
International Journal of Computer & Organization Trends –Volume 4 Issue 2 March to April 2014

ISSN: 2249-2593 http://www.ijcotjournal.org Page 55

A Retrieval Mechanism for Multi-versioned

Digital Collection using TAG
Dr. M. Thangaraj

#1
, V. Gayathri

*2

#
Associate Professor, Department of Computer Science, Madurai Kamaraj University, Madurai, TN, India.
*
Research Scholar, Department of Computer Science, Madurai Kamaraj University, Madurai, TN, India.

Abstract— As the marvellous growth of the digital

library in each year, the problems with indexing and

searching a digital library is increased in a high rate.

When the researchers search for the earlier versions,

only a few recent versions in the back volumes can be

retrieved soon. It is unpredictable that researchers

require the earlier versions in a specific boundary. In

order to facilitate the researchers, who may access any

version at any time, we propose a VTAG technique

for indexing. Our experiments indicate that the

proposed retrieval technique, VTAG, effectively

retrieves any version in considerable amount of time

than the existing method.

Keywords— Version Retrieval, TAG tree, VTAG,

Digital library, Information retrieval, Version

Management.

I. INTRODUCTION

With the invention and widespread use of the

internet, the amount of available information on the

web and in digital libraries has been increasing at a

high rate. Individuals have struggled to keep up with

the increased information. Correspondingly, extensive

methods and algorithms to reduce and/or rank this

digital information are being researched to assist users

in their searches [2].

When compared to other peoples, the persons who

access the library very often is researchers. For the

research, mostly the literatures are needed in wide

range. Getting the latest version/edition is easier, than

the old one. To access the versioned object, an

effective indexing system is needed. The versions in

the digital library database are nothing but different

editions of a book, series of articles on a topic etc.

The problem of managing multiple versions of

documents is present in many applications [12] and

poses new research challenges. Traditional application

domains that rely on version management, such as

software configuration and cooperative work,

increasingly use multi-versioned information as they

migrate to a web-based environment.

The ideal solution is a version management system

supporting multiple versions of the same document,

while avoiding duplicate storage of their shared

segments. To assure link permanence, professionally

managed sites and content providers will have to rely

on document versioning. In fact, we might soon see

‗e-permanence‘ standards established for critical web

sites of public interest [8]. In this paper, we present an

index based model that controls the access of

versioned objects in the digital library database.

The remainder of the paper is organized as follows:

Section 2 is devoted to the issues relevant to version

management. In Section 3, we describe the

architecture for version control. Section 4 shows our

performance evaluation result. Finally, in Section 5 we

present conclusion.

II. RELATED WORK

There are many digital collection search systems,

such as Google Scholar [6], IEEE Xplore [7], and etc.,

available online. These systems produce results based

on the relevancy to the query term and/or the

importance of the papers. Even though these systems

have provisions to search for the versions, it requires

the exact keyword phrase.

In [3] two approaches are introduced, namely Edit -

Based Version Retrieval (EBVR) and Reference -

Based Version Retrieval (RBVR). In EBVR, the

document objects are separated from the edit script.

The edit-script is a file which maintains the logical

order of the document and helps in identifying the

useful pages per versions. A given version is

reconstructed by first visiting the edit scripts to

identify the objects valid for this version (in their

appropriate document order). Then, the data pages

containing the actual objects are retrieved.

In RBVR, reference records of a version always

refer to its previous version, which in turn might refer

to its previous version. Therefore, reference records

are logical and may be indirect. It does not assume any

physical representation of the versioned object.

Mostly the keyword based retrieval is focused more

for the research in the field of Information Retrieval.

In which they focus on the similarity/matching

between the query term and the documents [4, 5, 1].

There is no much focus to address the problem of

retrieving the back volumes effectively. Yet the search

systems struggle for even the general retrieval [9];

search systems produce a plenty of result pages, in

which most of the results are not interested to the

users, and also diffuses the topic.

TAG [11] provides a way to minimise the topic

diffusion and returns the relevant documents. It uses

the Context-based Search and TAG-tree for effective

indexing. TAG-tree is a combination of B+-tree and

list. The Contexts and the publications are mapped

into the tree. This process is independent of query and

it is pre-executed. When a query is posted, it is

International Journal of Computer & Organization Trends –Volume 4 Issue 2 March to April 2014

ISSN: 2249-2593 http://www.ijcotjournal.org Page 56

searched against the TAG-tree and the synonyms of it

are also searched. Thus the query is treated as a

context and not as a set of keywords. Thus it avoids

the topic diffusion. Also the structure helps more in

indexing and retrieval. The reengineered TAG-tree

architecture will be suitable for storing and retrieving

versioned documents effectively.

III. VTAG-INDEXER

This section shows how the indexing structure

TAG-tree can be applied to address the issue of

handling multiple editions. The TAG-tree has a list in

the buckets of each leaf node, which is filled with the

synonyms. The internal node buckets has information

in the form of patterns, i.e., <prefix> <context>

<suffix>. The <context> tuple have significant terms,

where as the surrounding terms are in <prefix> and

<suffix> tuples. With the help of patterns, as well as

the way of indexing in the TAG-tree, searching is

more focused; in turn that avoids the topic diffusion.

The same TAG-tree is used here in VTAG indexing

model, where the list is replaced by a hash table. The

hash table is used to hold the version information. Fig.

1. shows the overview of the VTAG Indexer.

Fig. 1 Architecture of VTAG-Indexer

Each book in the publication database is pre-

processed. Only the vital information of the book such

as title, author, edition, publisher, year and so on., are

considered for pre-processing. The processes like

tokenization, stop words removal are carried over

these extracted information. Then the patterns are

created, based on which the books are classified. The

classified books are finally indexed and mapped in

VTAG-tree. The work flow of VTAG-Indexer is

shown in fig. 2.

When the query is post by the user, it is searched in

the nodes of the VTAG-tree for the identification of

the exact book. Then the version queried is retrieved

from the version table. While searching the tree, the

query is treated in the form of pattern. An overview of

VTAG-tree is shown in fig. 3. The books are indexed

in the buckets of the B+-tree in context-based method

(refer TAG for more details). The internal nodes of the

B
+
-tree is filled with only the indexing information,

where as the leaf nodes have the other information like

author, publications, and so on. Also the bucket of the

leaf node has a pointer to a hash table, which is filled

with the various versions of the book.

Fig. 2 The workflow of VTAG-Indexer

Any effective hash function can be used in the hash

table. When a query is posed, it is searched in the

VTAG-tree, finds the exact leaf node which contains

the details of the book that is enquired. From the leaf,

it reaches the particular hash table which has the

various versions/editions of that book. The version id

of the query is matched against the versions in the

hash table by means of hash function. Thus it returns

the exact version of the book queried. If the version

queried is not available, then the latest version, i.e.,

the object whose version id is high, is returned to the

user.

A. Algorithm

This section shows the algorithm used for the

retrieval from the multi-versioned publications. The

following VersionBasedRetrieval algorithm gets the

input, query as the term to be searched and the version

id; produces the resultant document of the queried

version;

Publication

Database

Pre-processor

VTAG-Indexer

The query

inputs by user

The User

Interface

User

Reques

t

Context

Identification

Version Table

Look Up

Version

Required

Publication

Database

International Journal of Computer & Organization Trends –Volume 4 Issue 2 March to April 2014

ISSN: 2249-2593 http://www.ijcotjournal.org Page 57

Fig. 3 Overview of VTAG-tree

Algorithm : VersionBasedRetrieval

Data Structure: See Fig.3.
Input : qb - Query,

 Vid - Version Id.

Output : Dm - the resultant document of

 version m.

Let

Di - i
th

 version of the document D,

n - the latest version of document D,

vl - version list pointer of node result,

v - hash value; 1≤v≤n,

n - the latest version of document D,

m - queried version vid or the latest version of the

document.

findBV(Query qb, int vid)

{

 //Identify the Book through the context

 result = find(qb, head);

 //locates the exact leaf of VTAG-tree.

 vtp = result → vl;

 //redirects to the appropriate version table.

 v = hash(vid);

 //compute the hash value of the given

 //version id.

 if(v)

 return Dv;

 else

 return Dn;

 //if it is avail, returns the queried version.

 //else, returns the latest version.

 }

The function find calls the algorithm Context

Identification in TAG, which identifies and returns the

queried node. Refer the module TAG Retriever, for

more information on how the searching carried over

the tree nodes. hash refers the hash function used in

the version table.

IV. PERFORMANCE ANALYSIS

In this section we present the results of experiments

to show the efficiency of VTAG-Indexer. Various

experiments were conducted in this work, but only

vital information is presented here. To study the

performance of this model, we have taken 200

documents. Each document has 100 versions, with

4MB. Each version changes minimum 20% from the

previous version. To analyse the performance of the

VTAG, it is compared with the EBVR and RBVR.

All these models were implemented using Java. The

experiments were conducted on Processor Intel Core

i7 @ 2.30GHz with 8 GB RAM and 1 TB hard disk,

running Windows 7.

A. Object Retrieval

When the size of the collection increases, it

becomes a hectic task of finding the particular

document (object). Fig. 4. shows the time taken

retrieve the document. Since our VTAG model uses

the context - based approach, as well the hierarchical

approach, it takes, a minimum time to locate the

document. Both EBVR and RBVR searches linearly in

.

.
.

.

.

.

.

.

.

.

.

.

Internal

node

Versions

Hash Table

International Journal of Computer & Organization Trends –Volume 4 Issue 2 March to April 2014

ISSN: 2249-2593 http://www.ijcotjournal.org Page 58

the collection, and uses the traditional keyword-based

search mechanism. Thus the number of comparisons

to locate the specified document is quite large in the

existing system, which in turn increases the retrieval

time.

0

200

400

600

800

1000

1200

1400

T
im

e
 (

in
 m

il
li

s
e

c
o

n
d

s
)

Object Retrieval Time

TAG

EBVR

RBVR

Fig. 4 Time taken to retrieve the object

B. Single Version Retrieval

The performance is measured for retrieving a single

earlier version of a document as the versions of the

document gets increased (Fig. 5.). When a version is

queried, EBVR always refers to its previous version,

which in turn might refer to its previous version. In

this way it takes more time to retrieve the queried

version.

0

5000

10000

15000

20000

20 30 40 50 60 70 80 90 100

T
im

e
 (

in
 m

il
li

se
co

n
d

s)

Versions

Retrieval Vs Version Growth

RBVR

EBVR

TAG

Fig. 5. Retrieval time against the growth of versions

The RBVR focuses on the common unchanged

parts. Thus it takes less time when compared to EBVR.

But this model also need additional efforts to construct

the queried version like referring the Reference

Record. In VTAG with the help of hash table, it is

very easy to locate the queried version. Thus it is clear

VTAG performs well compared to other models.

We randomly chosen 10 different versions of

various documents. The size of the collection is fixed

to 200 documents with 100 versions each. Fig. 6.

shows the results when we studied the performance

while the earlier version is retrieved.

0

2000

4000

6000

8000

10000

12000

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

T
im

e
 (

in
 m

il
li

se
co

n
d

s)

Single Version Retrieval

TAG

EBVR

RBVR

Fig. 6. Time elapsed to retrieve a single version

EBVR stores all the changes of either insertion or

deletion. When an updation takes place, it records the

deletion as well as the addition of the new information

added. It concentrate on both changed and unchanged

information. Thus the time taken to read the edit-script

before retrieving (constructing) the queried version, is

quite large. In VTAG, it needs additionally the time to

access the hash table along with time to locate the

document. Hence VTAG outperforms than the earlier

model.

C. Multi-version Retrieval

This study focuses on retrieving more than one

version of the document. Eight different versions of

the various documents are queried. Figure. 7. shows

the results of this experiment. Both EBVR and RBVR

has to bring almost the maximum previous versions,

required to construct the queried version, to main

memory. Then it needs to process all these versions.

VTAG directly accesses the version queried. Thus it

consumes less amount of time and memory.

International Journal of Computer & Organization Trends –Volume 4 Issue 2 March to April 2014

ISSN: 2249-2593 http://www.ijcotjournal.org Page 59

0

2000

4000

6000

8000

10000

12000

14000

16000

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

T
im

e
 (

in
 m

il
li

se
co

n
d

s)

Multi-version Retrieval

TAG

EBVR

RBVR

Fig. 7. Multiple versions of a single object

The main goal of these experiments is to study the

retrieval performance of the VTAG model. The result

of the study shows that VTAG model performance is

better than the EBVR and RBVR model. The other

operations such as insertion and deletion have also

been analyzed and found that VTAG model

outperforms the earlier models.

V. CONCLUSION

In this study a modified architecture for indexing

the multi-versioned documents is proposed. From the

results of the experiments it is shown that the

proposed indexing technique performs well when

compared to the other existing techniques. This

technique can be applied to various multi-versioned

publication systems in future to check the behavioural

changes of the Indexer.

ACKNOWLEDGMENT

This study is a part of ICBR - Major Research

Project (41- 642/2012(SR)) funded by University

Grants Commission, India.

REFERENCES

[1] R. M. Aliguliyev, ―A new sentence similarity measure and

sentence based extractive technique for automatic text
summarization,‖ Expert Syst. Applic., vol. 36, pp. 7764-7772,

May 2009.

[2] S. Chakrabarti, Mining the Web: Discovering knowledge
from hypertext data. San Francisco: Morgan-Kaufmann,

2003.

[3] S. Y. Chien, V. Tsotras and C. Aniolo, ―Efficient schemes for
managing multiversion XML documents,‖ The VLDB

Journal, vol. 11, pp. 332–353, December 2002.

[4] Y. L. Chen and Y.T. Chiu, ―An IPC-based vector space

model for patent retrieval, ‖ Inform. Process. Manage., vol.

47, pp. 309-322, May 2011.

[5] R. L. Cilibrasi and P.M.B. Vitanyi, ―The google similarity
distance,‖ IEEE Trans. Knowl. Data Eng., vol. 19, pp. 370-

383, March 2007.

[6] (2013) The Google Scholar. [Online]. Available:
http://scholar.google.co.in/intl/en/scholar/about.html

[7] (2013) The IEEE Xplore website. [Online]. Available:

http://ieeexplore.ieee.org/Xplorehelp/Help_start.html
[8] (2002) National Archives of Australia's Policy Statement

Archiving Web Resources - A policy for keeping records of

web-based activity in the commonwealth government.
[Online]. Available: http://www.naa.gov.au/recordkeeping

[9] N. Ratprasartporn, J. Po, A. Cakmak, S. Bani-Ahmad and G.

Ozsoyoglu, ―Context-based literature digital collection
search,‖ VLDB J., vol. 18, pp. 277-301, January 2009.

[10] M. Thangaraj and V. Gayathri, ―A context-based technique

using tag-tree for an effective retrieval from a digital
literature collection,‖ Journal of Computer Science, vol. 9, pp.

1602-1617, November 2013.

[11] (2002) WWW Distributed Authoring and Versioning
(webdav) [Online]. Available:

http://www.ietf.org/html.charters/webdav-charter.html

