

International Journal of Computer & Organization Trends (IJCOT) –Volume 6 Issue 1– January to February 2016

ISSN: 2249-2593 http://www.ijcotjournal.org Page 45

A Novel Secured Data Transmission Model

with Load Balancing for Cloud Computing
N.Madhavi Latha, Y.Pavan Narasimha Rao

M.tech Scholar, Assistant professor

RamaChandra college of engineering, India

Abstract

Cloud computing is a distribute network for storing

and sharing information over internet with

scalability. Information security is one the major

issue faced by cloud users and service providers.

Data retrieval and security are major issues which

block clients to adopt clud computing. Also, cloud

servers enables the clients to store information on

remote servers thereby preventing third party attacks

over this data. The main objective of our research

work is to store,transmit and extract data in a secure

channel.In this proposed model,secured data

transmission model using data integrity approach

was implemented. Experimental results proved that

the proposed integrity model has high accuracy

compared to traditional data transmission models.

Index Terms— cloud server, data integrity, secure

transmission.

I. INTRODUCTION

 Cloud computing is utilized for the administrations

and applications which keep running on an

appropriated system utilizing virtualized assets and

got to by basic Web conventions and systems

administration guidelines.

Amazon Web Services: One of the best cloud-based

organizations is Amazon Web Administrations, which

is an Infrastructure as a Service offering that gives

you a chance to lease virtual PCs all alone foundation.

These new capacities empower applications to be

composed and conveyed with insignificant cost and to

be quickly scaled and made accessible worldwide as

business conditions grant. This is genuinely a

progressive change in the way venture processing is

made and sent [2]. The most recent decades have

fortified the thought that data preparing should be

possible all the more effectively midway, on

extensive homesteads of processing and stockpiling

frameworks open through the Internet. Progressions

in systems administration and different territories are

in charge of the acknowledgement of the two new

processing models and prompted the framework

registering development in the mid 1990s and, since

2005, to utility figuring and distributed computing.

LiteGreen, a method to accumulate desktop power by

virtualizing the users desktop computing background

being a practical machine (virtual machine) then

migrate it connecting the users objective desktop

machine as well as a Virtual machine server,

depending upon if the desktop computing

environment continues to be actively used or is

inactive. Thus, the users desktop back ground is

always on, maintaining its net existencel completely

no matter if the users physical desktop machine is

shifted and thereby cutback power.

Figure 1 shows an illustration of the front entry

design for connection concentrated Internet

applications. Users, from side to side dedicated

customers, applets, or browser plugins, subject login

requests towards the repair cloud. These login needs

primary arrive at send off server, which picks

appreciable link server and give back its Internet

protocol address onto the customer. The customer

after that immediately connect with the connection

server. The connection server ensures the buyer so if

succeeded, a exist TCP link is maintained involving

the customer and of course the connection server till

the customer logs off.

Fig 2.Connection Server Architecture

The TCP connection is normally designed to renew

user status (e.g. on-line, busy, off-line, etc.) in order

to redistribute additional actions such as conversation

and multimedia conferencing to other backend

servers. In favor of the application level, each

connection server is dependant upon two main

constraints: the utmost login rate plus the highest

International Journal of Computer & Organization Trends (IJCOT) –Volume 6 Issue 1– January to February 2016

ISSN: 2249-2593 http://www.ijcotjournal.org Page 46

range of sockets it may host. A latest user login rate L

is defined as the quantity of latest connection

requirements than a connection server processes

inside a second. A restriction on login rate Lmax is

about to guard CS as well as additional backend

services.

II. RELATED WORK

The Dynamic two-phase commit protocol is a

variation of Tree 2PC with no foreordained organizer.

Understanding messages are sent by every endless

supply of the exchange (getting to be prepared). The

organizer is resolved progressively by a hustling

assertion of messages at the hub where the messages

impact. Messages may impact either at an exchange

tree hub, or at an edge. In the recent case one of the

two edge's hubs is chosen as a facilitator. D2PC is

time ideal (among all the examples of a particular

exchange tree, and any particular Tree 2PC protocol

execution; all occasions have the same tree; every

occasion has an alternate hub as organizer): it submits

the facilitator and every associate in least conceivable

time, permitting a brief arrival of bolted assets.

D2PC is an adjustment of T2PC where the CC is

progressively dictated by dashing READY (YES

vote) messages, on an each exchange premise, as

opposed to being settled, foreordained. For any given

exchange D2PC emulates some example of T2PC.

We later see that this occasion is ideal (in the

arrangement of all cases for a same exchange) in the

accompanying sense: It executes the confer choice

(i.e., finishes stage 1 of 2PC) in least time. It confers

every member in least time.

Fig 1. High level liteGreen Architecture

Fig 1 shows the high-level architecture of LiteGreen.

The desktop computing communication is enlarged

by using a Virtual machine server as well as a

common storage node[8]. Generally, present strength

be numerous Virtual machine server and/or common

storage node. These all essentials are attached by a

high speed local area network which can include

Gigabit Ethernet. Each desktop machine in addition to

server manage a hypervisor. The hypervisor toward

the desktop machine hosts a virtual machine a

situation where the client OS runs. This virtual

machine is migrated towards the server as soon as the

user is not just active as well as having the desktop is

place to slumber. The users desktop the common

storage node, that's also public with the server. The

hypervisor according to the server invites the guest

virtual machines that might be migrated with it from

(idle) desktop machines. The server also contains a

controller, which is the simple mind of LiteGreen.

The manager receives constant updates from stubs

toward the desktop hypervisors toward the grade of

user and computing action according to the desktops.

The manager also tracks reserve convention

according to the server. By this every part of inorder,

the regulator orchestrate the movement of virtual

machines towards the server and to the desktop

machines, and manages the allocation of resources

according to the server [1-4]. These data should be

secured and information should not be loss in one or

the other way. In this project the main work is to

protect the data of users. The data which are

transacted from the cloud storage area should also be

done in more safely manner without giving harm to

anyone. Transactional Security should be maintained

for cloud transaction in order to protect the

transactions. have given the authorization based

secure data transactions in cloud computing which

identify multiple consistencies issue that can emerge

during cloud host transaction process by using week

consistency model. He used the algorithm for

maintaining the security in different transactions.

They identify multiple consistencies issue that can

emerge during cloud host transaction process by

using week consistency model especially that policy

based authority systems are use to apply access

control and elaborated a change of lightweight proof

enforcement and consistency model defer, punctual,

incremental and continue proofs with the view are

global consistency then can apply increase the strong

protection with the minimum run time overheads. The

proof and status it’s corrected and collects over the

expended a point of time duration below the threat of

process an authority policy of the client confident

actuality not available circumstances.

International Journal of Computer & Organization Trends (IJCOT) –Volume 6 Issue 1– January to February 2016

ISSN: 2249-2593 http://www.ijcotjournal.org Page 47

Proposed Solution:

Step 1: Create instance job name.

Step 2; Create Job size.

 Required powerconsumption=(max power of

the processor * required workload)/ 100;

 If(job_powerconsumption<threshold)

 Monitor job status or add to queue.

 Else

 Go to Step 3.

Step 3: Job security requirements.

 User enters Key pair details of the job.

 If(user_key_id==null or

user_key_value==null)

 Stop creating job.

 Else

 Store job security details in cloud.

Step 4: Execute Load balancing Algorihtm.

Step 4: Execute VIRTUAL MACHINE control

method.

Load balancing Algorithm:

Application usage data: AUD

Application request Service :ARS

Available Resource: AR

1. Input: AUD(AR,ARS)

2. availableVIRTUAL MACHINEList //list of

available VIRTUAL MACHINEs form each

cloud

3. usedVIRTUAL MACHINEList //list of VIRTUAL

MACHINEs,currently provision to

certain job

4. deployableVirtual machine=null

5. if size(usedVIRTUAL

MACHINEList)=size(availbleVIRTUAL

MACHINEList) then

6. clear usedVIRTUAL MACHINEList

7. End if

8. for virtual machine in (AUD,AR,ARS) do

9. if virtual machine not in usedVIRTUAL

MACHINEList then

10. Add VIRTUAL MACHINE to usedVIRTUAL

MACHINEList

11. deployableVirtual machine= virtual machine

12. Break

13. End if

14. End for

15. Save deployableVirtual machine

16. Calculate load balance probable control limit

value as:

 Upper control

limit(UCL)=AR+ (corr 3*)*ARSX X

(3*)*ARSX X 

 Control Limit(CL)=AR+ Corr*ARS

 Lower Control

Limit(LCL)= AR+

(Corr 3*)*ARSX X

17 Return Bounded values and deployableVirtual

machine.

Fig 3: Proposed work flow

In its operations, in order to identify how to stable the

load among the virtual machines it first finds out the

number of available running virtual machines in the

data centre (line 2). In the next step, it gets a record of

virtual machines which are previously allocated to job

i.e. list of used virtual machines. (line 3). It clears the

list if this list is equal to the number of running virtual

machines, because that means all the virtual machines

are at present allocated to some applications (lines 4-

7). Therefore, the first virtual machine from the

appropriate and available virtual machine list can be

selected for the deployment of the new job request.

Lastly, the choosen virtual machine will be additional

to the record of old virtual machines so that the load-

balancer will not opt for it in the next iteration (lines

8-15).

International Journal of Computer & Organization Trends (IJCOT) –Volume 6 Issue 1– January to February 2016

ISSN: 2249-2593 http://www.ijcotjournal.org Page 48

Cloud server Control Mechanism

admissionControl() {

1. If (there is any initiated virtual machine)

2. For each virtual machinei in each resource

provider rp j

3. {

4. If (! canWait(unew, virtual machinei)) {

5. continue;

6. }

7. Else If (! canInitiateNew(unew, rp j))

8. Return reject

9. If (PotentialScheduleList is empty)

10. Return reject

11. Else {

12. Get the list of Virtual machine requests

13. Monitor the usage details

14. Get the Load balancing details

15. List Available virtual machine in virtual

machine set .

16. If(LCL<=virtual machine.getUsageData and

virtual machine.NumberofResources

<=UCL)

17. Return accept

18. Else

19. Return reject

20. }

21. }

III. EXPERIMENTAL RESULTS

Experiments are performed by means of the

configurations Intel(R) Core(TM)2 CPU 2.13GHz, 2

GB RAM, and the OS platform is Microsoft

Windows XP Professional (SP2).

 Fig 4: Get instances in the cloud

 Fig 5: Create an instance in the cloud

Fig 6: Initializing the instances

 Fig 7: Get the cloud usage statistics

Instance results :[{ReservationId: r-

a6e28351,OwnerId: 751633946423,Groups:

[],GroupNames: [],Instances: [{InstanceId: i-

d1282a14,ImageId: ami-5189a661,State: {Code:

International Journal of Computer & Organization Trends (IJCOT) –Volume 6 Issue 1– January to February 2016

ISSN: 2249-2593 http://www.ijcotjournal.org Page 49

80,Name: stopped},PrivateDnsName: ip-172-31-46-

33.us-west-2.compute.internal,PublicDnsName:

,StateTransitionReason: User initiated (2015-10-07

02:04:17 GMT),KeyName:

HadoopClusterKey,AmiLaunchIndex:

1,ProductCodes: [],InstanceType:

m4.large,LaunchTime: Tue Oct 06 23:52:46 IST

2015,Placement: {AvailabilityZone: us-west-

2b,GroupName: ,Tenancy: default},Monitoring:

{State: disabled},SubnetId: subnet-babcaed8,VpcId:

vpc-805d4fe2,PrivateIpAddress:

172.31.46.33,StateReason: {Code:

Client.UserInitiatedShutdown,Message:

Client.UserInitiatedShutdown: User initiated

shutdown},Architecture: x86_64,RootDeviceType:

ebs,RootDeviceName:

/dev/sda1,BlockDeviceMappings:

[],VirtualizationType: hvm,ClientToken:

ParsH1443151317446,Tags: [{Key:

SecurityAlg,Value: ParallelCG}, {Key: Name,Value:

ParallelMasterNode}],SecurityGroups:

[{GroupName: SecurityData,GroupId: sg-

899e09ed}],SourceDestCheck: true,Hypervisor:

xen,NetworkInterfaces: [{NetworkInterfaceId: eni-

fb19629d,SubnetId: subnet-babcaed8,VpcId: vpc-

805d4fe2,Description: ,OwnerId:

751633946423,Status: in-use,PrivateIpAddress:

172.31.46.33,PrivateDnsName: ip-172-31-46-33.us-

west-2.compute.internal,SourceDestCheck:

true,Groups: [{GroupName: SecurityData,GroupId:

sg-899e09ed}],Attachment: {AttachmentId: eni-

attach-739c2278,DeviceIndex: 0,Status:

attached,AttachTime: Fri Sep 25 08:51:57 IST

2015,DeleteOnTermination:

true},PrivateIpAddresses: [{PrivateIpAddress:

172.31.46.33,PrivateDnsName: ip-172-31-46-33.us-

west-2.compute.internal,Primary:

true,}]}],EbsOptimized: true}, {InstanceId: i-

d0282a15,ImageId: ami-5189a661,State: {Code:

80,Name: stopped},PrivateDnsName: ip-172-31-46-

32.us-west-2.compute.internal,PublicDnsName:

,StateTransitionReason: User initiated (2015-09-25

13:22:13 GMT),KeyName:

HadoopClusterKey,AmiLaunchIndex:

0,ProductCodes: [],InstanceType:

m4.large,LaunchTime: Fri Sep 25 08:51:57 IST

2015,Placement: {AvailabilityZone: us-west-

2b,GroupName: ,Tenancy: default},Monitoring:

{State: disabled},SubnetId: subnet-babcaed8,VpcId:

vpc-805d4fe2,PrivateIpAddress:

172.31.46.32,StateReason: {Code:

Client.UserInitiatedShutdown,Message:

Client.UserInitiatedShutdown: User initiated

shutdown},Architecture: x86_64,RootDeviceType:

ebs,RootDeviceName:

/dev/sda1,BlockDeviceMappings:

[],VirtualizationType: hvm,ClientToken:

ParsH1443151317446,Tags: [{Key:

SecurityAlg,Value: ParallelCG}, {Key: Name,Value:

SlaveNode}],SecurityGroups: [{GroupName:

SecurityData,GroupId: sg-

899e09ed}],SourceDestCheck: true,Hypervisor:

xen,NetworkInterfaces: [{NetworkInterfaceId: eni-

fa19629c,SubnetId: subnet-babcaed8,VpcId: vpc-

805d4fe2,Description: ,OwnerId:

751633946423,Status: in-use,PrivateIpAddress:

172.31.46.32,PrivateDnsName: ip-172-31-46-32.us-

west-2.compute.internal,SourceDestCheck:

true,Groups: [{GroupName: SecurityData,GroupId:

sg-899e09ed}],Attachment: {AttachmentId: eni-

attach-719c227a,DeviceIndex: 0,Status:

attached,AttachTime: Fri Sep 25 08:51:57 IST

2015,DeleteOnTermination:

true},PrivateIpAddresses: [{PrivateIpAddress:

172.31.46.32,PrivateDnsName: ip-172-31-46-32.us-

west-2.compute.internal,Primary:

true,}]}],EbsOptimized: true}]}]You have 2 Amazon

EC2 instance(s) running.

Datasize
TransferTIme

Existing(s)

TransferTime

Proposed(s)

1M 55 37

2M 124 87

3M 198 167

4M 278 243

5M 326 298

Instances Vs TimeToStart

0

1000

2000

3000

4000

5000

6000

Ins1 Ins2 Ins4

Instances

T
im

e
(m

s
)

EInstanceTime

PInstanceTime

 Chart 1: Graph displays the comparison between the

number of instances Vs instance initialization time.

IV. CONCLUSION AND FUTURE SCOPE

In cloud environment instances, application

deployment, volume creation and their security

groups are created, for each instance creation, load

balancing are verified in cloud environment. Virtual

machine creation and application deployment had

been done by using Amazon Web Services. In this

research work, we have successfully store,transmit

and extract data in a secured channel.In this proposed

model,secured data transmission model using data

integrity approach was implemented. Experimental

results proved that the proposed integrity model has

high accuracy compared to traditional data

International Journal of Computer & Organization Trends (IJCOT) –Volume 6 Issue 1– January to February 2016

ISSN: 2249-2593 http://www.ijcotjournal.org Page 50

transmission models. In future we may provide

security to those properties by allowing access to

authenticated users. In future this work can be

optimized by using different operating systems.

V. REFERENCES

[1] G. Czajkowski and L. Dayn´es. Multitasking without

compromise: a virtual machine evolution. ACM SIGPLAN
Notices, 36(11):125.138, Nov. 2001. Proceedings of the 2001

ACM SIGPLAN Conference on Object Oriented

Programming, Systems, Languages and Applications
(OOPSLA 2001).

[2] S. Devine, E. Bugnion, and M. Rosenblum. Virtualization
system including a virtual machine monitor for a computer

with a segmented architecture. US Patent, 6397242, Oct.

1998.

[3] CHEN, Y., DAS, A., QIN, W., SIVASUBRAMANIAM, A.,

WANG, Q., AND GAUTAM, N. Managing server energy

and operational costs in hosting centers. In In Proceedings of
the International Conference onMeasurement and Modeling

of Computer Systems (2005).

[4] DOYLE, R., CHASE, J., ASAD, O., JIN, W., AND
VAHDAT, A. Model- Based Resource Provisioning in aWeb

Service Utility. In In Proceedings of the 4th USENIX

Symposium on Internet Technologies and Systems (2003).
[5] ELNOZAHY, M., KISTLER, M., AND RAJAMONY, R.

Energy conservation policies for web servers. In USITS

(2003).
[6] D. Reed, I. Pratt, P. Menage, S. Early, and N. Stratford.

Xenoservers: accounted execution of untrusted code. In

Proceedings of the 7th Workshop on Hot Topics in Operating
Systems, 1999.

[7] J. S. Robin and C. E. Irvine. Analysis of the Intel Pentium's

ability to support a secure virtual machine monitor. In
Proceedings of the 9th USENIX Security Symposium, Denver,

CO, USA, pages 129.144, Aug. 2000.

[8] LiteGreen: Saving Energy in Networked Desktops Using
Virtualization ,Tathagata Das.

