
International Journal of Computer & Organization Trends (IJCOT) –Volume 6 Issue 3– May to June 2016

ISSN: 2249-2593 http://www.ijcotjournal.org Page 27

Amended Anticipation Model for Fast

Exposure of Mischievous Communications in

Database Systems
Sushant Yadav

#1
, Mrs. Mamta Yadav

#2
M.Tech Scholar, Assitant Professor

YCET, Narnaul (India)

Abstract — Database Security is an concept that

includes the following properties: authenticity

(guarantees that a service or piece of information is

authentic), confidentiality (absence of unauthorized

disclosure of a service or piece of information),

integrity (protection of a service or piece of

information against illicit and/or undetected

modification), and availability (protection of a

service or piece of information against possible

denials of service caused by malicious actions).

Current intrusion detection systems use logs to

detect malicious transactions. Logs are the histories

of the transactions committed in the database. The

disadvantage of using logs is that they need lot of

memory. In addition to this sometimes even after a

transaction is detected as malicious it cannot be

rolled back. In this paper we present a method by

which we can overcome the uses of logs and can

detect malicious transactions before they are

committed. We use specific user-profiles to store the

sequence of commands in a transaction and use a

prevention model for instant detection of malicious

transactions.

Keywords — Database Security, intrusion detection

systems.

I. INTRODUCTION

Database security is also a specialty within the

broader discipline of computer security. Information

is the most serious resource for many organizations.

In many cases, the success of an organization

depends on the availability of key information and,

therefore, on the systems used to store and manage

the data supporting that information. The security of

data against unauthorized access or corruption due to

malicious actions is one of the main problems faced

by system administrators. Due to the growth of

networked data, security attacks have become a

dominant problem in practically all information

infrastructures. Imitation was carried out for a single

as well as multiple users providing sequence of

queries varying the size of the Database. A new

approach for detecting malicious access to a

database system is proposed and tested in this work.

The proposed method relies upon manipulating

usage information from database logs into three

dimensional null-related matrix clusters that reveals

new information about which sets of data items

should never be related during defined temporal time

frames across several applications. If access is

detected in these three dimensional null-related

clusters, this is an indication of illicit behaviour, and

further security procedures should occur. In this

thesis, we describe the null affinity algorithm and

illustrate by several examples its use for problem

decomposition and access control to data items

which should not be accessed together, resulting in a

new and novel way to detect malicious access that

has never been proposed before.

A typical database application is a client-server

system where a number of users are connected to a

DBMS via a terminal or a desktop computer (the

trend today is to access database servers through the

internet using a browser). The user actions are

translated into SQL commands by the client

application and sent to the database server. The

results are sent back to the client to be demonstrated

in the adequate format by the client application. In

many cases, the system includes an application

server that runs business rules code (i.e., code

directly related to data application handling) and

performs load balancing of the multiple client

sessions. The main goal of security in DBMS is to

protect the system and the data from intrusion, even

when the potential intruder gets access to the

machine where the DBMS is running. To protect the

database from intrusion the DBA must prevent and

remove potential attacks and vulnerabilities.

The system susceptibilities are an internal factor

related to the set of security mechanisms available

(or not available at all) in the system, the correct

configuration of those mechanisms (which is a

responsibility of the DBA), and the hidden flaws on

the system implementation. Vulnerability prevention

consists on guarantying that the software used has

the minimum vulnerabilities possible. This can be

achieved by using adequate DBMS software. On the

other hand, as the usefulness of the security

mechanisms depend on their correct configuration

and use, the DBA must correctly configure the

security mechanisms by following administration

best practices. Susceptibility removal consists on

reducing the vulnerabilities found in the system. The

DBA must pay attention to the new security patches

International Journal of Computer & Organization Trends (IJCOT) –Volume 6 Issue 3– May to June 2016

ISSN: 2249-2593 http://www.ijcotjournal.org Page 28

release by software vendors and install those patches

as soon as possible. Furthermore, any configuration

problems detected on the security mechanisms must

be immediately corrected.

Our proposed method also has several benefits over

other traditional methods of insider threat detection

in that it requires little storage space, can be easily

adjusted to reflect new applications, is very quick in

operation once the historical data has been properly

clustered, and requires only a moderate amount of

computational time to calculate.

Intrusion exactly means interrupting or interfering

in others work. In a better way it can be defined as

any set of actions that attempts to compromise

integrity, confidentiality and availability of resource.

Intrusion detection is a security technology that

attempts to identify either individual who is trying to

break into system and misuse information without

authorization and\or those who have legitimate

access to the resource but are taking undue

advantage of their rights. The job of Intrusion

Detection System (IDS) is to dynamically monitor

the events occurring in a system and alert when any

suspicious activity occurs so that defensive action

can be taken to prevent or minimize damage. In

general, the main goal of IDS is to detect malicious

transactions before they are being committed and

then dropping and rolling them back. If the

malicious transactions have been committed and

have caused damages, then locating the damaged

parts and repairing them on time will be much more

problematic. Intrusion detection systems serve three

essential security functions: they monitor, detect and

respond to unauthorized activity.

II. BACKGROUND HISTORY

A. Existing Intrusion Detection Systems: Marco and

Henrique proposed a Database Malicious

Transaction Detector (DBMTD) in 2005. DBMTD

mechanism is a log based mechanism for the

detection of malicious transactions in DBMS. In

practice malicious database transactions are related

to security attacks carried out either externally or

internally to the organization. External security

attacks are intentional unauthorized attempts to

access or destroy the organization’s private data.

These attacks are perpetrated by unauthorized users

(hackers) that try to gain access to the database by

exploring the system vulnerabilities (e.g., incorrect

configuration, hidden flaws on the implementation,

etc). On the other hand, internal security attacks are

intentional malicious actions executed by authorized

users. These users use their normal rights to execute

illicit actions for their personal benefit or to harm the

organization by causing loss or corruption of critical

data.

Given the growing threat represented by security

attacks to databases, and the fact that databases are

where most of the relevant data of organizations is

actually stored, a practical mechanism to detect the

execution of malicious transactions in databases is of

utmost importance. However, to the best of our

knowledge, none of the existing commercial DBMS

provides such a mechanism. Manual supervision and

audit procedures are normally the only tools the

DBA can use to detect potential database intrusion.

In a typical database environment the profile of the

transactions that each user is allowed to execute is

usually known by the DBA, as the database

transactions are programmed in the database

application code. In other words, the transactions are

not ad hoc sequences of SQL commands. On the

contrary, database transactions are well defined

sequences of commands performing a finite set of

predefined actions. For example, in a banking

application users can only perform the operations

available at the application interface (e.g., withdraw

money, check account balance, etc). No other

operation is available for the end users. Particularly,

end users cannot execute ad hoc SQL commands.

The DBMTD mechanism uses the profile of the

transactions defined in the database applications

(authorized transactions) to identify user attempts to

execute malicious transactions. DBMTD is built on

top of the auditing mechanism implemented by most

commercial DBMS. The audit lo is used by DBMTD

to obtain the sequence of commands executed by

each user, which is then compared with the profile of

the authorized transactions to identify potential

malicious transactions. IDS are based basically on

two models Anomaly Model and Misuse Model.

Anomaly model establishes a normal activity profile

for the system and if any activity fails to match the

profile of the normal profile then the IDS considers

it as an intrusion attempt. The misuse model is based

on the assumption that there are ways to represent

attacks in the form of a pattern or a signature so that

even variation of the same attack can be detected.

Here the IDS maintain a database of all the known

attack signatures. It raises an alarm whenever the

attack signature matches the one that the IDS have in

its database. There are possibilities that the IDS

might be unable to detect an intrusion attempt (false

negative) or might catch a normal behavior as

intrusion (false positive). IDS are of three types

namely Network based, Host based, combined IDS.

A network based IDS deployed outside the firewall

monitors the data packets traveling over the network

and any possible attack on the data packets to

International Journal of Computer & Organization Trends (IJCOT) –Volume 6 Issue 3– May to June 2016

ISSN: 2249-2593 http://www.ijcotjournal.org Page 29

modify or read them are recorded by the IDS. A host

based IDS is deployed on the host machine.

B. Types of Attacks: Attacks can be used to disclose

information, to sidestep authentication mechanisms,

to alter the database, and to execute arbitrary code,

in certain instances, on the database server itself. On

the basis of relationship between intruder and victim,

attacks to the database can be classified as:

• Insider: An authorized user, who can be from own

enterprise’s employees or their business partners or

customers, misuses his privilege or performs

unauthorized access. They have privileges to access

the application or system but misuse it and are

usually harder to defend.

• Outsider: An unauthorized user coming from

outside, frequently via the Internet who tries to gain

access to system. They do not have proper rights to

access the system and can be defended using strong

security mechanisms.

• Attempted Break Ins: When an unauthorized user

tries to gain access to a computer system is most

often detected by typical behavior profiles or

violations of security policies.

• Masquerader (Internal) Attacks: When an

authorized user pretends to be as another user. These

attacks are also called internal because they are

caused by already authorized users. It is also

detected by a typical behavior profiles or violations

of any security policies.

• Penetration Attack: Usually detected by

monitoring for specific patterns of activity like when

a user attempts to directly violate the system’s

security policy.

• Leakage: Moving potentially sensitive data from

the system is mostly detected by a typical usage of

I/O resources.

• Denial of Service: Denying, by making the

resources unavailable to other users. It is often

detected by a typical usage of system resources like

denying other users, the use of system resources by

making them unavailable.

• Malicious Use: It involves various attacks such as

file deletion, viruses etc. It is often detected by

typical behavior profiles, violations of security

policies, or use of special privileges.

III. Methodology and Planning of Work

The early research mainly focused on network-based

and host-based intrusion detection. However, in spite

of the significant role of databases in information

systems, very limited research has been carried out

in the field of intrusion detection in databases. We

need intrusion detection systems that work at the

application layer and potentially offer accurate

detection for the targeted application. The

approaches used in detecting database intrusions

mainly include data mining and Hidden Markov

Model (HMM). Chung presents a misuse detection

system called DEMIDS which is tailored to

relational database systems. DEMIDS uses audit

logs to derive profiles that describe typical behavior

of users working with the DBS. The profiles

computed can be used to detect misuse behavior, in

particular insides abuse. DEMIDS sue “working

scope” to find numerous item sets, which are sets of

feature with certain values. They define a notation of

distance measure that captures the closeness of set of

attribute with respect to the working scopes. These

distance measures are then used to guide the search

for frequent item-sets in the audit logs. Misuse of

data, such as tampering with the data integrity, is

detected by comparing the derived profiles against

organizations security police or new audit

information gathered about users. The main

drawback of the approach presented is a lack of

implementation and experimentation. The approach

has only been described theoretically, and no

empirical evidence has been presented of its

performance as a detection mechanism.

A. First Approach: Database Intrusion Detection

System for Role Based Enabled Database: The

proposed approach in this section is, as from query

based approach to transaction based approach. The

main advantage of this approach is to extract the

information among queries in the transaction. For

example consider the following transaction:

Begin transaction

Select: a1, a2, a3, a4, a5 from t1, t2;

Update: t2 set a4= a2+1.2(a3);

End transaction

Where t1 and t2 are tables of the database and a1, a2,

a3 are the attributes of table t1 and a4, a5 are the

attributes of table t2 respectively. This example

shows the correlation between the two queries of the

transaction. It states that after issuing select query,

the update query should also be issued by same user

and in the same transaction. The approach based on

the RBAC database uses the Naïve Bayes classifier

as a learning algorithm to generate the role profiles

on training data, and the training data which one is

extracted from the log file and Users (Local/Remote)

Database server Audit Server Application Layer

stored into the form of particular representation to

represent the user transaction behaviour.

B. Second Approach: Database Intrusion Detection

System Using Legal Transaction Profiles: Basically

this proposed approach is divided into three steps:

Auto-generation legal profile phase, Detection phase,

Action phase. It takes the advantage over the manual

transaction profiles mechanism. As in this case the

time to generate the legal transaction profile is

reduced, also it overcomes the disadvantage of the

existing system based on manual profile generation.

The log file is used from which the history of the

transactions are removed and stored into the offline

audit trail and this can be done using the inclusion of

existing auditing mechanism. Later the generated

legal transaction profiles from offline audit trail are

used at the detection phase to match with the

International Journal of Computer & Organization Trends (IJCOT) –Volume 6 Issue 3– May to June 2016

ISSN: 2249-2593 http://www.ijcotjournal.org Page 30

executable transactions; if any deviation is there then

particular executable transaction is marked as

malicious otherwise committed into the database.

The last phase is the action phase and it may take the

action based on the alarm generated by the database

IDS.

C. Third Approach: Database Intrusion Detection

System Using Counting Bloom Filter (CBF):A

Bloom filter is used to define the bit array of m

elements of n bits size and initially all set to 0. The

filter uses a group H of k independent hash functions

1., k h wit range {1, . . . , n} that independently map

each element in the universe to a random number

uniformly over the range. For each element xÎS , the

bits B [hi(x)] are set to 1 for 1 _ i _ k. (A bit can be

set to 1 multiple times.) To answer a query of the

form “Is yÎS ?”, we check whether all () i h y are set

to 1. If not, y is not a member of S, by the

construction. If all () i h y hi(y) are set to 1, it is

assumed that y is in S, and hence a Bloom filter may

yield a false positive. The main problem with the

bloom filter is the false positive i.e. it gives the

wrong answer with correct query, and it is resolved

using the counting bloom filter (CBF) where

insertion and deletion of the set of the elements are

possible. It also uses as similar to the bloom filter, k

(random hash) functions, each of which maps or

hashes some set element to one of the n bits array

positions. To insert an element into a set, the

element is passed into k hashing functions and k

index values are obtained. All counters in counting

bloom filter at corresponding index values are

incremented. The overall approach based on the

CBF is divided into the three phases. The initial

phase is as similar to the automatic transaction

profile generation algorithm to generate the

authorized transactions. This process insures the

correctness of the genuine profiles as declared as the

legal profiles, its do automatically instead of

manually thus it reduces the time to require for

manual transaction profile generation. This next

phase is all about the construction of the counting

bloom filter (CBF) where random weights are

assigned automatically corresponding to commands

of legal transactional profile. After that the

construction of the CBF is done by incorporating the

hash functions. At the final stage of detection phase

the constructed CBF along with the weights are

loaded and the counter values in CBF are

decremented using weight of identified command

based on the executable transaction, if all the bits in

the CBF are zero then the transaction is declared as

valid.

An Intrusion Detection System should involve some

preventive measures at the beginning in order to put

a stop to the entrance of intruders into system. Then

detection method should be used, to identify if any

intruder had successfully bypassed the preventive

step. If any intrusion has been detected then an

appropriate response should be taken to defense

from the attacker. In brief it can be said to have:

Intrusion Prevention + Intrusion Detection +

Appropriate Response in a database system to get rid

of intruders. It will be better to include role based

access and use data mining technique for intrusion

detection in the IDS for producing more fine results.

Speed, accuracy and adaptability are the common

problems in IDS. The extensive amount of data that

intrusion detection systems need to monitor in order

to observe the entire situation causes speed problem.

To handle this situation, the most important portion

of information should be removed in order to

provide efficient detection of attacks. The adaptation

and accuracy issues of the intrusion detection can be

solved by incorporating learning algorithms. In case

of intrusion detection, learning means discovering

patterns of normal behavior or pattern of attacks. In

this way intrusion detection can combine the

advantages of both signature based and anomaly-

based IDS. The block diagram of a hybrid Database

IDS is shown in figure.

Fig.2 Combination of IPS and IDS system

From the figure, it is clear that initially the user

sends service request via web based application, to

the application server. The application server issues

request to the database. Then, user can log to

database. At this level, preventive measures can be

taken by using exact password entry logins in role

based authentication and analyzing the requested

https. As the user logs into the database, the database

session gets started and the SQL statements that are

received from the application are passed to the

detection module.

D. Assigning Null Affinity Temporal Values: In a

typical database environment, transactions are

programmed into various database application

interfaces, so as long as the database applications

remain stable, the set of transactions that are

executed will not change. For example, in an

educational database application, users can only

perform and interact with data items that are

available at their user-dependent application

interface (e.g., viewing grades, paying for classes,

entering grades, dropping a student from a class, etc).

Other operations are not available for that particular

class of end-user. Normally, end-users cannot

execute ad hoc queries against the database. It is a

very realistic assumption to use transactional

profiling to detect malicious data access, resulting in

a reduced risk of false alarms with other intrusion

detection mechanisms.

 2D Usage Array

For each application Ay that is run on the database,

choose a time frame Tz. The time frame needs to be

International Journal of Computer & Organization Trends (IJCOT) –Volume 6 Issue 3– May to June 2016

ISSN: 2249-2593 http://www.ijcotjournal.org Page 31

chosen with a granularity that returns the usage of

the database, and the temporal frame can be adjusted

as necessary. For each data item Ix available to an

application, an attribute usage value, denoted as

use(Ix, Ay, Tz), is defined as:

use(Ix, Ay, Tz) ={1 if application Ay uses

data item Ix during time frame Tz

 0 if otherwise}

The matrix is stored in an M x N two dimensional

data usage array at position Ai,j where M is the

number of data items (rows) and N is the number of

temporal frames (columns) and i is the particular

data item and j is the particular time frame under

examination.

Fig.3 Example 2D usage matrix

In the above figure, an application used data item Ia

only during time frame T1. In this example, we can

define the time frame to be the days of week, so time

frame T1 would correspond to Monday during a

given week and year. If it is so preferred, the

temporal granularity can be changed so that the time

frame under examination has a larger or smaller

amount of granularity. For example, the usage

matrix could be defined for only each hour during

the Monday T1 time frame from the above example.

The time frame could also have a much larger

granularity; for example, the data usage matrix could

be defined as the previous twelve months of usage.

 3D Usage Matrices:

The 2D usage arrays are calculated for each

application that is run against the database, resulting

in a three dimensional relationship. If an application

is not suspected for potential misuse, the security

engineer can extricate that particular application

from the process and focus on other, more

susceptible, applications. The result is then an M x N

x P relationship where M is the number of data items,

N is the number of temporally related time frames

that were chosen in the first step, and P is the

number of applications that are run against the

database. This 3D usage data is used next to find and

cluster elements that should not be used together

across three dimensions, time, application level, and

data item level, resulting in a novel way to detect

misuse of the database.

Computing Null Temporal Affinity Energy Levels

Given the 3D usage matrix of a particular system,

we have defined a Null Temporal Affinity Energy

(NE) methodology that processes the 3D matrix so

that dense clumps of zeros are clustered together

across all thee dimensions. The NE algorithm was

devised so that a three dimensional matrix that

possesses dense clumps of zeros in all three

dimensions will have a large NE (null energy) level

when compared to the same three dimensional

matrix whose elements across the y and z axes have

been permuted so that its numerically small elements

are more uniformly distributed throughout the

relation. The x axis (time) is not permuted because

each of the time frames are related by some fixed

metric; this relationship will be used to expand or

contract the three dimensional relationship to home

in on particular areas of potential misuse in an area

of future work described.

The proposed null energy level is the sum of the

bond strengths in the 3D array of each nearest

neighbor in three dimensions, where the bond

strength is defined as the inverse of their product.

The NE value, then, is given by:

A represents the binary inverse of Ax. U is a

nonnegative M x N x P three dimensional array

consisting of results of the use function over time

period Tx; U was derived earlier. Since all the values

of U are binary, the NE value is very efficiently

calculated, even when given large three dimensional

matrices. The value of ½ is present so that each bond

is only counted once in the total NE sum. To better

understand what the NE value represents, one can

visually circle adjacent zeroes going up, down, left,

or right in the same two dimensional plane, and also

potentially circling zeros in the plane above and

below the current element.

III.RESULT

Comparison of All Three Proposed Approaches:

For the comparison we consider the set of

parameters to evaluate each approach with other one.

The complete details of comparison are given in

below table 1.

International Journal of Computer & Organization Trends (IJCOT) –Volume 6 Issue 3– May to June 2016

ISSN: 2249-2593 http://www.ijcotjournal.org Page 32

Based on the information in the above table as we

can see the proposed approaches are very much

useful to handle the malicious transaction once it is

executed by the unauthorized user. The proposed

approached also applicable to handle the internal

misuse over the database. If we see the load on the

database server for proposed mechanisms then it is

quite high because of the inclusion of one additional

layer of security into the database but it is less in

auditing mechanism.

The security in the DBMS is one of the main

concerns of the researchers now-a-days and there is

an interest to develop the possible database intrusion

detection systems.

The proposed method relies upon manipulating

usage information from database logs into three

dimensional null-related matrix clusters that reveals

new information about which sets of data items

should never be related during defined temporal time

frames across several applications.

IV. CONCLUSION

This paper has proposed a new mechanism to detect

malicious data access. As database systems play a

vital role in organizational information architectures,

procedures must be in place to ensure that these

resources are not being used maliciously. We have

presented the concepts and underlying architecture

and shown how they can be applied. Our proposal

relies on using historical data stored by the database

logs on what data items were used at a particular

time by various applications. We have used specific

user-profiles to store the sequence of commands in a

transaction and use a prevention model for instant

detection of malicious transactions.

This information is then processed to reveal clumps

of data items that should not be used together during

certain time frames, resulting in a three dimensional

usage matrix. This matrix allows a better prediction

of potential misuse by allowing quicker and more

precise prediction of items that should not be used

together across the time, data item, and application

dimensions

Suspicious queries are then compared to the

maximized usage array and a distance value is

calculated for each non conforming action. These

distances are summed to reveal how far from what

was expected this access is. If the access is above a

certain threshold, further security procedures are

performed. It is concluded that by choosing optimal

value of size of Threshold Energy Value and number

of combination of IPS and IDS functions the

detector can be made to prevent a malicious

transaction with a probability of almost 99% plus.

REFERENCES

[1] Marco Vieira and Henrique Madeira, “Detection of

Malicious Transactions in DBMS”, IEEE Proceedings- 11th
Pacific Rim International Symposium on Dependable

Computing, Dec 12-14,2005, PP: 8.

[2] Korra Sathya Babu, “Prevention of Unwanted Transactions
in DBMS”, Department of computer Science and

Engineering, NIT Rourkela, 2008.

[3] E. F. Codd, "A Relational Model of Data for Large Shared
Data Banks ", Comm. of the ACM(1970).

[4] Ravi Sandhu and Pierangela Samarati, “Access Control:

Principles and Practice”, IEEE Communications Magazine,
September 1994.

[5] Yi Hu and Brajentra Panda, “Identification of malicious

transactions in Database Systems”, Proceedings of 7th
International database engineering & Applications

symposium, 16-18 July, 2013, PP 329-335.

[6] L. Fan, P. Cao, J. Almeida, and A. Z. Broder. “Summary
Cache: A Scalable Wide-Area Web Cache Sharing

Protocol”, IEEE Transactions on Networking, 2000, PP 281-

293.
[7] TPC Council, “TPC BenchmarkTM C, Standard

Specification, Version 5.10.1”, February 2009.

[8] Gordon, L. Loeb, M., Lucyshyn, W. and Richardson, R.
Computer Security Institute. Computer crime and security

survey, 2006.

[9] Fonseca, J., Vieira, M., and Madeira, H. Online detection of
malicious data access using DBMS auditing. In Proceedings

of the 2008 ACM Symposium on Applied Computing.

SAC'08. ACM, New York, NY, 1013-1020, 2008.
[10] Chung, C. Y., Gertz, M., Levitt, K. DEMIDS: a misuse

detection system for database systems.In integrity and

internal Control information Systems: Strategic Views on

the Need For Control, Norwell, MA, 159-178,2000

