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1.INTRODUCTION 

 

       The Solid transportation problem (STP)  in 

uncertain environment becomes important branch of 

optimization and a lot of models and algorithms have 

been presented for different problems by different 

authors, Liu[3, 4], Deshpande et al. [5], Papadrakakis 

and Lagaros [6], Lixing Yang and Linzhong Liu [7] 

and so  on.  Lixing Yang and Yuan Feng [8]    

presented three types of models  in stochastic 

environment namely expected value goal 

programming model, chance-constrained goal 

programming model  and dependent-chance  goal 

programming model.  S.R.Arora and Archana 

KHURANA. [9], designed and  developed an 

algorithm for solid fixed charge bi-criterion indefinite 

quadratic transportation problem. A.Nagarajan and 

K.Jeyaraman developed many models and methods 

for  solid fixed charge bi-criterion indefinite 

quadratic transportation problem and MOISTP under 

stochastic environment[30, 31, 32, 33, 34]. S.K.Das 

et al. [29], developed the theory and methodology for 

multi-objective transportation problem with interval 

cost, source and destination parameters.  

            In this paper, by using the idea of stochastic 

environment, dependent chance goal programming 

model for MOISTP has been proposed, in which the 

coefficients of the objective functions  are taken in 

the form of stochastic intervals. Using some 

methodologies, an equivalent crisp model to the 

given MOISTP  has been constructed and in order to 

illustrate the modeling the numerical examples are 

provided. 

       This paper is organized as follows. In Section 2, 

the basic idea of MOSTP and MOISTP has been 

given. In Section 3, definitions of interval arithmetic 

and related definitions have been given. In Section 4, 

the formulation of crisp objective function is given. 

Goal programming models for  MOISTP is given in 

Section 5. Chance-constrained goal programming 

model and dependent-chance goal programming 

model are constructed in Section 6. In Section 7, 

several crisp equivalences for different models have 

been investigated. Numerical example is provided in 

Section 8. 

 

2. PRELIMINARIES 

It is well known   that   the MOSTP involves 

in transporting homogeneous products from  „m‟ 

sources  to „n‟ destinations  by „k‟ conveyances  so 

that the total transportation cost is minimized. In this 

paper, the basic knowledge of   MOISTP in 

stochastic environment is considered.  
 

2.1 MULTI-OBJECTIVE  INTERVAL  SOLID 

TRANSPORTATION PROBLEM  

            A homogeneous product is to be transported 

from „m‟ sources  to „n‟ destinations. The sources are 

production facilities, warehouses, or supply points, 

that are characterized by available capacities ai,   i = 

1, 2, 3,…,m. The destinations are consumption 

facilities, warehouses, or demand points that   are 

characterized by required levels of demand bj , j = 1, 

2, 3,…,n. Let ek, for k = 1, 2, 3,…,l  be the amount of 

this product which can be carried by „l‟ different 

modes of transport called conveyances, such as 
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trucks, air freight, goods  trains, ship, etc.. A penalty 

or cost c
p

ijk  ≥ 0  is associated with transportation of a 

unit  product from source „i‟ to destination „j‟ by 

means of the  conveyance „k‟ for the p
th 

criterion. The 

penalty cost could represent transportation cost, 

delivery time, quantity of goods delivered, duty paid, 

under used capacity, etc.,   One must determine  the 

amount of product (unknown quantity) xijk to be 

transported from all source „i‟ to all destinations „j‟ 

by means of each conveyance „k‟  such that the total 

transportation cost is minimized. In the real world, 

STP are not all single objective, instead considering 

more objectives in a STP.  In a balanced STP, the 

sum of supplies, the sum of demands  and the sum of 

conveyance capacities are supposed to be equal to 

each other. But in the real world problems, the 

balanced condition need  not hold always. It is 

assumed that there are enough products in  sources 

„m‟ to satisfy the demands of „n‟ destinations, also 

the  conveyances „l‟ which have abilities to transport 

products to satisfy the demand of each destination. 

Hence  for the  non-balanced STP, it is    

      


m

i 1

ai  ≥   


n

j 1

bj ,       


l

k 1

ek ≥   


n

j 1

bj.    

Thus the Multi-Objective Solid Transportation 

Problem (MOSTP) is the problem of minimizing P 

objective functions. The MOISTP is a  generalization 

of the MOSTP in which input data are expressed as 

stochastic intervals instead of point values. These  

types of problems arise only when uncertainty occurs 

in data and decision makers consider it as more 

convenient to express it as intervals.  

              The „P‟ interval valued minimizing  

objective functions, in which the interval appears 

only in cost but not on the source, destination and 

conveyance, that can be considered as stochastic 

variables.  MOISTP is  formulated as a linear 

programming problem as follows:  

P1:Minimize Z
p

=


m

i 1




n

j 1




l

k 1

[c
p

Lijk ,c
p

Rijk ] xijk  

                                   p = 1, 2, 3,..., P                          

(1) 

subject to  




n

j 1




l

k 1

 xijk ≤ ai, i = 1, 2, 3,…, m                            

(2) 

 


m

i 1




l

k 1

xijk ≥ bj, j= 1, 2, 3, ..., n.              (3)                                                        




m

i 1




n

j 1

xijk  ≤  ek,  k = 1, 2 ,3, …, l.                           

(4)                                                      

                        xijk ≥ 0 ,  for all i, j, k. 

where  the  superscripts  on  Z
p

  denote  the  p
th

  

penalty criterion,  [c
p

Lijk , c
p

Rijk ]  for p = 1, 2, 3,...,P 

are intervals representing the uncertain cost c
p

ijk  ≥ 0 

for the p
th

 criterion for the transportation problem; it 

can represent delivery time, quantity of goods 

delivered, under used capacity, etc.  The  parameters  

ai  ≥ 0,  bj ≥ 0, ek  ≥ 0,  cijk  ≥ 0,  i = 1, 2, 3,…, m,  j = 
1, 2, 3, ..., n,  k = 1, 2, 3, …, l are stochastic variables 

that follow certain distribution and  

  


m

i 1

ai  ≥   


n

j 1

bj ,    


l

k 1

ek ≥   


n

j 1

bj.   (non-

balanced condition).  

         The existence of a feasible solution to STP is 

guaranteed [4], and a non-degenerated basic feasible 

solution contains “m + n + l – 2” nonzero values of 

the variables for all problems. Haley [2] showed the 

necessary steps to reformulate the problem and 

described the solution procedure.  

 

3. INTERVAL ARITHMETIC [10, 11] 

        In this  paper, the upper case letters,  A, B, etc., 

denote closed  intervals while the lower case letters, 

i.e, a, b, etc., denote real numbers. The set of all real 

numbers is denoted by . An interval is defined by 

an ordered pair of elements as:  

     A=[a L ,a R ]={a:a L ≤a≤a R ,a }                     ( 

20) 

where a L and a R  are, respectively, the left and right 

limits of A. The interval is also denoted by its centre 

and width as:  

A=  a C ,a W  ={a:a C - W ≤a≤a C +a W ,a }         

(21)   

 where a C = ( a R + a L )/ 2 and a W  = (a R - a L  )/2  

are, respectively, the centre and half width of A.   
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DEFINITION 3.1  

         Let     ( ., /, +, - ) be a binary operation on 

the set of real numbers. If A and B are closed 

intervals, then 

            AB={a b:aA,bB}                             

(22) 

 defines a binary operation on  the set of closed 

intervals. In the case of division, it is assumed that 0

B. The interval operations  used in this research 

paper are given below. 

 A + B =  [ a L ,  a R ]  +  [ b L ,  b R ] 

    =   [a L + b L , a R + b R ],                                          

(23) 

 A + B = a C , a W   +  b C , b W 
 

    =    a C +b C ,a W +b W  ,                                       

(24)    

 kA = k[a L , a R ] = [ka L , ka R ]  for k ≥ 0,                 

(25) 

 kA= k[a L , a R ] = [ka R ,ka L ] for k < 0,                   

(26)        

  Ka  =  k    a C , a W    =   ka C , k  a W  ,              

(27) 

where „k‟ is real number. 

3.1 DEFINITIONS OF ORDER RELATIONS 

BETWEEN INTERVALS 

 The order relations which represent the 

decision makers‟ preference between interval costs 

are defined for the minimization problems. Let the 

uncertain costs from two alternatives be represented 

by intervals „A‟ and „B‟ respectively. It is assumed 

that the cost of each alternative is known only to lie 

in the corresponding interval. 

DEFINITION 3.2 The  order relation ≤ LR  between 

A = [a L , a R ]  and B =  [b L , b R  ] is defined as  

      A  ≤ LR B  iff   a L  ≤ b L  and  a R  ≤  b R , 

    A< LR B  iff  A≤ LR B  and  A B.                          

(28) 

This order relation  ≤ LR  represents the decision 

makers‟ preference for the alternative with lower 

minimum cost and maximum cost, i.e., if A ≤ LR B, 

then A is preferred to B.. 

DEFINITION 3.3 [6] The order relation ≤ CW  

between A =  a C , a W   and  B =  b C , b W   is 

defined as 

   A ≤ CW B   iff  a C ≤ b C  and  a W  ≤ b W , 

  A < CW B  iff  A≤ CW B  and  A B.                         

(29) 

This order relation ≤ CW  represents the decision 

makers‟ preference for the alternative with lower 

expected cost and less uncertainty, i.e., if A  ≤ CW B, 

then A is preferred to B.  

 

4. FORMULATION OF THE CRISP 

OBJECTIVE FUNCTION 

 In this section, the formulation of original 

interval objective function has been made as a crisp 

one. 

DEFINITION 4.1  x 0
  S is an optimal solution of 

the problem P1  iff there is no other solution 

 x S which satisfies Z(x)  < LR  Z(x
0

)  or  

             Z(x) < CW  Z(x
0

). 

THEOREM 4.1 It can be proved that  

   A  ≤ RC  B iff   A ≤ LR  B  or    A  ≤ CW  B, 

  A < RC  B iff  A < LR  B or A < CW  B,                       

(30) 

where  the  order  relation  ≤ RC  is defined as A  ≤ RC  

B iff    a R  ≤  b R and  a C ≤ b C ,  A < RC B  iff    A  ≤

RC  B   and  A   B.         

    Using the theorem 4.1, Definition 4.1 is simplified 

as follows. 

DEFINITION 4.2    x
0
  S is an optimal solution 

of the problem  P1 iff there is no other solution x S 

which satisfies Z(x)  < RC  Z(x
0

). 
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   The right limit Z
P

R (x) of the interval objective 

function    is  derived from  the equations (24) and 

(27) as  

     Z
p

R (x) = 


m

i 1




n

j 1




l

k 1

c
p

Cijk xijk +   

                     


m

i 1




n

j 1




l

k 1

c
p

Wijk ijkx                   

(31) 

where c
p

Cijk  is the centre and c
p

Wijk  is the half width 

of the coefficient of xijk   in Z
p

.  

   In the case when xijk ≥ 0,   i = 1, 2, 3,…, m,  j = 1, 2, 

3, ..., n,  k = 1, 2, 3, …, l,  Z
P

R (x) is modified as:      

        Z 
p

R  (x)  =   


m

i 1




n

j 1




l

k 1

c
p

Cijk  xijk +   

               


m

i 1




n

j 1




l

k 1

c
p

Wijk xijk.                                       

(32) 

The  centre of the objective function Z
p

C (x) is  

defined as                                                     

     Z
p

C (x) = 


m

i 1




n

j 1




l

k 1

c
p

Cijk xijk.                       

(33)   

The solution set of the Problem P1 defined by  

Definition 4.2 is also  obtained as the Pareto optimal 

solution of the multi-objective problem as: 

P2:   Minimize{ Z 
p

R ,  Z
p

C }, p = 1, 2, 3,…,P,  

subject to the constraints (6) – (8) where Z
p

R  and  Z

p

C  are as stated as in equations (32) and (33).  

 

5. GOAL PROGRAMMING MODEL FOR 

MOISTP 

 

        The main aim of the model proposed in Section 

2.1,  the Problem P1  is to minimize the total 

transportation cost for „p‟ (one for each criterion) 

objective functions subject to the given set of 

constraints. In literature, many models and methods 

have been addressed for obtaining the ideal solution 

of the multi-objective programming and hence this  

model is dealt by goal programming technique. The 

Goal Programming (GP) model is one of the well-

known multi-objective mathematical programming 

models. This model allows as to take into account 

simultaneously several objectives in a problem for 

choosing the most satisfactory solution within a set of 

feasible solutions. More precisely, the GP designed to 

find a solution that minimizes the deviations between 

the achievement level of the objectives and the goals 

set for them. In the case where the goal is surpassed, 

the deviation will be positive and in the case of under 

achievement of the goal, the deviation will be 

negative. First developed by Charnes et al.[21] and 

Charnes and Cooper [22] then applied by Lee [23] 

and Lee and Clayton [24], the GP model gained a 

great deal popularity and its use has spread  in 

diversified field such as management of banking, 

water basins, solid waste, marketing, quality control, 

human resources, transportation and site selection, 

agriculture and forestry. In order to get a suitable 

transportation plan satisfying the given targets and  to 

balance  the two  objectives defined in (31) and (32),  

the following priority levels are defined. 

 At the first priority level, the total 

transportation cost of the right limit of the interval  

objective  function  Z
p

R (x)  defined by (32)  should 

not exceed the given target C
p

R . Then we have the 

goal constraint : 

     


m

i 1




n

j 1




l

k 1

c
p

Cijk xijk+ 


m

i 1




n

j 1




l

k 1

c

p

Wijk xijk   

                           + c
p

R - c
p

R  = C
p

R                                     

(34) 

where c
p

R  is the over utilization of the 

transportation cost and    c
p

R  is the under utilization 

of the transportation cost for the p
th

 criterian in 

which   c
p

R  has to be minimized.          

  At the second priority level, the total 

transportation cost of the centre of the objective 

function  Z
p

C (x) given in (33) should not exceed the 

given target C
p

C . Then we have the goal constraint :     




m

i 1




n

j 1




l

k 1

c
p

Cijk xijk + c
p

C - c
p

C = C
p

C              

(35) 
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where  c
p

C  is the over utilization and c
p

C  is the 

under utilization of the transportation cost for the  p
th

 

criterion in which c
p

C  has to be minimized. 

            Thus goal programming models for the 

Problem P1 together with  the  constraints (34) and  

(35) is defined as follows. 

   P3: Minimize { c
p

R , c
p

C  }                                     

(36)  

 Subject to 


m

i 1




n

j 1




l

k 1

c
p

Cijk xijk +  




m

i 1




n

j 1




l

k 1

c
p

Wijk  xijk + c
p

R - c
p

R  =  C
p

R  

 


m

i 1




n

j 1




l

k 1

c
p

Cijk  xijk + c
p

C  -  c
p

C  =  C
p

C    




n

j 1




l

k 1

 xijk ≤ ai,                i = 1, 2, 3,…, m.                                            




m

i 1




l

k 1

 xijk ≥ bj ,                j = 1, 2, 3, ..., n.                                             




m

i 1




n

j 1

 xijk ≤ ek ,                k = 1, 2, 3, …, l.                                            

xijk  ≥  0 ,  for all i, j, k and c
p

R ,  c
p

R ,  c
p

C ,  

 

c
p

C  ≥ 0, for p = 1, 2, 3,...,P.  

     Since all the parameters are stochastic in nature  

the MOISTP in certain environment becomes a 

stochastic MOISTP. Thus the solution of the  

transportation model,  becomes a stochastic interval 

one.  In that situation, it is difficult to handle the 

problem by certain known methods, and hence the 

probability theory has been used to solve the 

problems with randomness. To satisfy  the 

requirements of randomness, different types of 

stochastic programming models have been developed 

to suit the different purposes. In order to solve this 

problem, Liu [25] provided a theoretical frame work 

of stochastic programming called Dependent Chance 

Programming (DCP) (including dependent chance 

multi-objective programming and Dependent Chance 

Goal Programming (DCGP)). Some real and potential 

applications of DCP have been presented by Liu and 

Ku [26], Liu[27], Liu and Iwamura [40]. This paper 

will construct the theoretical framework of  DCGP 

models in stochastic environment.  

 

6. DEPENDENT CHANCE CONSTRAINED  

GOAL PROGRAMMING MODEL [DCCGPM]     

                

       The goal or aspiration levels assigned to the 

various objectives can be probabilistic and         

 Z
p

C ~N[{


m

i 1




n

j 1




l

k 1

(xijk p
CijkC

}, {


m

i 1




n

j 1




l

k 1

x
2

ijk ( 2
p

CijkC
)}], respectively, and        

Fα i  = sup{F|F= ai
-1

(1- i)}, 

Fβ j
 =  inf { F| F =  bj

-1
(  j)}, 

Fγ k   =  sup{F|F= ek
-1

(1-γk)}. 

       The crisp equivalents of three probability 

constraints in the above model can be obtained by 

using the theorems defined earlier.  1

1


( ) and  

1

2


(β) can be calculated by  using Theorem 7.4  as 

follows. 

 1

1


( )= 1

( )[


m

i 1




n

j 1




l

k 1

x
2

ijk ( 2
p

CijkC
+

 2
p

WijkC
)]

1/2
+



m

i 1




n

j 1




l

k 1

xijk( p
CijkC

+ p
WijkC

) 

and 

 1

2


(β)= 1

(β)[


m

i 1




n

j 1




l

k 1

x
2

ijk ( 2
p

CijkC
)]

1/2
+  

                    


m

i 1




n

j 1




l

k 1

xijk p
CijkC

 

where where the decision maker does not know its 

value with complete certainty. The first formulation 

of the  Stochastic Goal Programming (SGP) models 

go back to the late 1969s with Contini‟s [20]works. 

He considers the goal as uncertain variables with a 

normal distribution. Stancu-Minasian [18] and 

Stancu-Minasian and Giurgiutiu [19] present a 

synthesis of methodologies used in multiple objective 

programming in a stochastic environment. Several 

other techniques have been proposed to solve the 

SGP model. The most popular technique is a Chance 
Constrained Programming (CCP) developed by  

Charnes and Cooper [15, 16, 17], offers a powerful 

means of modeling  stochastic decision systems with 
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assumption that the stochastic constraints  holds at 

least „ ‟  of time, where „ ‟ is referred to as the 

confidence level provided as  an appropriate safety 

margin by the decision maker. Then Liu [14] 

generalized  the CCP to the case with not only  

stochastic constraints but also with stochastic 

objectives. The main idea of chance constrained 

programming is to optimize the critical value of the 

objective function under the probability constraints. 

 

DEFINITION 6.1   Let „ ‟  be a random variable, 

and  (0,1]. Then  inf( ) = inf { r │Pr{     r 

}   } is called   -critical value of    [25]. 

      To construct Chance constrained  goal 

programming model (CCGPM) for MOISTP, the 

following two priority structures are used: 

At the first priority level, the total 

transportation cost for the right limit of the objective 

function  should not exceed the given target „C
p

R ‟ for 

„P‟ objective functions with the confidence level „ ‟ 

and the first  goal constraint will be: 

 Pr[{


m

i 1




n

j 1




l

k 1

c
p

Cijk xijk+


m

i 1




n

j 1




l

k 1

c
p

Wijk  

xijk }– C
p

R  r 1 ]   ……(I)   in which the „ ‟-

positive deviation from the target „C
p

R ‟, defined by  

c
p

R = min{ r 1 │ Pr[{


m

i 1




n

j 1




l

k 1

c
p

Cijk  xijk + 


m

i 1




n

j 1




l

k 1

c
p

Wijk  xijk }– C
p

R  r 1 ]  }  0 will be 

minimized. 

        At the second priority level, the total transportation 

cost for the centre of the interval objective function 

should not exceed the given target „C
p

C ‟ for „P‟ 

objective functions with the confidence level „β‟ and 

the second goal constraint will be: 

Pr[{


m

i 1




n

j 1




l

k 1

c
p

Cijk  xijk }–C
p

C  r 2 ] ≥ β …(II),     

in which the „β‟-positive deviation from the target C
p

C , 

defined by  

c
p

C = min{ r 2 │ Pr[{


m

i 1




n

j 1




l

k 1

c
p

Cijk  xijk } 

– C
p

C  r 2 ] ≥ β   }  0 will be minimized.            

         The models developed in the previous sections are 

constructed under stochastic environment. In order to 

find the suitable solution for the models, critical value 

or credibility measure must be calculated. If the 

stochastic parameters are complex, the computing 

objective values subject to the  constraints becomes a 

time consuming one. Due to this, it is better to convert 

the models into their crisp equivalents by using the 

appropriate probability levels defined by the decision 

makers. 

 

THEOREM 6.2.1 Suppose that „ ‟ is a random 

variable with continuous probability distribution   

function  (x),  and  the   function  g(x,   )  =  h(x) - 

 .  Then   for   any  (0, 1], we have Pr{ g(x,   )  

  0}     if and only if h(x)   Fα , where  

       Fα = sup { F| F =  -1
(1-  ) }                           

[17]. 

THEOREM 6.2.2 Suppose that „ ‟ is a random 

variable with continuous probability distribution 

function  (x), and  the  function  g(x,   )  =   h(x) -  

 .  Then  for  any    (0, 1],   it becomes  

 Pr{ g(x,   )  ≥ 0}     if and only if h(x) ≥ Fα , 

where        Fα = inf { F| F =  -1
( )}. 

THEOREM 6.2.3    Let „ ‟  be  a random variable 

with continuous, strictly increasing probability 

distribution function  (x). The  - critical value of 

  is  

 inf( ) =  -1
( ). 

 THEOREM 6.2.4   Let „ ‟ be a normally 

distributed random variable  with  ~N( ,  2
). 

Then  - critical value of   is inf( ) =   -1
(

) +  ,  where  (x) is the probability distribution 

function of standard normal distribution N(0, 1). 

         By using the above theorems, DCCGPM for  

the  Problem P3 together  with the chance constraints 

(I) and (II)  is obtained as follows: 

      Suppose that c
p

Cijk , c
p

Wijk  are independent 

normally distributed random variables   defined  as c
p

Cijk    ~  N ( p
CijkC

,   2
p

CijkC
),  c

p

Wijk   ~  N ( p
WijkC

,  

 2
p

WijkC
) and  ai, bj and ek are random variables with 

continuous probability distribution functions 
ia (x),  


jb (x) and 

kc (x),  respectively, where i = 1, 2, 

3,…,m, j = 1, 2, 3,…,n,  
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k = 1, 2, 3,…,l.  

P4:   Minimize { c
p

R ,c
p

C }    subject to:  

                   1

1


( )  +  c

p

R  -  c
p

R  =  C
p

R  

                  1

2


 (β)  +   c

p

C  -  c
p

C  =  C
p

C .  

     


n

j 1




l

k 1

 xijk  ≤  Fα i
,     i = 1, 2, 3,…, m.                               

    


m

i 1




l

k 1

 xijk  ≥  Fβ j
,       j = 1, 2, 3, ..., n                     

    


m

i 1




n

j 1

 xijk  ≤  Fγ k ,      k = 1, 2, 3, …, l.                               

where xijk ≥ 0 , for any i, j, k and c
p

R ,  c
p

R ,  c
p

C , c

p

C  ≥ 0  for p = 1, 2, 3,…,P.where   1 (x) and  2  

(x) is the probability distribution function of the 

random variables  

Z
p

R ~N[{


m

i 1




n

j 1




l

k 1

(xijk p
CijkC

+xijk p
WijkC

)}, 

{


m

i 1




n

j 1




l

k 1

x
2

ijk ( 2
p

CijkC
+ 2

p
WijkC

)}] „ ‟ is the 

probability distribution  function of the standard 

normal distribution.  

  

7. DETERMINATION OF CRISP VALUES 

 

       To find the crisp equivalent of the constraints 

developed in the previous section,  the random 

simulation technique has been employed here.  

Generally   three kinds of  probability constraints in 

Problem  P4 are transformed   into their crisp 

equivalents.  But, if the probability distribution 

functions 
ia (x), 

jb (x), and 
kc (x) are 

complex, it is difficult  to do so and hence, the 

following random simulation has been used to obtain 

the approximate values of Fα i
, Fβ j

 and Fγ k . 

 Compute   Fα i
( or Fγ k

) by random simulation. 

STEP 1. Generate the numbers n 1 , n 2 , n 3 ,…, n N   

according to the probability distribution      function 


ia (x)(or

kc (x)).                                             

 STEP 2. Let  Fα i
 ( or  Fγ k

  ) be the N‟th largest 

number in { n 1 , n 2 ,  n 3 ,…, n N }, where 

 N‟ =  [ iN] + 1 ( or [ kN] + 1 or   [ Ri N] + 1  or 

 [ Rk N] + 1 or [  Rj N] + 1).     

STEP 3. Return Fα i
( or  Fγ k

). 

Compute  Fβ j   by random simulation 

STEP 1. Generate the numbers n 1 , n 2 , n 3 ,…, n N  

according to the probability distribution  function    


jb (x )  

STEP 2. Let Fβj   be the N‟th smallest number in{ n 1 , 

n 2 , n 3 ,, n N },  

 where N‟=[  jN] + 1 ( or [ Li N] + 1  or [  LkN] + 

1 or [  LjN] + 1). 

 STEP 3. Return  Fβ j .    

        After finding the crisp equivalent of the models 

developed earlier the following steps are used to 

calculate the minimum value of  „P‟ objective 

functions in each of the  model as follows: 

STEP 1. Solve the multi-objective interval solid 

transportation problem using,  one objective at a 

time(ignoring all others) subject to the given set of 

constraints by using any one of the suitable 

evolutionary technique. Let X
*1

= {x
1

ijk  }, X
*2

= {x

2

ijk }, X
*3

= {x
3

ijk },…, X
*P

 = {x
p

ijk  } be the optimum 

solutions for P different  single objective interval 

solid transportation problems. 

STEP 2. From the results of step1, the values of all 

the objective functions  will be calculated at all these  

„P‟ optimal points. Then a payoff matrix is formed.. 

The „X
*P

‟‟s are the individual optimal solutions and 

each of these is used to determine the values of other 

individual objectives. Thus the payoff matrix is 

developed as  follows:                         

                  X
*1

             X
*2

      …            X
*P

  

  Z
1
     Z

1
( X

*1
)     Z

1
(X

*2
)     ...     Z

1
 ( X

*P
) 

  Z
2

    Z
2

( X
*1

)    Z
2

( X
*2

)   …     Z
2

( X
*P

)  

  Z
3

    Z
3

( X
*1

)     Z
3

 ( X
*2

)   …    Z
3

( X
*P

) 

         

  Z
p

   Z
p

( X
*1

)    Z
p

( X
*2

)   …    Z
p

( X
*P

) 

                     

STEP 3. From Step 2 we find minimum value of 

each objective function .  

     Let it be   Z
1

min , Z
2

min , Z
3

min , …, Z
p

min .  
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From the above values, the minimum value of the 

multi-objective interval solid transportation problem 

can be taken as min Z
p

 = minimum of    

           { Z
1

min , Z
2

min , Z
3

min , …, Z
p

min }.   

 

8. NUMERICAL EXAMPLES  

       To illustrate the models developed in this paper, 

a multi-objective interval solid transportation 

problem having the following characteristics is 

considered for Problem.   

Supplies: a 1 =N(50,4),  a 2 =N(60, 1), 

                a 3 = N(55, 4) 

 Demands: b 1  =  exp(18),  b 2  =  exp(15),  

                 b 3  =  exp(13)          

Conveyance capacities:  e 1  =  U(60, 80),   

                                       e 2 =  U(50, 80) 

Table- 1 shows the penalty matrix C
1
 for the first 

criterion consisting of 2 sources,   2 destinations and 

2 conveyances.  

  

                                Table-1 

                                                       [c 1

121l , c

1

121R ] 

 

    Table-2  shows the penalty matrix C
2

 for the 

second criterion consisting of 3 sources, 3 

destinations and 2 conveyances 

                              Table-2             [c 2

122l ,c

2

122R ]  

 

Probability level: α i = 0.9, j  = 0.9, k  = 0.9,  α Li = 

0.9, Lj  = 0.9, Lk  = 0.9, α Ri = 0.9, Rj  = 0.9, Rk  

= 0.9   and    = 0.9  β = 0.9 for i = 1, 2. j = 1, 2. and k 

= 1, 2. 

8.1 DCCGP MODELS   

8.1.1 DCGPM FOR THE FIRST CRITERION 

   Minimize =  { C
1

R ,  C
1

C } subject to                 

              














2

1

Z

Z
 + C

1

R  - C
1

R  = 0.9 

            














4

3

Z

Z
 +  C

1

C  - C
1

C  = 0.9 

       x 111 + x 112  + x 121  + x 122     47.44 

       x 211 + x 212  + x 221 + x 222     58.72 

      x 121 + x 122  + x 221 +  x 222      34.53 

       x 111 +  x 121  + x 211 +  x 221     62    

       x 112  +  x 122  +  x 212  +  x 222     53   

  where Z 1  = 2000 –{15x 111+12x 112 +13x 121+22x

122  
  

        j=1  j=2  

 [N(7, 2 ), 

N(15,1)]   

 [N(9,4), 

N(12,1)]  

 

i=1  [N(5, 1), 

N(13, 4)] 

 [N(7, 2), 

N(22, 1)] 

 [N(10,2), 

N(14,3)] 

 [N(7,2), 

N(12,3)] 

 

i=2  [N(9, 3), 

N(12, 4)] 

 [N(5, 1), 

(25, 4)] 

        j=1  j=2  

 [N(6, 2 ), 

N(14,1)],   

 N(4,1), 

N(14,4)] 

 

i=1  N(7,2), 

N(14,3)] 

 N(6,1), 

N(20,2)] 

 N(9,2), 

N(15,4)] 

 N(7,3), 

N(11,3)] 

 

i=2  N(8,2), 

N(12,3)] 

 N(6,1), 

N(23,2)] 
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                                    +14x 211 +12x 212  +12x 221+25x 222 }  

            Z 2  = { x
2

111 + x
2

112  + 4x
2

121 + x
2

122   

                       +3x
2

211+ 4x
2

212 + 3x
2

221+ 4x
2

222   } 

            Z 3  = 2300--{11x 111+10.5x112 +9x 121+14.5x

122  

                       +12x 211  +10.5x 212  +9.5x 221+15.5x

222 }  

            Z 4  = {1.5 x
2

111 +2.5 x
2

112  +2.5x
2

121 +1.5 x
2

122  

                       +  2.5x
2

211+ 3.5x
2

212 + 2.5x
2

221+2.5x

2

222 }    

             with xijk ≥ 0 , for i= 1, 2. j = 1, 2. k = 1,2.  

                   C
1

R , C
1

R , C
1

C , C
1

C   0.   

8.1.2 DCGPM FOR THE SECOND 

CRITERION 

  Minimize =  { C
2

R ,  C
2

C } subject to                 

                  














2

1

Z

Z
 + C

2

R  - C
2

R  = 0.9 

                  














4

3

Z

Z
 +  C

2

C  - C
2

C  = 0.9 

  x 111 + x 112  + x 121  + x 122     47.44 

  x 211 + x 212  + x 221 + x 222    58.72 

  x 111 + x 112  + x 211 + x 212       41.44 

  x 121 + x 122  + x 221 + x 222       34.53 

  x 111 + x 121  + x 211 + x 221     62    

  x 112  + x 122  + x 212 + x 222     53   

  where Z 1 = 1900 –  {14x 111+14x 112 +14x 121+20x

122   

                          
+15x 211 +12x 212   +11x 221+23x 222

+} 

            Z 2 ={  x
2

111 +3 x
2

112  + 4x
2

121 + 2x
2

122  + + 4x

2

211 

                          
+ 3x

2

212 + 3x
2

221+   2x
2

222  

   Z 3 =  2400 – {10x 111+10.5x 112 +9x 121+13x 122   

                   +12x 211+10x 212  +9x 221+14.5x 222 }   

    Z
4

= {1.5 x
2

111 +2.5 x
2

112  + 2.5x
2

121 +1.5x
2

122  + 3x

2

211   

                  
+2.5x

2

212 + 3x
2

221+  1.5x
2

222 } 

          where xijk ≥ 0 , for i= 1, 2. j = 1, 2. k = 1,2.  

          C
2

R  ,C
2

R , C
2

C , C
2

C   0. 

9. CONCLUSION 

 This  paper emphasizes the Dependent 

chance  goal programming models for multi-

objective interval solid transportation problem under 

stochastic environment in which the cost coefficients 

of the objective functions are in the form of 

stochastic intervals. Dependent chance goal 

programming model have been developed for two 

different criterions. The numerical examples have 

been given for each model developed in this paper. 

The multi-model solutions for the models can be 

obtained by any suitable evolutionary technique 

which could be the interest of the researchers.  
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