time complexity.

In this paper we are proposed topic based cluster

searching algorithm for finding related document of

query search. In this algorithm we can find out each

document cosine similarity and also find out

distance of centroid document to other documents.

After finding distance we can perform clusterization

process by using k means clustering algorithm. After

performing clustering process we can perform the

searching process for query. By performing query

search we can get all query related documents of

clusters can be display. By implementing those

concepts we can improve efficiency in the searching

operation.

REFERENCES

[1] V. Hristidis, L. Gravano, and Y. Papakonstantinou,

“Efficient IRstyle keyword search over relational
databases,” in Proc. 29th VLDB Conf., Berlin, Germany,

2003, pp. 850–861.

[2] Y. Luo, X. Lin, W. Wang, and X. Zhou, “SPARK: Top-k
keyword query in relational databases,” in Proc. 2007 ACM

SIGMOD, Beijing, China, pp. 115–126.

[3] V. Ganti, Y. He, and D. Xin, “Keyword++: A framework to
improve keyword search over entity databases,” in Proc.

VLDB Endowment, Singapore, Sept. 2010, vol. 3, no. 1–2,

pp. 711–722.
[4] J. Kim, X. Xue, and B. Croft, “A probabilistic retrieval

model for semi structured data,” in Proc. ECIR, Tolouse,

France, 2009, pp. 228–239.
[5] N. Sarkas, S. Paparizos, and P. Tsaparas, “Structured

annotations of web queries,” in Proc. 2010 ACM SIGMOD

Int. Conf. Manage. Data, Indianapolis, IN, USA, pp. 771–
782.

[6] J. A. Aslam and V. Pavlu, “Query hardness estimation using

Jensen-Shannon divergence among multiple scoring
functions,” in Proc. 29th ECIR, Rome, Italy, 2007,. 198–

209.

[7] O. Kurland, A. Shtok, S. Hummel, F. Raiber, D. Carmel,
and O. Rom, “Back to the roots: A probabilistic framework

for query performance prediction,” in Proc. 21st Int. CIKM,

Maui, HI, USA, 2012, pp. 823–832.
[8] O. Kurland, A. Shtok, D. Carmel, and S. Hummel, “A

Unified framework for post-retrieval query-performance

prediction,” in Proc. 3rd Int. ICTIR, Bertinoro, Italy, 2011,
pp. 15–26.

[9] S. Cheng, A. Termehchy, and V. Hristidis, “Predicting the

effectiveness of keyword queries on databases,” in Proc.
21st ACM Int. CIKM, Maui, HI, 2012, pp. 1213-1222..

[10] E. Demidova, P. Fankhauser, X. Zhou, and W. Nejdl, “DivQ:

Diversification for keyword search over structured
databases,” in Proc. SIGIR’ 10, Geneva, Switzerland, pp.

331–338.

[11] Y. Zhou and B. Croft, “Ranking robustness: A novel
framework to predict query performance,” in Proc. 15th

ACM Int. CIKM, Geneva, Switzerland, 2006, pp. 567–574.
[12] B. He and I. Ounis, “Query performance prediction,” Inf.

Syst., vol. 31, no. 7, pp. 585–594, Nov. 2006.

[13] K. Collins-Thompson and P. N. Bennett, “Predicting query
performance via classification,” in Proc. 32nd ECIR, Milton

Keynes, U.K., 2010, pp. 140–152.

[14] A. Shtok, O. Kurland, and D. Carmel, “Predicting query
performance by query-drift estimation,” in Proc. 2nd ICTIR,

Heidelberg, Germany, 2009, pp. 305–312.

[15] Y. Zhou and W. B. Croft, “Query performance prediction in
web search environments,” in Proc. 30th Annu. Int. ACM

SIGIR, New York, NY, USA, 2007, pp. 543–550.

