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Abstract— In this paper we will make an approach 

to solve single objective structural model using 

parameterized p-norm based fuzzy Geometric 

Programming technique. A structural design model 

in fuzzy environment has been developed. Here p-

norm based generalised triangular fuzzy number 

(GTFN) is considered as fuzzy parameter so that the 

decision maker can take advantage of no-exact 

parameter. Generalised triangular p-norm is 

discussed with their basic properties and some 

special cases. In this structural model formulation, 

the objective function is the weight of the truss; the 

design variables are the cross-sections of the truss 

members; the constraints are the stresses in 

members. A classical truss optimization example is 

presented here in to demonstrate the efficiency of 

our proposed optimization approach. The test 

problem includes a two-bar planar truss subjected to 

a single load condition. This approximation 

approach is used to solve this single-objective 

structural optimization model. The model is 

illustrated with numerical examples. 

 

Keywords— Generalized Triangular Fuzzy Number, 
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I. INTRODUCTION  

Optimization seeks to maximize the performance 

of a system, part or component, while satisfying 

design constraints. One common form of 

optimization is trial and error and is used every day. 

We make decisions, observe the result, and change 

future actions depending on the success of those 

decisions. When performing optimization, we wish 

to minimize (or maximize) the structural design, 

while considering both design variables and design 

constraints. Design variables are variables the 

designer or engineer can freely choose between, for 

example the thickness of a wall, the material chosen, 

and the width of a part. The resulting stress, 

deflection, volume, natural frequency and other 

typical performance measures are often considered 

either as objective functions or as constraints. 

In practice, the problem of structural design may 

be formed as a typical non-linear programming 

problem with non-linear objective function and 

constraints functions in fuzzy environment. Zadeh 

[1] first introduced the concept of fuzzy set theory. 

Then Zimmermann [2] applied the fuzzy set theory 

concept with some suitable membership functions to 

solve linear programming problem with several 

objective functions. Some researchers applied the 

fuzzy set theory to structural model. For example, 

Wang et al. [3] first applied -cut method to structural 

designs where the non-linear problems were solved 

with various design levels, and then a sequence of 

solutions were obtained by setting different level-cut 

value of Rao[4] applied the same α -cut method to 

design a four–bar mechanism for function generating 

problem. Structural optimization with fuzzy 

parameters was developed by Yeh et al. [5].Xu[6] 

used two-phase method for fuzzy optimization of 

structures. Shih et al. [7] used level-cut approach of 

the first and second kind for structural design 

optimization problems with fuzzy resources. Shih et 

al.[8] developed an alternative -level-cuts methods 

for optimum structural design with fuzzy resources. 

Prabha et al.[18] presents an efficient algorithm to 

optimize fuzzy transportation problem.  

Geometric Programming (GP) method is an 

effective method used to solve a non-linear 

programming problem like structural problem. It has 

certain advantages over the other optimization 

methods. Here, the advantage is that it is usually 

much simpler to work with the dual than the primal 

one. Solving a non-linear programming problem by 

GP method with degree of difficulty (DD) plays 

essential role. (It is defined as DD = total number of 

terms in objective function and constraints – total 

number of decision variables – 1). Since late 1960‟s, 

GP has been known and used in various fields (like 

OR, Engineering sciences etc.). Duffin et al. [9] and 

Zener[10] discussed the basic theories on GP with 

engineering application in their books. Another 
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famous book on GP and its application appeared in 

1976 (Beightler et al., [11]).The most remarkable 

property of GP is that a problem with highly 

nonlinear constraints can be transformed 

equivalently into a problem with only linear 

constraints. In real life, there are many diverse 

situations due to uncertainty in judgments, lack of 

evidence etc. Sometimes it is not possible to get 

relevant precise data for the cost parameter. The idea 

of impreciseness (fuzziness) in GP i.e. fuzzy 

geometric programming was proposed by Cao [12]. 

Ojha et al. [14] used binary number for splitting the 

cost coefficients, constraints coefficient and 

exponents and then solved it by GP technique. A 

solution method of posynomial geometric 

programming with interval exponents and 

coefficients was developed by Liu [15]. In 2015, 

Dey and Roy [16]optimized shape design of 

structural model with imprecise coefficient by 

parametric geometric programming .Islam and Roy 

[17] used FGP to solve a fuzzy EOQ modelwith 

flexibility and reliability consideration and demand 

dependent unit production cost a space constraint. 

FGP method is rarely used to solve the structural 

optimization problem. Dey and Roy [18] solved two-

bar truss non-linear problem using Intuitionistic 

fuzzy Optimization Technique. But still there are 

enormous scopes to develop a fuzzy structural 

optimization model through fuzzy geometric 

programming (FGP).The parameter used in the GP 

problem may not be fixed. It is more fruitful to use 

fuzzy parameter instead of crisp parameter. In that 

case we can introduce the concept of fuzzy GP 

technique in parametric form. 

In this paper we are making an approach to solve 

single-objective structural model using 

parameterized p-norms based fuzzy geometric 

programming technique. In this structural 

model formulation, the objective function is to 

minimize weight of the truss; the design variables 

are the cross-sections of the truss members; the 

constraints are the stresses in members. The test 

problem includes a two-bar planar truss subjected to 

a single load condition. This approximation 

approach is used to solve this single-objective 

structural optimization model.  

The remainder of this paper is organized in the 

following way. In section 2, we discuss about single 

objective structural optimization model. In section 3, 

we discuss the mathematical Prerequisites. In section 

4, we propose the technique to solve single-objective 

non-linear programming problem using p-norms 

based fuzzy optimization. In section 5, apply p-

norms based fuzzy optimization technique to solve 

single-objective structural model and numerical 

illustration is given. Finally we draw conclusions in 

section 6. 

II. MATHEMATICAL FORM OF A SINGLE –

OBJECTIVE STRUCTURAL OPTIMIZATION 

MODEL 

In sizing optimization problems the aim is to 

minimize a single objective function, usually the 

weight of the structure, under certain behavioural 

constraints on stress and displacements. The design 

variables are most frequently chosen to be 

dimensions of the cross-sectional areas of the 

members of the structure. Due to fabrication 

limitations the design variables are not continuous 

but discrete since cross-sections belong to a certain 

set. A discrete structural optimization problem can 

be formulated in the following form 

( )Minimize f x                                                       (1) 

( ) 0, 1,2,.......,iSubject to g x i m   

, 1,2,.......,d

jA R j n                                                           

where ( )f A  represents objective function,  g A  is 

the behavioural constraint, m and n are the number 

of constraints and design variables, respectively. A 

given set of discrete values is expressed by 
dR  and 

design variables 
jA  can take values only from this 

set.In this paper, objective function is taken as  

 
1

m

i i i

i

f A Al


                                                      (2) 

and constraints are chosen to be stress of structures 

 
0

1 0i

i

i

g A



   1,2,...,i m

                         
 (3) 

where
i  and 

il  are weight of unit volume and 

length of 
thi  element, respectively, m  is the number 

of the structural elements, i and 0

i  are the 
thi  

stress and allowable stress, respectively. 

III.    PREREQUISITE  MATHEMATICS 

A. Fuzzy Set 

Let X is a set (space), with a generic element of 

X  denoted by x  , that is ( )X x  .Then a Fuzzy set 

(FS) is defined as    , ( ) :AA x x x X 
 

where  : [0,1]
A

X   is the membership function of 

FS A .  ( )
A

x is the degree of membership of the 

element x  to the set A . 

B.  -Level Set or  -cut of a Fuzzy Set  

The  -level set of the fuzzy set A  of X  is a 

crisp set A that contains all the elements of  X  that 

have membership values greater than or equal to   

i.e.   : ( ) , , [0,1]
A

A x x x X      . 

C. P-norm Generalized Triangular Fuzzy Number) 

A fuzzy number   1 2 3, , ;p a p
a a a a w  is said to 

be p-norm generalized triangular fuzzy 



   

International Journal of Computer & Organization Trends (IJCOT) –Volume 6 Issue 2– March to April 2016 

ISSN: 2249-2593                      http://www.ijcotjournal.org                            Page 36 

number  
p

GTFN  if its membership function is 

defined by 
1

2

1 2

2 1

1

3

2 3

3 2

1

( ) 1

0

p p

a

p p

a a

a x
w if a x a

a a

x a
x w if a x a

a a

otherwise



            


   
     

    






  

Where 
aw  represent the maximum degree of 

membership satisfy in 0 1aw  Also 
1 2 3a a a   

and p is a positive integer. 

It can be easily observed that when 1p   

 
p

GTFN reduces to GTFN. 

1) Remart 1:  

A ( ) pGTFN ,
1 2 3( , , ; )p a pa a a a w   is said to be 

positive (i.e 0pa  ) if and only if  
1 0a  , and 

atleast one of the values of  1 2 3, ,a a a  is not equal to 

zero.  

2) Remark 2: 

A ( ) pGTFN ,
1 2 3( , , ; )p a pa a a a w   is said to 

be positive (i.e 0pa  ) if and only if 
1 0a  and 

atleast one of the values of  1 2 3, ,a a a  is not equal to 

zero. 
3) Remark 3: 

    
0pa  if and only if all the values of 1 2 3, ,a a a  are 

equal to zero.  

4) Remark 4: 

    pa  is said to be non- negative if either  0pa   or 

0pa  . 

D. Arithmatic Operations 

The arithmetic operations over ( ) pGTFN  are 

defined as follows  

Let 1 2 3( , , ; )p a pa a a a w   and 

1 2 3( , , ; )p b pb b b b w  be ( ) pGTFN ,  

Then 

1) 1 1 2 2 3 3( , , ;min( , ))p p a b pa b a b a b a b w w      . 

2) 1 1 2 2 3 3( , , ;min( , ))p p a b pa b a b a b a b w w      . 

3)
1 2 3

3 2 1

( , , ; ) 0

( , , ; ) 0

a p

p

a p

a a a w if
a

a a a w if

   


   

  
 

  

  

4) .p pa b 

1 1 2 2 3 3

1 3 2 2 3 1

3 3 2 2 1 1

( , , ;min( , )) ( 0, 0)

( , , ;min( , )) ( 0, 0)

( , , ;min( , )) ( 0, 0)

a b p p p

a b p p p

a b p p p

a b a b a b w w if a b

a b a b a b w w if a b

a b a b a b w w if a b

   

   

   







 

5) /p pa b 

1 3 2 2 3 1

1 1 2 2 3 3

3 1 2 2 1 3

( / , / , / ;min( , )) ( 0, 0)

( / , / , / ;min( , )) ( 0, 0)

( / , / , / ;min( , )) ( 0, 0)

a b p p p

a b p p p

a b p p p

a b a b a b w w if a b

a b a b a b w w if a b

a b a b a b w w if a b

   

   

   







 

IV.   MATHEMATICAL ANALYSIS 

1) Geometric Programming Method 

A geometric program (GP) is a type of mathematical 

optimization problem characterized by objective and 

constraint functions that have a special form. GP is a 

methodology for solving algebraic non-linear 

optimization problems. Also linear programming is a 

subset of a geometric programming .The theory of 

geometric programming was initially developed 

about three decades ago and culminated in the 

publication of the seminal text in this area by Duffin, 

Peterson, and Zener [18].              

The general constrained Primal Geometric 

Programming problem is as follows 
0

0

0 0

1 1

( ) tj

T n
a

t j

t j

Minimize f x c x
 

                                (4)      

Subject to                                                                                                   

1 1

( ) ; 1,2,3,.......,
m

itj

T n
a

i it j i

t j

f x c x b i m
 

                                                                                 

0, 1,2,.........., .jx j n   

Here 
0 0tc   and 

0tja be any real number. The 

objective function contains 
0T terms and 

iT  terms in 

the inequality constraints. Here the coefficient of 

each term is positive.So it is a constrained 

posynomial geometric programming problem. Let  

0 1 ......... iT T T T     be the total number of terms 

in the primal program. The degree of difficulty (DD) 

is defined as DD = Total no. of terms – (Total no. of 

variables -1) = ( 1)T n  .The dual problem (with 

the objective function, ( )d w where 

 ( ), 0,1,2......, ; 1,2,.....it iw w w i m t T    is the 

decision vector) of the geometric programming 

problem (4) for the general posynomial case is as 

follows 

0
0

0

1 1 10

( )

itt
i

ww
T Tm

it itt

t i tt i it

c wc
Maximize d w

w b w  

  
     

   


  (5) 

Subject to 

 
0

0

1

1
T

t

t

w


  ,                            (Normality condition) 
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0 1

0 1,2,......, .
iTm

itj it

i t

a w for j n
 

   (Orthogonality 

Condition)                                                                                                                                                          

0 0,1,........., ; 1,2,........ .it iw i m t T     

For a primal problem with M variables, 

0 1 ......... iT T T    terms and n constraints, the dual 

problem consists of 0 1 ......... iT T T    variables 

and  1m constraint. The relation between these 

problems, the optimality has been shown to satisfy 

0 * * *

0 0

1

( ) 1,2,3,...,tj

n
a

t j t i

j

c x d w w t T


                    (6) 

*

1 *

1

1,2,3,...., ; 1,2,3,...,itj

i

n
a it

it n iT
j

it

t

w
c x i m t T

w




  


(7) 

Taking logarithms in (6) and (7) and putting 

logj jt x  for 1,2,.........., .j n  we shall get a 

system of linear equations of 

jt ( 1,2,.........., .j n ).We can easily find primal 

variables from the system of linear equations. 

Case I: For 1T n   ,the dual program presents a 

system of linear equations for the dual          

variables where the number of linear equations is 

either less than or equal to the number of dual 

variables. A solution vector exists for the dual 

variable (Beightler and Philips [20]). 

Case II: For 1T n  ,the dual program presents a 

system of linear equations for the dual variables 

where the number of linear equation is greater than 

the number of dual variables. In this case, generally, 

no solution vector exists for the dual variables. 

However, one can get an approximate solution 

vector for this system using either the least squares 

or the linear programming method. 

2) Fuzzy Geometric Programming Problem 

The formulation of fuzzy geometric programming 

with fuzzy parameters can be stated as follows 

1 2 3( , , ........... )T

nFind x x x x x                                 (8) 

so as to  


0

0

0 0

1 1

( ) tj

T n
a

t j

t j

Minimize f x c x
 

   

Such that 

1 1

( ) 1,2,.........,
i

itj

T n
a

i it j i

t j

f x c x b for i m
 

    


 

0 1,2,........,jx for j n 

        

 

where
0 , ,t it ic c b   are p-norm based generalised 

positive triangular fuzzy number. 0tja and itja are real 

numbers for all , ,i t j . 

Let       

0 10 20 30 0( , , ; ) (1 )t t t t pc c c c w t T       

1 2 3( , , ; ) (1 ,1 )it it it it p ic c c c w t T i m       

1 2 3( , , ; ) (1 )i i i i pb b b b w i m                                    

  be p-norm based triangular fuzzy numbers with 

membership functions 

0

1

20
10 20

20 10

2

1

30
20 30

30 20

1

( )

1

0

t

p p

t
t t

t t

c

p p

t
t t

t t

c x
w if c x c

c c

w if x a
x

x c
w if c x c

c c

otherwise




   
    

    



 
            





1

2

1 2

2 1

2

1

3

2 3

3 2

1

( )

1

0

it

p p

it

it it

it it

c
p p

it

it it

it it

c x
w if c x c

c c

w if x a
x

x c
w if c x c

c c

otherwise



            
 

 
        
    




      1

2

1 2

2 1

2

1

3

2 3

3 2

1

( )

1

0

i

p p

i

it it

i i

b
p p

i

i i

i i

b x
w if c x c

b b

w if x b
x

x c
w if b x c

c c

otherwise



            
 

 
        
    




 

where the functions 

   
0 10 20: ( ), 0, ,

tlc t tf c c w     1 2: , 0, ,citl it itf c c w  

   1 2: , 0,bitl i if b b w
 
Where  0,1w are 

continuous and non-decreasing 

and    
0 20 30: ( ), 0, ,

trc t tf c c w 

   20 30: ( ), 0, ,
itrc t tf c c w     2 3: , 0, ,

itrc it itf c c w

Where  0,1w are continuous and non-increasing 

function and w is called maximum membership 

degree. 

Here   cut of 
0 , ,t it ic c b   are given by  

 0 0 0( ) ( ), ( )t tL tRc c c    

1 1

20 20 10 30 30 201 ( ) , 1 ( )

p p p p

t t t t t tc c c c c c
w w

 
                                

 ( ) ( ), ( )it itL itRc c c  

 
1 1

2 2 1 3 3 21 ( ) , 1 ( )

p p p p

it it it it it itc c c c c c
w w

 
                                

1 2 3( , , ,......, )T

nFind x x x x x                                (9)
 

So as to 

0

0

1

0 30 30 20

1 1

1 ( ) tj

p pT n
aR

t t t j

t j

Minimize f c c c x
w



 

               

 

 such that 
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              
             

 
 

1,2,................,for i m  

 0 1,2,3.................... , 0,1jx for j n     

Using   cut of the p-norm generalised triangular 

fuzzy number coefficients the above problem 

reduces to 

1 2 3( , , ,...... )T

nFind x x x x x                                   (10) 

   so as to     

 
0

0

0 0 0

1 1

( ) ( ), ( ) tj

T n
a

tL tR j

t J

Minimize f x c c x 
 

  
 

Such that 

   
1 1

( ) ( ), ( ) ( ), ( )
i

itj

T n
a

i itL itR j iL iR

t j

f x c c x b b   
 

    

1,2,.......for i m  

0tja and 
itja re real numbers for all , ,i t j . 

The above problem is equivalent to the sub-problem 

1 2 3( , , ,............., )T

nFind x x x x x                         (11) 

so as to 
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  such that  
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              
             

 

1,2,..........,for i m

 0 1,2,...., , 0,jx for j n w    

0tja and
itja  are real numbers for all , , .i t j   

1 2 3( , , ,....., )T

nFind x x x x x so as to           (12)
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such that
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
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              
             

 

1,2,.....,for i m

 0 1,2,3..... , 0,1jx for j n   

 

0tja and itja are real numbers for all , , .i t j  

Now solving above two sub problem by geometric 

programming technique we can get the upper and 

lower bound of objective function for each  0,1 .   

IV.    NUMERICAL ILLUSTRATION 

A well-known two-bar [17] planar truss structure 

is considered. The design objective is to minimize 

weight of the structural  1 2, , BWT A A y of a 

statistically loaded two-bar planar truss subjected to 

stress  1 2, ,i BA A y constraints on each of the truss 

members 1,2i  . 

 

               Fig. 1  Design of the two-bar planar truss 

The single-objective structural model can be 

expressed as 

    22 2 2

1 2 1 2, , B B B B BMinimize WT A A y A x l y A x y     (13) 

such that                                         

 
 

22

AB 1 2

1

, ,
B B T

B AB

P x l y
A A y

lA
 

 
                            

 
2 2

BC 1 2

2

, ,
B B C

B BC

P x y
A A y

lA
 


      

0.5 1.5By  ; 1 20, 0;A A   

The input data for structural optimization problem 

(13) is given as follows 

( ) (90,100,110;0.8) ,pNodal load P KN     

3( ) (7.6,7.7,7.8;0.8) / ,pVolume Density KN m     

( ) 2 ;Length l m

( ) (.9,1,1.1,0.8) ;B pWidth x Mpa    

(90,100,110;0.8) ;c pAllowable compressive stress Mpa     
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(145,150,155;0.8) ;T pAllowable tensile stress Mpa     

( ) (0.5 1.5)B By coordinate of node B y y    

Solution: 

The non-linear structural optimization problem of 

two bar truss is  


1 2( , , )BMinimize WT A A y                                      

     
2 22 2

1 2(7.6,7.7,7.8;0.8) (.9,1,1.1,0.8) (2 ) (.9,1,1.1,0.8)p p B BA y A y
 

          
 

      (14) 

Such that  

  2
2

1 2

1

(90,100,110;0.8) (.9,1,1.1,0.8) (2 )

( , , )
2

p p B

AB B

y

A A y
A



     



  145,150,155;0.8 ,p  
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y

A A y
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
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

  90,100,110;0.8 ,p  

   2
2

1 2

1

(90,100,110;0.8) (.9,1,1.1,0.8) (2 )

( , , )
2

p p B

AB B

y

A A y
A

     



  145,150,155;0.8 ,p   

                                               

1 20.5 1.5 , 0, 0By A A     

The     cut of , , , ,B t cx P       are given by 

1 1

7.7 1 (0.1),7.8 1 (0.1)

p p p p

w w

 

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Using    cut above problem (15) is reduced to the 
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                                           

 1 2, 0; 0.5 1.5 0,BA A y w     

To apply Geometric Programming Technique we 

may consider any of the sub problems as 

1 2( , , )BMinimize WT A A y    

   
2 22 2

1 2( ) (2 ) ( ) (2 )B BM A L y A L y  
     

 
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1 20, 0; 0.5 1.5BA A y     

2 2 2 2 2

3 4( ( )) (2 ) ( ( ))B BLet L y A and L y A       

Then above problem (18) can be written as  

1 2 1 3 2 4( , , ) ( )BMinimize WT A A y M A A A A          (19) 

subject to                                                                      

3

1 2

1

( , , ) 1,
2

AB B

NA
A A y

A
    

4
1 2

2

( , , ) 1,
2

BC B

SA
A A y

A
    

2 2 2 2 2
3 3 3(( ( )) 4) 4 1,B BL A y A y A        

  2 2 2 2 2

3 3 32 ( ) 4 4 1,B BL A y A y A        

 
2 2 2 2

4 42 ( ) 1,BL A y A     

1 2 3 40.5 1.5 0, 0, 0, 0By A A A A       

This is a signomial Geometric Programming 

Problem with DD=9-(5+1)=3 

The dual formulation is  

01 02 11 21 31 32 33 41 41( , , , , , , , , )WTMaximize d w w w w w w w w w   

01 02 11 21

01 02 11 112 2

w w w w

M M N S

w w w w

       
       

      

    
31

32

2
2

31 32 33
31 32 33

31 32

( ) 4 4( )

w

wL w w w w w w

w w

  
       

  
  

 

     
41

4233 2

41 42 41 4231 32 33

33 41 42

( )( )
w ww

L w w w ww w w

w w w

      
           

 (20) 

such that

01 02 01 11 02 211, 0, 0,w w w w w w       

01 11 31 32 332 2 2 0,w w w w w      

02 21 41 42 32 33 422 2 0, 2 2 0,w w w w w w w         

The constraints of (20) forms a system of six linear 

equations with nine unknowns .So the system has 

infinite number of solutions .However the problem is 

to select the optimal dual variables  

01 02 11 21 31 32 33 41 42, , , , , , , ,w w w w w w w w w . 

We have 

01 11 31 32 33 02 21 31 32 33, 1 ,w w w w w w w w w w          

41 31 32 42 32 331 0.5 , 0.5w w w w w w      

Substituting 
01 02 11 21 41 42, , , , ,w w w w w w in the dual 

formulation we get
31 32 33( , , )WTMaximize d w w w   

     31 32 33 31 32 33 31 32 331

31 32 33 31 32 33 31 32 331 2( )

w w w w w w w w w

M M N

w w w w w w w w w

      

     
     

           

 

 
3131 32 33(1 ) 2

31 32 33

31 32 33 31

(( ( )) 4)

2(1 )

ww w w
L w w wS

w w w w


  

    
         

 

32 33

31 32 33 31 32 33

32 33

4( ) ( )
w w

w w w w w w

w w



      
   
   

   
   31 32

32 33
1 0.5

0.52

41 42 41 42

31 32 32 33

( )

1 0.5 0.5

w w
w w

L w w w w

w w w w


 

   
   
     

(21)  

To find the optimal 
31 32 33, ,w w w which maximizes 

the dual
31 32 33( , , )WTd w w w   we take logarithm of both 

sides of (21) and get 

31 32 33log ( , , )WTd w w w   

31 32 33 31 32 33 31 32 33( ) log ( )log( )w w w M w w w w w w      

31 32 33 31 32 33 31 32 33(1 )log (1 )log(1 )w w w M w w w w w w          

31 32 33 31 32 33 31 32 33( ) log ( )log(2( ))w w w N w w w w w w       

31 32 33 31 32 33 31 32 33(1 )log (1 )log(2(1 ))w w w S w w w w w w          

  2

31 31 32 33 31 31log ( 4) logw Q w w w w w    

  32 31 32 33 32 32 33 31 32 33log 4 log log( )w w w w w w w w w w      

 2

33 33 31 32 41 42log (1 0.5 ) log ( )w w w w Q w w    

31 32 31 32 32 33 41 42(1 0.5 )log(1 0.5 ) (0.5 )log( )w w w w w w w w       

32 33 32 33(0.5 )log(0.5 )w w w w    

Differentiating partially with respect to 31 32,w w and 

33w respectively and equating to zero we get 

      
2 2

31 32 311 0.5 ( ) 4 ( ) 0,w w N L Sw L     

    
0.5 0.5

31 32 32 33 324 1 0.5 (0.5 ) 0,N w w w w L Sw      

 and 

32 33 33(0.5 ) 0N w w Sw    

2
31 32 33

2
31 31 3231

log ( , , ) 1 1

1 0.5

WTd w w w

w w ww

 
   

   

 
2

31 32 33

2

33 31

log ( , , )
0WTd w w w

w w





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2

31 32 33

2

31 32

log ( , , )WTd w w w

w w





 

31 32 33 31 32 31 32 33

3 0.5 1

1 0.5 1w w w w w w w w
  

      
 

2

31 32 33

2

33 32

log ( , , )WTd w w w

w w





 

31 32 33 32 33

3 0.5

0.5w w w w w
 

  
 

2

31 32 33

2

31 33

log ( , , )
0WTd w w w

w w





 

2

31 32 33

2

33 32 3333

log ( , , ) 1 1

0.5

WTd w w w

w w ww


  


 

It is to be noted that for optimum dual variable 
* * *

31 32 33, ,w w w the Hassian 

matrix

     

     

 

2 2 2

31 32 33 31 32 33 31 32 33

2 2 2

31 31 32 31 33

2 2 2

31 32 33 31 32 33 31 32 33

2 2 2

32 31 32 32 33

2 2

31 32 33 31 32

2

33 31

log , , log , , log , ,

log , , log , , log , ,

log , , log , ,

WT WT WT

WT WT WT

WT WT

d w w w d w w w d w w w

w w w w w

d w w w d w w w d w w w

w w w w w

d w w w d w w w

w w

  

  

  

  

 



   2

33 31 32 33

2 2

33 32 33

log , ,WTd w w w

w w w



 

 

must be negative definite . 

i.e.
2

31 32 33

2

31

log ( , , )
0,WTd w w w

w





 

   

   

2 2

31 32 33 31 32 33

2 2

31 31 32

2 2

31 32 33 31 32 33

2 2

32 31 32

log , , log , ,

0
log , , log , ,

WT WT

WT WT

d w w w d w w w

w w w

d w w w d w w w

w w w

 

 


 

 

 

     

     

 

2 2 2

31 32 33 31 32 33 31 32 33

2 2 2

31 31 32 31 33

2 2 2

31 32 33 31 32 33 31 32 33

2 2 2

32 31 32 32 33

2 2

31 32 33 31 32

2

33 31

log , , log , , log , ,

log , , log , , log , ,

log , , log , ,

WT WT WT

WT WT WT

WT WT

d w w w d w w w d w w w

w w w w w

d w w w d w w w d w w w

w w w w w

d w w w d w w w

w w

  

  

  

  

 



   2

33 31 32 33

2 2

33 32 33

0

log , ,WTd w w w

w w w





 

 

Now from the primal dual relation  

 * * * * * * * * * * *

1 3 01 01 02 11 21 31 32 33 41 42, , , , , , , ,MA A w d w w w w w w w w w

 

 * * * * * * * * * * *

2 4 02 01 02 11 21 31 32 33 41 42, , , , , , , ,MA A w d w w w w w w w w w

 

*

3 11

*

1 11

1;
2

NA w

A w
 

*
4 21

*
2 21

1
2

SA w

A w
   

 

 
*

2 2 31

3 * * *

31 32 33

4
w

L A
w w w

 
 

*

2 32

3 * * *

31 32 33

4 B

w
y x

w w w

 
 

 

 
*

2 2 33

3 * * *

31 32 33

B

w
y A

w w w

 
 

 

*
2 2 31 3241

4 * *
32 31 3341 42

1 0.5

1

w ww
L A

w w ww w

  
 

  
 

*

2 2 32 3342

4 * *

32 31 3341 42

0.5

1
B

w ww
y A

w w ww w

 
 

  
 

we will get optimal solution for * *

1 2,A A . 

Now for  0,1   

   

1 1

7.7 1 (0.1) , 1 1 (0.1)

p p p p

M L
w w

 
 

                                         

 

   

1 1

1 1

100 1 (10) 100 1 (10)

,

155 1 (5) 110 1 (10)

p p p p

p p p p

w w
N S

w w

 

 

 

                                     
                                    

 

 and  for  0,1   

   

1 1

7.8 1 (0.1) , 1 1 (0.1)

p p p p

M L
w w

 
 

                                         

 

   

1 1

1 1

110 1 (10) 110 1 (10)

,

150 1 (5) 100 1 (10)

p p p p

p p p p

w w
N S

w w

 

 

 

                                     
                                    

 

the above problem  gives the left and right spread of 

weight interval. 
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VI.TABLE I 

OPTIMIZED RESULT OF DESIGN VARIABLES OF TRUSS FOR  0.8w  . 

Level of 

Possibility 

or Degree 

of 

Uncertainty 

 

Left Spread 

of Design 

Variables 

 

Norm 

P=1 

Norm 

P=2 

Right 

Spread of 

Design 

Variables 

Norm 

P=1 

Norm 

P=2 

0.0   

 

LWT  9.9173 9.917 RWT  19.272 19.271 

1

LA  0.4546 0.4546 1

RA  0.6975 0.6974 

2

LA  0.5178 0.5178 2

RA  .8708 0.8708 

L

By  0.8571 0.8571 
R

By  0.8163 0.8163 

0.1   

LWT  10.258 9.938 RWT  18.645 19.233 

1

LA  0.4653 0.4552 1

RA  0.6825 0.6965 

2

LA  0.5327 0.5187 2

RA  0.8463 0.8692 

L

By  0.8539 0.8569 
R

By  0.8202 0.8165 

0.2   

LWT  10.610 10.002 RWT  18.038 19.110 

1

LA  0.4762 0.4573 1

RA  0.6678 0.6936 

2

LA  0.5481 0.5216 2

RA  0.8226 0.8645 

L

By  0.8506 0.8563 
R

By  0.8241 0.8173 

0.3   

LWT  10.973 10.115 RWT  17.451 18.903 

1

LA  0.4874 0.4608 1

RA  0.6532 0.6886 

2

LA  0.5639 0.5265 2

RA  0.7995 0.8564 

L

By  0.8473 0.8552 
R

By  0.8279 0.8186 

0.4   

LWT  11.348 10.283 RWT  16.882 18.600 

1

LA  0.4987 0.4661 1

RA  0.6390 0.6814 

2

LA  0.5801 0.5338 2

RA  0.7777 0.8446 

L

By  0.8440 0.8537 
R

By  0.8316 0.8205 

0.5   

LWT  11.735 10.522 RWT  16.331 18.185 

1

LA  0.5102 0.4735 1

RA  0.6250 0.6713 

2

LA  0.5968 0.5443 2

RA  0.7554 0.8283 

L

By  0.8406 0.8514 
R

By  0.8353 0.8231 

0.6   

LWT  12.113 11.370 RWT  15.797 17.620 

1

LA  0.5220 0.4841 1

RA  0.6113 0.6574 

2

LA  0.6140 0.5592 2

RA  0.7343 0.8062 

L

By  0.8372 0.8483 
R

By  0.8390 0.8268 

0.7   

LWT  13.548 11.397 RWT  11.397 16.811 

1

LA  0.5339 0.5002 1

RA  0.5002 0.6372 

2

LA  0.6316 0.5822 2

RA  0.5822 0.7743 

L

By  0.8337 0.8436 
R

By  0.8436 0.8321 

0.8   

LWT  12.974 12.974 RWT  12.974 14.779 

1

LA  0.5460 0.5460 1

RA  0.5460 0.5845 

2

LA  0.6498 0.6498 2

RA  0.6498 0.6938 

L

By  0.8301 0.8301 
R

By  0.8301 0.8461 
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In general the value of  shows that the level of 

possibility and degree of uncertainty of the obtained 

information. When the value of   increases, the 

level of possibility becomes greater and the degree 

of uncertainty become less. From the above result it 

is clear that when 0  the widest interval indicates 

that objective value definitely lie into this range. On 

the other hand the possibility level 0.8  indicates 

the most possible value of the objective function. In 

this example the objective value is impossible to fall 

below 9.917 or exceed 19.272 for p=1,2 and the 

most possible value lie within 12.974 and 14.779 for 

p=1,2. 

VII. CONCLUSIONS 

In this work, a Geometric Programming for 

Structural Optimization of two bar truss design 

problem has been discussed. The considered 

problem is a highly nonlinear and non-exact in 

nature. Here the parameter is taken as p norm based 

generalised triangular fuzzy number and Zadeh‟s 

extension principle has been used to transform the 

fuzzy geometric programming problem to a pair of 

two mathematical programmes. P-norm based fuzzy 

number can be used in several optimization design 

problems.  
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