
International Journal of Computer & Organization Trends (IJCOT) –Volume 6 Issue 3– May to June 2016

ISSN: 2249-2593 http://www.ijcotjournal.org Page 33

Study and Analysis of Automation Testing

Techniques
Shweta Yadav #1

,Mrs Mamta Yadav
#2

M.Tech Scholar CSE,Assitant Professor CSE

YCET,Narnaul(India)

Abstract: Testing is a very important activity in

Software Development Process. It is to examine &

modify source code. Effective Testing produces high

quality software. This Paper deals with a significant

and vital issue of Software Testing. Testing can be

conducted manually as well as Automated. These

Techniques have their own advantages &

disadvantages. The Objective of this paper is to

perform Automation Testing using Software Testing

Tool “Selenium”. With this web testing tool, test

cases are automatically recorded in background

while tester is entering the data in a web application

screen.

Keywords — Automation Testings, Software

Testing, Selenium, Testing principles, Testing

Limitations.

I. INTRODUCTION-

 The term software engineering was proposed in

1968 after the discussion of „software crises for new

methods and techniques. From 1968, the

development of software engineering has improved

our software and effective methods of software

specifications, design and implementation. Software

engineering includes many meaningful terms:

Software -The set or collections of programs is

known as software. Software products may be

developed for a particular customer or may be

developed for a general market.

Software engineering- Software engineering is an

engineering which is concerned with all respects of

software production whose aim is the production of

quality software that is delivered on time, within

budget and that satisfies its requirements. The aim of

software engineering is to make the software fault

free software and satisfies user‟s needs.

Software process- A set of activities whose goal is

the development of software.

Software process models- A simplified graphical

representation of a software process, from the

development phase to maintained phase. Generally

all process models depend upon the software

development life cycle.

Feasibility study

Requirement analysis and specification

 Design

 Coding

 Testing

 Maintenance

Costs of software engineering – roughly 60% of

costs are development costs, 40% are testing costs.

The overview of software engineering:

Figure 1.1 the evolution to components in the

industry

A. TESTING IN SOFTWARE ENGINEERING

Software testing is any activity that checks

or evaluates the software and determining that it

meets its required results. Testing is more than just

debugging. The purpose of testing can be quality

assurance, verification and validation, or reliability

estimation. Testing can be used as a generic metric

as well. Correctness testing and reliability testing are

two major areas of testing. Software testing is a

trade-off between budget, time and quality.

The aim of the testing process is to identify

all defects existing in a software product. Testing is

a program consisting of subjecting the program to a

set of test inputs or test cases and observing if the

program behaves as expected. If the program fails to

behave as expected, then the conditions under which

failure occurs are noted for later debugging and

correction. The following are the some commonly

used terms associated with testing

 Error - An error is a mistake or a bug that

refers to the difference between the actual

output of software and the correct output.

Error is a major of the difference between

the actual and the ideal. Error is also used

to refer human action that results in

software containing a defect or fault.

International Journal of Computer & Organization Trends (IJCOT) –Volume 6 Issue 3– May to June 2016

ISSN: 2249-2593 http://www.ijcotjournal.org Page 34

 Fault - Fault is defect or a condition that

causes a system to fail in performing its

required function. Fault is taking a variation

of error.

 Failure - Failure is the inability of a system

to perform a required function according to

its specification. A software failure occurs

if the behavior of the software is different

from the specified behavior. Failure may be

caused due to functional or performance

reason. A failure is produced only when

there is a fault in the system.

B. TYPES OF TESTING

 Unit Testing: Software verification and

validation method in which a programmer

tests if individual units of source code are

fit for use. It is usually conducted by the

development team

 Integration Testing: The phase in software

testing in which individual software

modules are combined and tested as a

group. It is usually conducted by testing

teams.

Component Testing: Testing technique similar to

unit testing but with a higher level of integration -

testing is done in the context of the application

instead of just directly testing a specific method. Can

be performed by testing or development teams.

System Testing: The process of testing an integrated

hardware and software system to verify that the

system meets its specified requirements. It is

conducted by the testing teams in both development

and target environment.

Static Testing: A form of software testing where the

software isn't actually used it checks mainly for the

sanity of the code, algorithm, or document. It is used

by the developer who wrote the code.

Dynamic Testing: Term used in software

engineering to describe the testing of the dynamic

behavior of code. It is typically performed by testing

teams.

Black box Testing: A method of software testing that

verifies the functionality of an application without

having specific knowledge of the application's

code/internal structure. Tests are based on

requirements and functionality. It is performed by

QA teams.

Functional Testing: Type of black box testing that

bases its test cases on the specifications of the

software component under test. It is performed by

testing teams.

White box Testing: Testing technique based on

knowledge of the internal logic of an application‟s

code and includes tests like coverage of code

statements, branches, paths, conditions. It is

performed by software developers.

Requirements Testing: Testing technique which

validates that the requirements are correct, complete,

unambiguous, and logically consistent and allows

designing a necessary and sufficient set of test cases

from those requirements. It is performed by QA

teams.

 Security Testing: A process to determine

that an information system protects data

and maintains functionality as intended. It

can be performed by testing teams or by

specialized security-testing companies.

 Recovery Testing: Testing technique which

evaluates how well a system recovers from

crashes, hardware failures, or other

catastrophic problems. It is performed by

the testing teams.

 Performance Testing: Functional testing

conducted to evaluate the compliance of a

system or component with specified

performance requirements. It is usually

conducted by the performance engineer.

 Alpha Testing: Type of testing a software

product or system conducted at the

developer's site. Usually it is performed by

the end user.

 Beta Testing: Final testing before releasing

application for commercial purpose. It is

typically done by end-users or others.

 Acceptance Testing: Formal testing

conducted to determine whether or not a

system satisfies its acceptance criteria and

to enable the customer to determine

whether or not to accept the system. It is

usually performed by the customer

II. COMPONENT BASED SOFTWARE

ENGINEERING

Component based Software Engineering is

the most common term nowadays in the field of

software development. Component-Based Software

Engineering (CBSE) is concerned with composing,

selecting and designing components. As the

popularity of this term and number of commercially

available software components grows, selecting a set

of components to satisfy a set of requirements while

lowest cost is becoming more difficult. The basic

idea is to develop software systems by selecting

appropriate off-the-shelf components and then to

assemble them with a well-defined software

architecture.

 Component-based development (CBD) is a

branch of software engineering that indicate

the separation of the wide-ranging functionality

available throughout a given software system. It is a

reuse-based approach to defining, implementing and

composing loosely coupled independent components

into systems. This aims to bring about an equally

wide-ranging degree of benefits in both the short-

term and the long-term for the software itself and for

organizations that sponsor such software.

This new software development approach is very

different from the traditional approach. These

commercial off-the shelf (COTS) components can be

developed by different developers using different

languages and different platforms.

International Journal of Computer & Organization Trends (IJCOT) –Volume 6 Issue 3– May to June 2016

ISSN: 2249-2593 http://www.ijcotjournal.org Page 35

where COTS components can be checked

out from a component repository, and assembled

into a target software system. Component-based

software development (CBSD) can effectively

reduce development cost and time-to-market, and

improve maintainability, reliability and overall

quality of software systems.

Figure 1.2: Component-Based Software

Development

III. USE OF JUNIT &ECLIPSE

JUnit is a framework for implementing testing in

Java. It provides a simple way to explicitly test

specific areas of a Java program, it is extensible and

can be employed to test a hierarchy of program code

either singularly or as multiple units

Making a Test Case in Junit:

Step 1:open myeclipse & create a web Project.

Step2: Create a class file in that project.

Step3: Now go to selenium IDE And Open that Test

Case .Go to Options Select

Formats->Junit4(Remote Control)

Step4: Select ok

Step6: It will convert the whole test case in a Junit

java code .

International Journal of Computer & Organization Trends (IJCOT) –Volume 6 Issue 3– May to June 2016

ISSN: 2249-2593 http://www.ijcotjournal.org Page 36

Step7:Copy the code and Paste into the MyEclipse

class & save it .

Step8 :It will show a lot of errors so we need to

remove them .

Step9: First of all download jar files for this junit

We need 2 jar files

1. Junit-4.8.1.jar(Junit Annotations)

2. Selenium-server-standalone-2.5.0.jar(ALL

Commands)

Link:

http://code.google.com/p/selenium/downloads/detail

?name=selenium-server-standalone-

2.20.0.jar&can=2&q=

link:

http://grepcode.com/snapshot/repo1.maven.org/mav

en2/junit/junit/4.8.1

Step10: Go to project ->properties->java Build

Path->Libraries->Add external Jar Files.

Step11: Almost All errors Get Corrected.

Step12: Now Run As Junit Test.

Step13: It will an error server now connected .so

open cmd And type command Java -jar selenium-

server-standalone-2.5.0.jar –port 4444

Step14: Now server Will run in background & when

Run wait for 2 windows of IE to be Opened .

Step15: If run Successful then green line is Shown

like-

NOTE:- Sometimes You get error so in coding

change browser

 Select IE browser by Replacing *chrome by

*iehta .

i.e –Selenium = new

DefaultSelenium(“localhost”,4444,”*iehta”,”

https://accounts.google.com)

IV. CONCLUSION

Our target is to create a feasible Automatic

testing tool with minimal human involvement and

significant performance improvement. Our complete

system would provide almost complete automation

to the tester. Good coverage is an important criterion

and efficient Conformance testing provides

significantly better coverage than other techniques.

REFERENCES
[1] PRESSMAN Roger, Software Engineering, McGraw Hill,

1997
[2] HERZUM Peter, SIMS Oliver, Business Component

Factory, Wiley, 1999

[3] HUIZING M., Component Based Development,
http://www.win.tue.nl/xootic/magazine/jan-

1999/huizing.pdf,last access:01.12.2005

[4] WANG Ju An, Towards Component-Based Software
Engineering,wang.pdf?key1=357729&key2=7337455011

&coll=GUIDE&dl=GUIDE&CFID=36365381&CFTOKE

N=91792709, last access:01.12.2005
[5] HILL, Bennett, McROBB, Farmer, Object Oriented

System Analysis and Design (using UML), 2nd Edition,

McGraw Hill, 2002

http://code.google.com/p/selenium/downloads/detail?name=selenium-server-standalone-2.20.0.jar&can=2&q
http://code.google.com/p/selenium/downloads/detail?name=selenium-server-standalone-2.20.0.jar&can=2&q
http://code.google.com/p/selenium/downloads/detail?name=selenium-server-standalone-2.20.0.jar&can=2&q
http://grepcode.com/snapshot/repo1.maven.org/maven2/junit/junit/4.8.1
http://grepcode.com/snapshot/repo1.maven.org/maven2/junit/junit/4.8.1
http://www.win.tue.nl/xootic

