
International Journal of Computer & Organization Trends –Volume 4 Issue 2 March to April 2014

ISSN: 2249-2593 http://www.ijcotjournal.org Page 51

Improving the Performance of Load Balancing

in Cloud Environment using SJF in

MapReduce
Prof. Priya.V, Prof. Subha S

School of Information Technology and Engineering. VIT University, Vellore

School of Information Technology and Engineering. VIT University, Vellore

Abstract – Today Cloud computing is a fast

growing area in computing research and industry.

Through virtualization many applications can be

developed and various services can be offered to

the end users. Cloud service providers are

provided many services in a very flexible manner

so that the users can scale up or scale down as they

wish. In this paper, a new load balancing

algorithm has been proposed using Hadoop-

MapReduce and SJF Preemptive scheduling

algorithm between Mapper and Reducer.

Keywords- Cloudsim, DataCenter, Virtualization,

Virtual Machine, Load Balancing, MapReduce.

I.INTRODUCTION

Today Cloud computing is a fast growing area in

computing research and industry. The term “cloud”

and “cloud computing” everywhere means the

same. The third party service providers are

providing hardware, software and services for the

end users over the internet. Infrastructure as a

Service (IaaS), Platform as a Service (PaaS) and

Software as a Service (SaaS) are the three basic

types of services in cloud computing:. Virtualized

servers, grids or clusters, storage, networks,

memory and systems software are provided as a

service. Amazon’s Elastic Compute Cloud (EC2)

and Simple Storage Service (S3) are the leading

service providers, it also provides access to

computational resources that is CPUs, and it also

provides manageable and scalable resources as a

service to the end user. Load balancing

mechanisms can be generally classified as dynamic

or static, centralized or decentralized and periodic

or non-periodic. Virtual Machines allow single

computer to take the role of multiple computers by

splitting the underlying physical resources into

many logical resources and many workstations or

servers can be created in a single system. In the

existing works all load balancing methodologies

are deciding which virtual machine for which

cloudlet. In this paper we introduce a new load

balancing algorithm using hadoop MapReduce [2].

II.CLOUD MAP REDUCE

MapReduce takes a set of input data and produces a

set of output data. This MapReduce consists of two

functions Map and Reduce. The primary objective

of this function is to split the input data set into

independent chunks that are processes in a parallel

fashion. Map function takes the input data and

produces a set of intermediate data. MapRdeuce

library groups the intermediate data and passes

them to the Reduce function. The Reduce function

accepts the intermediate data and merges to form a

smaller set of values. 0 or 1 ouput value is

produced for one Reduce function Zero or one

output value is produced per Reduce invocation.

Both the input data and ouput data are stored in a

file system. This method of splitting and reducing

the data handles large set of values to be stored in

memory .

Cloud MapReduce primarily has four advantages:

 When compared with other

implemntations it is highly faster

 By comparing with other systems it is

more scalable

 It is more failure resistant because it has

no single point of tailback

 It has simple lines of code

Cloud MapReduce also has several highly desirable

properties:

 The processing power is increased by

adding servers. It is highly scalable.

 Only authorized and approved users can

use the data in the system. It is secure.

 Data locality and server resources are

employed to determine best computing

operations.

 Jobs are completed according to the

priority. It has optimized scheduling

 Codes can be written in any programming

language. It is highly flexible.

 Several jobs make certain that jobs fail

independently and restart automatically. It

has resiliency and high availability

 There are no master or slave nodes. It is

symmetric and decentralized

International Journal of Computer & Organization Trends –Volume 4 Issue 2 March to April 2014

ISSN: 2249-2593 http://www.ijcotjournal.org Page 52

 It is cost effective

 At the time of failure of one node the

system redirects the task to another

location without loss of data. It is fault

tolerant.

III. CLUSTER SETUP

Utilization of the node defines that the ratio of the

used space of the node to the total capacity of the

node. Utilization of the cluster defines that the ratio

of the used space at the cluster to the total capacity

of the cluster. A cluster is measured balanced for

each data node when Utilization of the node differs

from the Utilization of the cluster by a threshold

value.

This module moves the highly utilized data nodes

to the weakly used data nodes in a repeated

manner. All data nodes moves or receives within

the threshold value not more than that and also

each repetition runs only within 20 minutes not

more than that.

 In this proposed execution, nodes are classified as

 more-utilized

 normal-utilized and

 less-utilized.

Depends on the rate of utilization load will be

transferred from highly used nodes to weakly used

nodes aso that the cluster will be balanced.

Understanding the nature of the nodes:

Figure 1: Framework of MapReduce

There are three major categories in a Hadoop

deployment. They are client machines, master

nodes and slave nodes. Master nodes takes care of

two functions: HDFS and MapReduce. HDFS

stores lots of data, MapReduce runs parallel

computation on all that data.

NameNode monitors and coordinates the Data

Storage Function i.e., HDFS. JobTaracker monitors

and coordinates the parallel processing of data

using MapReduce. The TaskTracker is slave to

JobTracker and DataNode is slave to NameNode.

Each slave runs both TaskTracker and DataNode.

The client machine loads the data into the cluster

and submits the jobs to MapReduce to process it

and then retrieves or view the final result when it

completes the job.

Working principles of the nodes in the module:

 Getting the neighbors details by the

NameNode:

NameNode contains load level information for

each nearest neighbor DataNode. When there

is an increase in the level of load more than the

threshold value, it sends a request to the

NameNode. NameNode compares all the loads

of the DataNode and finds the less loaded

neighbor nodes and sends the details to the

specific DataNode.

 Next work starts with the DataNode:

The total load of its nearest neighbors is

compared with each DataNode’s load. If the

total load of its nearest neighbor is lesser than

the DataNode’s load then indiscriminately the

destination node will be selected, then the load

request is sent to the destination nodes.

 Lastly receiving the request:

Message Passing Interface(MPI) manages

buffer for each node to get the load request. A

main thread listens the buffered queue and

service the received request. Finally the node

enters into the load balancing phase.

IV. CLUSTER EXECUTION

First installed Java, eclipse and then installed

cygwin. Set the environmental variable, configured

SSH daemon, set up the authorization keys,

installed and configured hadoop, created Hadoop

distributed file system and started the local hadoop

cluster.

Commands to be entered in Cygwin Terminal:

Distributed Data Processing

MapReduce

Clients

Distributed Data Storage

HDFS

JobTracker NameNode Secondary NameNode

DataNode &

TaskTracker

DataNode &

TaskTracker

DataNode &

TaskTracker

Masters

Slaves

DataNode &

TaskTracker

DataNode &

TaskTracker

DataNode &

TaskTracker

International Journal of Computer & Organization Trends –Volume 4 Issue 2 March to April 2014

ISSN: 2249-2593 http://www.ijcotjournal.org Page 53

Namenode:

cd hadoop-0.19.1

bin/hadoop namenode

 Secondary Namenode:

cd hadoop-0.19.1

bin/hadoop secondarynamenode

JobTracker Node:

cd hadoop-0.19.1

bin/hadoop jobtracker

Datanode:

cd hadoop-0.19.1

bin/hadoop datanode

TaskTracker node:

cd hadoop-0.19.1

bin/hadoop tasktrackernode

Figure 2 : Shows the cluster running successfully in

cygwin terminal

V. PROPOSED VM LOAD BALANCING

ALGORITHM:

Figure 3: Proposed architecture of VM load

balancing algorithm

 When the datacenter allows VM to

allocate in to it or when VM wants to

allocate into the datacenter, the requested

VM id’s with its start time and finish time

(generated by CloudSim) is send as an

input to MapReduce.

 Then MR will find and produce the

number of requests that sent by a VM at a

time. Based on the number of requests,

VM id’s along with start and finish time is

partitioned as blocks.

 When the blocks are given as input to the

MR, apply SJF Pre-emptive scheduling

algorithm in between Mapper and

Reducer. Hence, as a result it produces the

response and turnaround time for each

VM ids.

 Response Time = FTime - ArTime +

TransDelay

o Where, ArrTime is the user

request arrival time and FinTime

is the user request finish time.

o TransDelay = NwLatency +

TTransfer [1]

Where, TransDelay is the transmission

delay NwLatency is the network latency

and TTransfer is the time taken to transfer

the size of dataof a single request (R) from

source location to destination.

TTransfer = R / BWuser [1]

BWuser = ToTBW / NUR [1]

Where, ToTBW is the sum of available

bandwidth and NUR is the number of user

requests communicating at present.

 With respect to the response and turnaround

time, MapReduce will sort the

VirtualMachines with less response and

turnaround time. The sorted VirtualMachine

will be allocated in the datacenter. After

completing its job the allocated

VirtualMachine will be de-allocated from

the datacenter and the next VirtualMachine

is allowed to enter into the datacenter to

execute its job.

Input

data

Input

data

Input

data

Map

Instance #1

MapReduce

Map

Instance #N

SJF Pre-

emptive

Scheduling

Reduce

Instance

Output

data

International Journal of Computer & Organization Trends –Volume 4 Issue 2 March to April 2014

ISSN: 2249-2593 http://www.ijcotjournal.org Page 54

VI.EXPERIMENTAL SETUP

The proposed algorithm implemented through

simulation packages like CloudSim and CloudSim

based tool. Java language is used for implementing

VM load balancing algorithm.

Assuming, the application is deployed in one data

center having 50 virtual, machines (with 1024Mb

of memory in each VM running on, physical

processors capable of speeds of 100 MIPS) and

Parameter Values area as under:

TABLE I

Parameter Value

DataCenter OS Windows7

VirtualMachine Memory 1024 mb

DataCenter Architecture X86

VM Bandwidth 1000

VM’s id, start time, and burst time are generated

using Cloudsim tool.

Figure 4 : Output snapshot

IX. CONCLUSION

In this paper, a new Virtual Machine load

balancing algorithm was proposed using

MapReduce concepts and SJF pre-emptive

scheduling algorithm is implemented between

Mapper and Reducer and then implemented the

code using CloudSim, it is a simulation tool to

conceptualize cloud computing environment using

java language. The proposed algorithm finds the

expected response time of each resource (VM)

using MapReduce and sends the ID of virtual

machine having minimum response time to the data

center controller for allocation to the new request,

according to the proposed work if we find a

efficient virtual machine then the overall

performance in load balancing will improve in the

cloud environment.

VII. REFERENCES

[1] Meenakshi Sharma, Pankaj Sharma, Dr. Sandeep

Sharma,Efficient Load Balancing Algorithm in VM Cloud

Environment,IEEE,2012.

[2] Jasmin James, Efficient VM Load Balancing Algorithm
For A Cloud Computing Environment,IEEE,2012

[3] Lars Kolb, Andreas Thor, Erhard Rahm, Block-based

Load Balancing for Entity Resolution with

MapReduce,IEEE,2011

[4] Shu-Ching Wang, Kuo-Qin Yan *(Corresponding author),

Wen-Pin Liao and Shun-Sheng Wang, Towards a Load
Balancing in a Three-level Cloud Computing

Network,IEEE,2010

[5] Martin Randles, David Lamb, A. Taleb-Bendiab, A
Comparative Study into Distributed Load Balancing

Algorithms for Cloud Computing,IEEE,2010

[6] Jiong Xie, Shu Yin, Xiaojun Ruan, Zhiyang Ding, Yun
Tian,James Majors, Adam Manzanares, and Xiao Qin,

Improving MapReduce Performance through Data
Placement in Heterogeneous Hadoop Clusters,IEEE,2012

