
  

International Journal of Computer & Organization Trends (IJCOT) –Volume 6 Issue 1– January to February 2016 

 ISSN: 2249-2593                                http://www.ijcotjournal.org                              Page 51 

Policy Based Fault Tolerant Scheme in 

Pervasive Computing 
P. G. V. Suresh Kumar 

Associate Professor, Department of IT & SC, AAiT, Addis Ababa University 

Addis Ababa, Ethiopia   

 

Abstract --- Pervasive computing integrates digital 

and physical devices. Users can access digital data 

and applications from the environment as easily as 

accessing them through their computers. The system 

has to be flexible to various kinds of faults and 

should be able to function even though the fault 

occurs. This paper deals with various classes of 

failures, their implication to pervasive computing, 

the challenges to be addressed in designing a fault 

tolerant pervasive computing system and a policy 

based fault tolerant pervasive computing system 

where the policy deals with the separation of the 

program  into distinct features. This policy based 

approach is more flexible and adaptable. 

Keywords — Fault Tolerant, Pervasive Computing, 

users etc. 

 

I. INTRODUCTION 

Pervasive computing provides a platform 

for context-aware computing that enables automatic 

configuration of a pervasive system based on the 

environment context. Pervasive computing to be 

successful, it's functioning should be transparent to 

the user. Such transparency is achievable if faults in 

the system are masked and user intervention is 

sought only when absolutely required. Pervasive 

computing technology exists in the user’s 

environment and aids the user in performing various 

tasks. The sustainability of this technology depends 

on it being non-intrusive. In order to achieve this 

goal, faults in a pervasive system should be 

automatically masked and user notified only when 

absolutely  required. Fault Tolerance issues have not 

been well explored so far in pervasive computing 

research. Since pervasive computing environments 

operate in the same physical (as well as virtual) 

space as humans, they can be exasperating (and 

sometimes hazardous) if they are not resilient to 

faults. Several researchers have expressed the need 

for reliable pervasive systems and mention that 

reliability issues must be readdressed in the realm of 

pervasive computing 

 

II. CLASSIFICATION OF FAILURES 

A typical pervasive system consists of 

commercial off-the-shelf (COTS) software and 

devices whose reliability is not guaranteed. COTS 

software are sold as “black boxes” and may not be 

subject to rigid development, verification or testing 

processes. Interoperability issues further reduce the 

reliability of a pervasive system. Mobile devices 

such as handhelds and laptops, with limited battery 

power, cannot be regarded as totally reliable. 

Connectivity failures due to devices going out of 

range or other errors in networks add to faults in a 

pervasive system. Besides, a pervasive system has a 

core set of services (like naming, trading, file system, 

event delivery, and discovery and context services) 

that provide necessary functionality. These services 

can also fail. Broadly, faults in a pervasive system 

can be classified into device, application, network 

and service failures. We discuss these individually in 

the following sections. 

 

A. Device Failures 

A pervasive system consists of different 

kinds of devices such as desktops, laptops, sensors, 

actuators, displays, speakers, scanners, cameras and 

projectors. Each device has its own set of faults that 

can potentially contribute to the failure of the 

pervasive system. Mobile devices, such as laptops 

and handhelds, have physical constraints such as 

finite battery power and limited signal strength. So if 

the battery goes down or if the signal strength is too 

low they get disconnected from the pervasive system 

and are regarded as having failed. A more acute 

problem with devices is when they are alive but 

operate incorrectly. This is common in faulty 

sensors and is called a Byzantine failure. 

 

B. Application Failures 

Designing reliable software is an expensive 

process and the cost of debugging, testing and 

verifying can easily range from 50 to 75 percent of 

the total development cost. Even in well-tested 

software systems, bugs of varying severity are found. 

Pervasive computing includes commercial off the 

shelf applications that may not be well tested. In 

some situations, applications may work well as 

stand-alone software but may not inter-operate 

correctly or reliably with other software. Therefore, 

pervasive systems should make few reliability 

assumptions bout applications. Application failures 

include application crashes due to bugs, operating 

system errors, unhandled exceptions and faulty 

usage. Pervasive applications are also likely targets 

for malicious software such as viruses and worms. 

Viruses and worms cause fail-stop or Byzantine 

failures. 

 



  

International Journal of Computer & Organization Trends (IJCOT) –Volume 6 Issue 1– January to February 2016 

 ISSN: 2249-2593                                http://www.ijcotjournal.org                              Page 52 

C. Network Failures 

Pervasive systems consist of wired and 

wireless devices. Therefore, a reliable pervasive 

system should account for network failures caused 

by low signal strength, devices going out of range 

and unavailability of communication channels due to 

heavy traffic. Automatic detection of the failure type 

is an important issue in pervasive computing. 

 

D. Service Failures 

Essential services include naming, event 

and discovery services. Some pervasive systems 

support other services such as a trading service that 

enables device discovery, context services that 

enable context-aware computing and file system 

services for ubiquitous data access. Examples of 

service failures include service crashes due to bugs 

and operating system errors, faulty operation of 

services like sensing incorrect context, wrong 

inferring and lossy delivery of events. Service 

failures can potentially lead to failure of the 

pervasive system. 

 

III. IMPLICATIONS OF FAILURES 

Pervasive computing integrates digital devices 

seamlessly in our physical environment. Digital 

devices co-exist with physical devices to aid in 

accomplishing everyday tasks. 

  

 Hazard to Life 

 Inappropriate Resource Control and 

 Usage 

 Security Vulnerabilities 

 Inferring Incorrect Context 

 Challenges Facing Fault Tolerance 

 

IV. Challenges Facing Fault Tolerance 

Each new area poses its own set of 

challenges for which the past techniques have 

limited applicability. The fault tolerance issues in 

the pervasive computing are given below:   

 

A. Fault Detection 

Efficient fault detection is a tough 

challenge in a Pervasive system. An application or 

device that stops on failure can be detected through 

timeout techniques such as heartbeat messages. 

These heartbeat messages significantly add to the 

network traffic and the number of messages can 

overwhelm fault detectors. Further, network failures 

can lead to unreachable nodes making it complex to 

distinguish between entity failure and network 

failure. Byzantine fault detection is a tougher 

problem. The Byzantine fault model includes 

failures in which entities do not stop but operate 

incorrectly. Byzantine faults result in inferring 

incorrect context and inappropriate resource usage. 

Heartbeat messages cannot be used to detect all 

Byzantine faults, as entities do not stop sending 

heartbeats. 

 

B. Fault Containment 

Once a fault is identified, it should be 

isolated to prevent its propagation to other parts of 

the system. A pervasive system contains 

interdependent applications and services that 

communicate fosters fault propagation and makes 

fault containment a tough challenge.  

 

C. Transparent Fault Tolerance 

Pervasive computing as a system that 

blends in with the physical environment and whose 

functioning is transparent to the user. 

  

D. Good Fault Reporting Mechanisms 

When a fault cannot be tolerated, it should 

be reported to the user in a non-intrusive manner 

Faults can be reported through visual representation 

on display devices, audio representation on speakers 

or any other means that can be perceived by the 

human senses. 

 

V. Overview of the error tolerant architecture 

The architecture is in view of the principles 

of policy-driven systems which are applied in 

various adaptive systems. As error messages can be 

regarded as context in the pervasive computing 

system, policy-based scheme can be applied to 

regain a normal status for enhance the dynamic 

adaptation of error-tolerant approach. The design 

tenet of policy is based on the Separation of 

Concerns principle. For that reason, it can separate 

the error-tolerant logic (rules) from the 

implementations of error recover (programming 

code). Context data is provided by context-aware 

component, 

 Policy Parser matches all polices with the 

Context data and select the appropriate policy.  

 Then judge whether the conditions in the 

Context-Event table are met.  

 If they are met, Event Monitor triggered by 

relevant events and notifies Policy Executor.  

 Policy Executor will executes the 

predefined rules and lead to a change of the 

context information. 

 
Figure 1. The basic idea of the adaptation 

architecture. 

B. Process of Error Tolerance 

The process of error tolerance is given below: 



  

International Journal of Computer & Organization Trends (IJCOT) –Volume 6 Issue 1– January to February 2016 

 ISSN: 2249-2593                                http://www.ijcotjournal.org                              Page 53 

1. User defines the error policy, Policy Engine loads 

the policy file which is defined in XML. 

2. Monitor Service monitors the status of the 

component. In case there is a malfunction of certain 

component, it can create the platform context of 

component fault and modify the context value of 

component status in the context list. Moreover, it 

pushes events of component fault to Event Monitor; 

3. Event Monitor pushes the event to Policy 

Controller; 

4. Policy Parser queries the error tolerance rule via 

Context-event Table; 

5. Policy Executor executes the error tolerance 

action in the rule. 

 

VI. Policy based component error tolerance 

approach 

A.Extension of CCM Component Container for 

Component Fault Detection 

The CCM component container for supporting 

component error tolerance shown in fig 2.The 

infrastructure of CCM component container 

including increasing the context list, context-event 

table and Policy Executor for supporting the parse 

and handle of policy. Context list is a two-dimension 

table, which consists of component name, context 

name and the value of the context data. Context-

event table can describe the change of physical and 

information space. It includes the field of context 

name, event ID and event name. 

Policies are defined as a set of sophisticated rules 

which is described rules which are described in 

XML.They indicate the execution of action reacts in 

a specific context. The functionality of Policy 

Engine is monitoring the change of the value of 

Context and executing the predefined polices. It 

comprises the Event Monitor, Policy Executor, 

Policy Parser and POA (Portable Object Adapter). 

Policy Parser is a CORBA object, which is a 

XML parser. The functionality of Policy Parser is to 

match all polices in the Context Event Table and 

select the 

appropriate policy to dynamically generate the 

Policy Executor. 

Policy Executor is a two dimension pointer array. 

The first dimension is context name, and the second 

is a pointer which point to a group of CORBA 

objects and corresponding interfaces. The policy is 

storied as a structure of policy condition, action type, 

component name, method of component. Policy 

Executor can check the condition of policy is met, if 

it is true, the method of the component can be 

triggered by POA. 

Event Monitor can periodically monitor the 

change of value the Context List. When the change 

is detected, it judge whether the context event is in 

the Context Event Table, if it is false, insert the 

context event into Context Event List. 

 

 
 

Figure 2. Extension of CCM Component Container 

for Component Fault Detection 

B. Heartbeat scheme 

As timeout based heartbeat techniques can be 

applied widely to detect the stops or failures of 

devices or applications, we propose a heartbeat 

scheme to detect the  

status of components. The components subscribe the 

heartbeat event from the extended component 

container before starting. The context manager 

component will publish the heartbeat event 

periodically.When detected the component fault, the 

corresponding event is triggered. Moreover, Event 

Monitor notifies the Policy Executor to handle the 

error tolerant event. At last, the policy is activated 

via Policy Engine to reload or rest the failed 

component.  

 

VII. Error Tolerance Policy 

A) Component fault detection 

We have developed a fault tolerance technique that 

uses context information to tolerate component 

faults. For the support of the error tolerance policy, 

we define platform context to describe the status of 

the component. The platform context is defined as a 

two tuple<Contextid,Value> Contextid indicates the 

name of the component, and Value gives the content 

of the status of the component which is “Running”, 

“Idle” or “Failure”. As fail-silence can be regarded 

as producing the proper output, a detectably invalid 

output, or no output, the extension of CCM 

Component Container provides a runtime 

environment with specific fail-silence detection 

mechanisms that provide error detection user 

applications. Each component sends a periodic 

heartbeat message to Context List informing that it 

is alive. Once the component fault is detected, it 

sends these monitored data to context list. 

 

A) Policy driven component recovery 

The adaptation error recovery policy consists in a set 

of rules, each of the form Event Condition Action 

form. The event part indicates the circumstances 

when a rule is to be triggered; 



  

International Journal of Computer & Organization Trends (IJCOT) –Volume 6 Issue 1– January to February 2016 

 ISSN: 2249-2593                                http://www.ijcotjournal.org                              Page 54 

_ Conditions are constraints on the action and 

environment, evaluated when a rule is triggered to 

determine whether the action should be carried out. 

_ Action is a (sequence of) operation(s) of 

components which are applied to the system when 

the rule is actuated. 

There are two cases of component self-healing. One 

is to be healed by itself. In case of typical faults like 

abrupt change of memory status or processor speed 

or signal strength, Policy Executor simply restarts 

the component by executing the error tolerance 

action in the rule. To treat the unusual behavior 

(abrupt change of memory status or processor speed 

or signal strength) of the system due to the use of 

any specific application, Policy Engine simply 

deactivated that component without notifying the 

user. The other approach is to choose the 

substitutable component. There are two cases of 

choosing the substitutable component. One is 

occurred in the local component container. The 

second is in the remote component container. 

 

 VIII. Conclusion 

Transparency is an important characteristic 

of pervasive computing. If pervasive computing has 

to be sustainable, it should be unobtrusive and its 

faults transparent to the user. The policy mechanism 

is based on not only event condition action rules, but 

also the Separation of Concerns principle for easily 

extensible to support the error recovery scheme. The 

proposed error recovery policy indicates the rules 

that govern how to recover the component. Thus, the 

policy should be flexible enough to accommodate 

changing contexts and this makes error tolerance 

management in we have presented policy based 

adaptive error recovery scheme for pervasive 

computing.  

 
IX. ACKNOWLEDGEMENT 

We would like to convey our gratitude to Sri. P. 

Bhaskara Rao, Retd. Teacher, India, Nune Srinivas, 

faculty of SECE,  Mrs. Pendem Padmaja, India, a 

special thanks to Mr. P.V. Subrahmanyeswara Rao 

and Daniel Head ITSC under School of ITSC in 

AAiT Addis ababa University, Ethiopia befor their 

technical support to realize the this proposal 

discussed in this paper. 

 

 

X. REFERENCES 
[1] Avizienis A. Design of fault-tolerant computers. In: 

Proceedings of AFIPS Conf erence. Washington D C: 

Thompson Books, 1967. 31: 7,33-43. 

[2] Shiva Chetan, Anand Ranganathan, Campbell, Roy. 
Towards fault tolerance pervasive computing, IEEE 

Technology and Society Magazine,2005 Spring, 38-44. 

[3]  Eung-Nam Ko. An adaptive fault tolerance for situation-
aware ubiquitous computing, Third ACIS Int'l 

Conference on Software Engineering Research, 

Management and Applications (SERA’05), 144-149. 
[4]  Byoung uk Kim, Y. Al-Nashif, S. Fayssal, S. Hariri, M. 

Yousif, Anomaly-based Fault Detection in Pervasive 

Computing System, Proceedings of the 5th international 

conference on Pervasive services(ICPS’08), July 6–10, 

2008, Sorrento, Italy,147-155. 
[5] Christof Fetzer, Karin Hogstedt, Self*:A Data-Flow 

Oriented Component Framework for Pervasive 

Dependability, Proceedings of the 8th International 
Workshop on Object-Oriented Real-Time Dependable 

Systems, 2003. (WORDS 2003). Jan 15-17, 2003 January, 

2003, pp.67-73.68 
[6] Lamport, Shostak and Pease, “The Byzantine Generals 

Problem”, in Advances in Ultra-Dependable Distributed 

Systems, N.Suri, C.J.Walter, and M.M.Huue(Eds.) IEEE 
Computer Society Press. 1995. 

[7] M.Satyanarayanan, “Pervasive Computing: Vision and 

Challengges”, IEEE Personal Communications, pp.10-17, 
Aug. 2001. 

 

 

 

 


