A Study on Intuitionistic Anti L-Fuzzy Normal M-Subgroups

P. Pandiammal

Associate Professor, Department of Mathematics, PSNA College of Eng., & Tech., Dindigul, Tamil Nadu, India

Abstract–In this paper, we introduce the concept of intuitionistic anti L-fuzzy normal M- subgroups and investigate some related properties.

Keywords: Intuitionistic fuzzy subsets; Intuitionistic anti fuzzy subgroups; Intuitionistic anti L-fuzzy Msubgroups; Intuitionistic anti L-fuzzy normal Msubgroups; M- homomorphism.

I. INTRODUCTION

A fuzzy set theory has developed in many directions and finding application in a wide variety of fields. Zadeh'sclassicalpaper [20] of 1965 introduced the concepts of fuzzysets and fuzzy set operations. The study of fuzzy groups wasstarted by Rosenfeld [16] and it was extended by Roventa [17]who have introduced the concept of fuzzy groups operatingon fuzzy sets and many researchers [1,7,9,10] are engaged inextending the concepts. The concept of intuitionistic fuzzy setwas introduced by Atanassov. K.T [2,3], as a generalization of the notion of fuzzy sets. Choudhury. F.P et al [6] defined afuzzy subgroup and fuzzy homomorphism. Palaniappan. N and Muthuraj, [11] defined the homomorphism, anti-homomorphism of a fuzzy and an anti-fuzzy subgroups. Pandiammal. P, Natarajan. R andPalaniappan. N, [13] defined the homomorphism, anti-homorphism of an anti L-fuzzy defined M-subgroup.**Pandiammal. P**,[14] the anti-homomorphism homomorphism, of an intuitionistic anti L-fuzzy M-subgroups. In this paper weintroduce and discuss the algebraic nature of intuitionisticanti L-fuzzy normal M-subgroups with operator and obtain some relatedresults.

II. PRELIMINARIES

2.1 Definition: Let G be a M-group. AL-fuzzy subset A of G is said to be **anti L-fuzzyM-subgroup** (ALFMSG) of G if its satisfies the following axioms:

(i) $\mu_A(mxy) \leq \mu_A(x) \lor \mu_A(y)$,

(ii) $\mu_A(x^{-1}) \leq \mu_A(x)$, for all x and y in G.

2.2 Definition: Let (G, \cdot) be a M-group. An intuitionistic L-fuzzy subset A of G is said to be an

intuitionistic L-fuzzy M-subgroup (ILFMSG) of G if the following conditions are satisfied: (i) $\mu_A(mxy) \ge \mu_A(x) \land \mu_A(y)$, (ii) $\mu_A(x^{-1}) \ge \mu_A(x)$,(iii) $\nu_A(mxy) \le \nu_A(x) \lor \nu_A(y)$,

(iv) $v_A(x^{-1}) \le v_A(x)$, for all x & y in G.

2.3Definition: Let (G, \cdot) and (G', \cdot) be any two Mgroups. Let $f: G \to G'$ be any function and A be an intuitionistic L-fuzzy M-subgroup in G, V be an intuitionistic L-fuzzy M-subgroup in f (G) = G',

defined by
$$\mu_V(y) = \sup_{x \in f^{-1}(y)} \mu_A(x)$$
 and $\nu_V(y) = \inf_{x \in f^{-1}(y)} \mu_A(x)$

 $v_A(x)$, for all x in G and y in G¹. Then A is called a preimage of V under f and is denoted by f⁻¹(V).

2.4 Definition: Let A and B be any two intuitionistic L-fuzzy subsets of sets G and H, respectively. The product of A and B, denoted by AxB, is defined as $AxB = \{ \langle (x, y), \mu_{AxB}(x, y), \nu_{AxB}(x, y) \rangle / \text{ for all } x \text{ in G and } y \text{ in H } \}$, where $\mu_{AxB}(x, y) = \mu_A(x) \land \mu_B(y)$ and $\nu_{AxB}(x, y) = \nu_A(x) \lor \nu_B(y)$.

2.5Definition: Let A and B be any two intuitionistic L-fuzzy M-subgroups of a M-group (G, \cdot). Then A and B are said to be **conjugate intuitionistic L-fuzzyM-subgroups** of G if for some g in G, $\mu_A(x) = \mu_B(g^{-1}xg)$ and $\nu_A(x) = \nu_B(g^{-1}xg)$, for every x in G.

2.6 Definition: Let A be an intuitionistic L-fuzzy subset in a set S, the **strongest intuitionistic L-fuzzy relation** on S, that is an intuitionistic L-fuzzy relation on A is V given by $\mu_V(x, y) = \mu_A(x) \wedge \mu_A(y)$ and $\nu_V(x, y) = \nu_A(x) \vee \nu_A(y)$, for all x and y in S.

III. INTUITIONISTIC ANTI L-FUZZY NORMAL M-SUBGROUPS

3.1Defintion: An intuitionistic fuzzy subset μ in a groupG is said to be an intuitionistic anti fuzzy subgroup of G if the following axioms are satisfied.

(i) $\mu_A(xy) \le \mu_A(x) \lor \mu_A(y)$, (ii) $\mu_A(x^{-1}) \le \mu_A(x)$, (iii) $\nu_A(xy) \ge \nu_A(x) \land \nu_A(y)$, (iv) $v_A(x^{-1}) \ge v_A(x)$, for all x and y in G.

3.2 Proposition: Let G be a group. An intuitionistic fuzzysubset μ in a group G is said to be an intuitionistic anti fuzzysubgroup of G if the following conditions are satisfied.(i) $\mu_A(xy) \le \mu_A(x) \lor \mu_A(y)$, (ii) $\nu_A(xy) \ge \nu_A(x) \land \nu_A(y)$, for all x, y inG.

3.3 Definition: Let G be an M-group and μ be an intuitionistic anti fuzzy group of G. If $\mu_A(mx) \leq \mu_A(x)$ and $\nu_A(mx) \geq \nu_A(x)$ for all x inG and m in M then μ is said to be an intuitionistic anti fuzzy subgroup with operator of G. We use the phrase μ is an intuitionisticanti L-fuzzy M-subgroup of G.

3.4 Example: Let H be M-subgroup of an M-group Gand let $A = (\mu_A, \nu_A)$ be an intuitionistic fuzzy set in Gdefined by

$$0.3 ; x \in H$$

$$\mu_A(x) =$$

$$0.5; \text{ otherwise}$$

$$0.6; x \in H$$

$$v_A(x) =$$

$$0.3; \text{ otherwise}$$

For all x in G. Then it is easy to verify that $A = (\mu_A, \nu_A)$ is an anti fuzzy M- subgroup of G.

3.5 Definition: Let A and B be any two intuitionistic anti L-fuzzy M-subgroups of a M-group (G, \cdot). Then A and B are said to be **conjugate intuitionistic antiL-fuzzy normal M-subgroups** of G if for some g in G, $\mu_A(x) = \mu_B(g^{-1}xg)$ and $\nu_A(x) = \nu_B(g^{-1}xg)$, for every x in G.

3.6 Definition: Let A and B be any two intuitionistic L-fuzzy subsets of sets G and H, respectively. The product of A and B, denoted by AxB, is defined as $AxB = \{ \langle (x, y), \mu_{AxB}(x, y), \nu_{AxB}(x, y) \rangle / \text{ for all } x \text{ in G and y in H } \}$, where $\mu_{AxB}(x, y) = \mu_A(x) \lor \mu_B(y)$ and $\nu_{AxB}(x, y) = \nu_A(x) \land \nu_B(y)$.

3.7Definition: Let A and B be any two intuitionistic L-fuzzy M-subgroups of a M-group(G, \cdot). Then A and B are said to be conjugate intuitionistic L-fuzzy M-subgroups of G if for some g in G, $\mu_A(x) = \mu_B(g^{-1}xg) \& v_A(x) = v_B(g^{-1}xg)$, for every x in G.

3.8 Definition: Let (G, \cdot) be a M-group. An intuitionistic L-fuzzy M-subgroup A of G is said to be an intuitionistic Anti L-fuzzy normal M-subgroup (IALFNMSG) of G if the following conditions are satisfied:

(i)
$$\mu_A(xy) = \mu_A(yx)$$
,

(ii) $v_A(xy) = v_A(yx)$, for all x and y in G.

3.9 Definition: An intuitionistic L-fuzzy subset A of a set X is said to be **normalized** if there exist x in X such that $\mu_A(x) = 1$ and $\nu_A(x) = 0$.

3.10Definition: Let (G, \cdot) be a M-group. An intuitionistic L-fuzzy M-subgroup A of G is said to be an **intuitionistic L-fuzzy characteristic M-subgroup (ILFCMSG)** of G if the following conditions are satisfied:

(i) $\mu_A(x) = \mu_A(f(x))$,

(ii) $v_A(x) = v_A(f(x))$, for all x in G and f in AutG.

3.SOME PROPERTIES OF INTUITIONISTIC L-FUZZY NORMAL M-SUBGROUPS

3.1 Theorem : If A and B are two intuitionisticanti L-fuzzy M-subgroups of M-groups G, then their intersection $A \cap B$ is an intuitionistic antiL-fuzzy M-subgroup of a M-group G.

3.2 Theorem: The intersection of a family of intuitionistic anti L-fuzzy M-subgroups of M-group G is an intuitionistic anti L-fuzzy M-subgroup of a M-group G.

3.3 Theorem :If A and B are intuitionistic antiL-fuzzy M-subgroups of the M-groups G and H, respectively, then AxB is an intuitionistic antiL-fuzzy M-subgroup of GxH.

3.4 Theorem: Let an intuitionistic anti L-fuzzy M-subgroup A of a M-group G be conjugate to an intuitionistic anti L-fuzzy M-subgroup M of G and an intuitionistic anti L-fuzzy M-subgroup B of a M-group H be conjugate to an intuitionistic antiL-fuzzy M-subgroup N of H. Then an intuitionistic anti L-fuzzy M-subgroup AxB of a M-group GxH is conjugate to an intuitionistic anti L-fuzzy M-subgroup MxN of GxH.

3.5 Theorem: Let A and B be intuitionistic anti L-fuzzy subsets of the M-groups G and H, respectively. Suppose that e and e 'are the identity elements of G and H, respectively. If AxB is an intuitionistic anti L-fuzzy M-subgroup of GxH, then at least one of the following two statements must hold.

(i) $\mu_B(e^l) \leq \mu_A(x) \text{ and } \nu_B(e^l) \geq \nu_A(x), \text{ for all } x \text{ in } G,$

(ii) $\mu_A(e) \leq \mu_B(y)$ and $\nu_A(e) \geq \nu_B(y)$, for all y in H.

3.6 Theorem: Let A and B be intuitionistic anti L-fuzzy subsets of the M-groups G and H, respectively and AxB is an intuitionistic anti L-fuzzy M-subgroup of GxH. Then the following are true :

- (i) $if\mu_A(x) \le \mu_B(e^l)$ and $\nu_A(x) \ge \nu_B(e^l)$, then A is an intuitionistic L-fuzzy Msubgroup of G.
- (ii) $if\mu_B(x) \le \mu_A(e)$ and $\nu_B(x) \ge \nu_A(e)$, then B is an intuitionistic L-fuzzy M-subgroup of H.
- (iii) either A is an intuitionistic anti L-fuzzy M-subgroup of G or B is an intuitionistic anti L-fuzzy M-subgroup of H, where e and e¹ are the identity elements of G and H, respectively.

3.7 Theorem: Let (G, \cdot) and (G', \cdot) be any two Mgroups. Thehomomorphic image of an intuitionistic anti L-fuzzy M-subgroup of G is an intuitionistic anti L-fuzzy M-subgroup of G¹.

3.8 Theorem: Let (G, \cdot) and (G', \cdot) be any two Mgroups. The homomorphic pre-image of an intuitionistic anti L-fuzzy M-subgroup of G' is an intuitionistic anti L-fuzzy M-subgroup of G.

3.9 Theorem: Let (G, \cdot) and (G', \cdot) be any two Mgroups. The anti-homomorphic image of an intuitionistic anti L-fuzzy M-subgroup of G is an intuitionistic anti L-fuzzy M-subgroup of G¹.

3.10 Theorem: Let (G, \cdot) and (G', \cdot) be any two M-groups. The anti-homomorphic pre-image of an intuitionistic anti L-fuzzy M-subgroup of G' is an intuitionistic anti L-fuzzy M-subgroup of G.

3.11 Theorem: Let A be an intuitionistic antiL-fuzzy M-subgroup of a M-group H and f is an isomorphism from a M-group G onto H. Then $A \circ f$ is an intuitionistic anti L-fuzzy M-subgroup of a M-group G.

3.12 Theorem: Let A be an intuitionistic anti L-fuzzy M-subgroup of a M-group H and f is an antiisomorphism from a M-group G onto H. Then $A\circ f$ is an intuitionistic anti L-fuzzy M-subgroup of a M-group G.

3.13 Theorem: Let (G, \cdot) be a M-group. If A and B are two intuitionistic anti L-fuzzy normal M-subgroups of G, then their intersection $A \cap B$ is an intuitionistic anti L-fuzzy normal M-subgroup of G.

Proof: Let x and y in G and A = { $\langle x, \mu_A(x), \nu_A(x) \rangle / x \in G$ } and B = { $\langle x, \mu_B(x), \nu_B(x) \rangle / x \in G$ } be an intuitio3nistic anti L-fuzzy normal M-subgroups of G.

Therefore, $\mu_C(xy) = \mu_C(yx)$, for all x and y in G. And, $\nu_C(xy) = \nu_A(xy) \wedge \nu_B(xy) = \nu_A(yx) \wedge \nu_B(yx) = \nu_C(yx)$.

Therefore, $v_C(xy) = v_C(yx)$, for all x and y in G. Hence $A \cap B$ is an intuitionistic anti L-fuzzy normal M-subgroup of a M-group G.

3.14 Theorem: Let (G, \cdot) be a M-group. The intersection of a family of intuitionistic antiL-fuzzy normal M-subgroups of G is an intuitionistic anti L-fuzzy normal M-subgroup of G.

Proof: Let $\{A_i\}_{i \in I}$ be a family of intuitionistic anti L-fuzzy normal M-subgroups of a Mgroup G and $A = \bigcap_{i \in I} A_i$. Then for x and y in G, clearly the intersection of a family of intuitionistic

anti L-fuzzy M-subgroups of a M-group G is an intuitionistic anti L-fuzzy M-subgroup of a M-group

G. Now,
$$\mu_A(xy) = \sup_{i \in I} \mu_{A_i}(xy) = \sup_{i \in I}$$

 $\mu_{A_i}(yx) = \mu_A(yx). \text{ Therefore, } \mu_A(xy) = \mu_A(yx), \text{ for all}$ x and y in G. And, $\nu_A(xy) = \inf_{i \in I} \nu_{A_i}(xy) = \inf_{i \in I}$

 $v_{A_i}(yx) = v_A(yx)$. Therefore, $v_A(xy) = v_A(yx)$, for all x and y in G. Hence the intersection of a family of intuitionistic anti L-fuzzy normal M-subgroup of a M-group G is an intuitionistic anti L-fuzzy normal M-subgroup of a M-group G.

3.15 Theorem: If A is an intuitionistic anti L-fuzzy characteristic M-subgroup of a M-group G, then A is an intuitionistic anti L-fuzzy normal M-subgroup of a M-group G.

Proof: Let A be an intuitionistic anti L-fuzzy characteristic M-subgroup of a M-group G, x and y in G. Consider the map $f: G \rightarrow G$ defined by $f(x) = yxy^{-1}$. Clearly, f in AutG. Now, $\mu_A(xy) = \mu_A(f(xy)) = \mu_A(yx)$, for all x and y in G. Again, $\nu_A(xy) = \nu_A(f(xy)) = \nu_A(y(xy)y^{-1}) = \nu_A(yx)$. Therefore, $\nu_A(xy) = \nu_A(f(xy)) = \nu_A(y(xy)y^{-1}) = \nu_A(yx)$. Therefore, $\nu_A(xy) = \nu_A(yx)$, for all x and y in G. Hence A is an intuitionistic anti L-fuzzy normal M-subgroup of a M-group G.

3.16 Theorem :An intuitionistic anti L-fuzzy M-subgroup A of a M-group G is an intuitionistic anti L-fuzzy normal M-subgroup of G if and only if A is constant on the conjugate classes of G.

Proof :Suppose that A is an intuitionistic anti Lfuzzy normal M-subgroup of a M-group G. Let x and y in G. Now, $\mu_A(y^{-1}xy) = \mu_A(xyy^{-1}) = \mu_A(x)$. Therefore, $\mu_A(y^{-1}xy) = \mu_A(x)$, for all x and y in G. And, $\nu_A(y^{-1}xy) = \nu_A(xyy^{-1}) = \nu_A(x)$. Therefore, $\nu_A(y^{-1}xy) = \nu_A(x)$, for all x and y in G. Hence $(x) = \{ y^{-1}xy \ y \in G \}$. Hence A is constant on the conjugate classes of G. Conversely, suppose that A is constant on the conjugate classes of G. Then, $\mu_A(xy) = \mu_A(xyxx^{-1}) = \mu_A(x(yx)x^{-1}) = \mu_A(yx)$. Therefore, $\mu_A(xy) = \mu_A(yx)$, for all x and y in G. And, $\nu_A(xy) = \nu_A(xyxx^{-1}) = \nu_A(x(yx)x^{-1}) = \nu_A(yx)$. Therefore, $\nu_A(xy) = \nu_A(yx)$, for all x and y in G. Hence A is an intuitionistic anti L-fuzzy normal M-subgroup of a M-group G.

3.17 Theorem: Let A be an intuitionistic anti L-fuzzy normal M-subgroup of a M-group G. Then for any y in G, we have $\mu_A(yxy^{-1}) = \mu_A(y^{-1}xy)$ and $\nu_A(yxy^{-1}) = \nu_A(y^{-1}xy)$, for every x in G.

Proof: Let A be an intuitionistic anti L-fuzzy normal M-subgroup of a M-group G. For any y in G, we have, $\mu_A(yxy^{-1}) = \mu_A(yy^{-1}x) = \mu_A(x) = \mu_A(xyy^{-1}) = \mu_A(y^{-1}xy)$. Therefore, $\mu_A(yxy^{-1}) = \mu_A(y^{-1}xy)$, for all x and y in G. And, $\nu_A(yxy^{-1}) = \nu_A(yy^{-1}x) = \nu_A(x) = \nu_A(xyy^{-1}) = \nu_A(y^{-1}xy)$.

Therefore, $v_A(yxy^{-1}) = v_A(y^{-1}xy)$, for all x & y in G.

3.18 Theorem: An intuitionistic anti L-fuzzy M-subgroup A of a M-group G is normalized if and only if $\mu_A(e) = 1$ and $\nu_A(e) = 0$, where e is the identity element of the M-group G.

Proof: If A is normalized, then there exists x in G such that $\mu_A(x) = 1$ and $\nu_A(x) = 0$, but by properties of an intuitionistic anti L-fuzzy M-subgroup A of the M-group G, $\mu_A(x) \le \mu_A(e)$ and $\nu_A(x) \ge \nu_A(e)$, for every x in G. Since $\mu_A(x) = 1$ and $\nu_A(x) = 0$ and $\mu_A(x) \le \mu_A(e)$ and $\nu_A(x) \ge \nu_A(e)$, $1 \le \mu_A(e)$ and $0 \ge \nu_A(e)$. But $1 \ge \mu_A(e)$ and $0 \le \nu_A(e)$. Hence $\mu_A(e) = 1$ and $\nu_A(e) = 0$. Conversely, if $\mu_A(e) = 1$ and $\nu_A(e) = 0$, then by the definition of normalized intuitionistic anti L-fuzzy subset, A is normalized.

3.19 Theorem: Let A and B be intuitionistic anti L-fuzzy M-subgroups of the M-groups G and H, respectively. If A and B are intuitionistic anti L-fuzzy normal M-subgroups, then AxB is an intuitionistic anti L-fuzzy normal M-subgroup of GxH.

Proof: Let A and B be intuitionistic anti L-fuzzy normal M-subgroups of the M-groups G and H respectively. Clearly AxB is an intuitionistic anti L-fuzzy M-subgroup of GxH. Let x_1 and x_2 be in G, y_1 and y_2 be in H. Then (x_1, y_1) and (x_2, y_2) are in GxH. Now, $\mu_{AxB}[(x_1, y_1)(x_2, y_2)] = \mu_{AxB}(x_1x_2, y_1y_2) = \mu_A(x_1x_2) \land \mu_B(y_1y_2) = \mu_A(x_2x_1) \land \mu_B(y_2y_1) = \mu_{AxB}(x_2x_1, y_2y_1) = \mu_{AxB}[(x_2, y_2)(x_1, y_1)]$. Therefore, $\mu_{AxB}[(x_1, y_1)(x_2, y_2)] = \mu_{AxB}[(x_2, y_2)(x_1, y_1)]$, for all x_1, x_2 in G and y_1 and y_2 in H. And, $v_{AxB}[(x_1, y_1)(x_2, y_2)] = v_{AxB}(x_1x_2, y_1y_2) = v_A(x_2x_1) \lor v_B(y_2y_1) = v_{AxB}(x_2x_1, y_2y_1) = v_{AxB}(x_2, y_2)(x_1, y_1)]$.

Therefore, $v_{AxB}[(x_1, y_1)(x_2, y_2)] = v_{AxB}[(x_2, y_2)(x_1, y_1)]$, for all x_1, x_2 in G and y_1 and y_2 in H. Hence AxB is an intuitionistic anti L-fuzzy normal M-subgroup of GxH.

3.20 Theorem: Let an intuitionistic anti L-fuzzy normal M-subgroup A of a M-group G be conjugate to an intuitionistic anti L-fuzzy normal M-subgroup M of G and an intuitionistic anti L-fuzzy normal M-subgroup B of a M-group H be conjugate to an intuitionistic anti L-fuzzy normal M-subgroup N of H. Then an intuitionistic anti L-fuzzy normal M-subgroup AxB of a M-group GxH is conjugate to an intuitionistic anti L-fuzzy normal M-subgroup MxN of GxH.

Proof: It is trivial.

3.21 Theorem: Let A and B be intuitionistic anti L-fuzzy subsets of the M-groups G and H, respectively. Suppose that e and e ¹are the identity element of G and H, respectively. If AxB is an intuitionistic anti L-fuzzy normal M-subgroup of GxH, then at least one of the following two statements must hold.

(i) $\mu_B(e^{\top}) \leq \mu_A(x)$ and $\nu_B(e^{\top}) \geq \nu_A(x)$, for all x in G,

(ii) $\mu_A(e) \le \mu_B(y)$ and $\nu_A(e) \ge \nu_B(y)$, for all y in H.

Proof: It is trivial.

3.22 Theorem: Let A and B be intuitionistic anti L-fuzzy subsets of the M-groups G and H, respectively and AxB is an intuitionistic anti L-fuzzy normal M-subgroup of GxH. Then the following are true :

- (i) if $\mu_A(x) \ge \mu_B(e^{-1})$ and $\nu_A(x) \le \nu_B(e^{-1})$, then A is an intuitionistic L-fuzzy normal M-subgroup of G.
- (ii) if $\mu_B(x) \ge \mu_A(e)$ and $\nu_B(x) \le \nu_A(e)$, then B is an intuitionistic anti L-fuzzy normal M-subgroup of H.
- (iii) either A is an intuitionistic anti L-fuzzy normal M-subgroup of G or B is an intuitionistic anti L-fuzzy normal Msubgroup of H.

Proof :It is trivial.

4. INTUITIONISTIC ANTI L-FUZZY NORMAL M-SUBGROUPS OF M-GROUPS UNDER HOMOMORPHISM AND ANTI-HOMOMORPHISM

4.1 Theorem: Let (G, \cdot) and (G', \cdot) be any two Mgroups. The homomorphic image of an intuitionistic anti L-fuzzy normal M-subgroup of G is an intuitionistic anti L-fuzzy normal Msubgroup of G'.

Proof: Let (G, \cdot) and (G', \cdot) be any two M-groups and $f: G \to G^{1}$ be a homomorphism. That is f(xy) =f(x)f(y), f(mx) = mf(x), for all x and y in G and m in M. Let V = f(A), where A is an intuitionistic anti Lfuzzy normal M-subgroup of G. We have to prove that V is an intuitionistic anti L-fuzzy normal Msubgroup of Gⁱ. Now, for f(x) and f(y) in Gⁱ, we have clearly V is an intuitionistic anti L-fuzzy M-subgroup of a M-group G¹, since A is an intuitionistic anti Lfuzzy M-subgroup of a M-group G. Now, $\mu_V(f(x)f(y))$ = $\mu_{\rm V}(f(xy))$) $\leq \mu_A(xy)$ $\mu_A(yx)$ $\geq \mu_V(f(yx)) = \mu_V(f(y)f(x))$, which implies that $\mu_V(f(y)) = \mu_V(f(y)) = \mu_V(f(y)) = \mu_V(f(y))$ $f(x)f(y) = \mu_{V}(f(y)f(x))$, for all xand y in G. Now, $\begin{array}{l} \nu_V(\ f(x)f(y)\)=\nu_V(\ f(xy)\)\geq \nu_A(xy)=\nu_A(yx)\leq \nu_V(\\ f(yx)\)=\nu_V(\ f(y)f(x)\), \ which \ implies \ that \ \nu_V(\ f(x)f(y)\\)=\nu_V(\ f(y)f(x)\), \ for \ all\ x \ and\ y \ in\ G. \ Hence\ V \ is \ an \ intuitionistic \ anti \ L-fuzzy \ normal\ M-subgroup \ of \ a \ M-group\ G^!. \end{array}$

4.2 Theorem: Let (G, \cdot) and (G', \cdot) be any two Mgroups. The homomorphic pre-image of an intuitionistic anti L-fuzzy normal M-subgroup of G'is an intuitionistic anti L-fuzzy normal M-subgroup of G.

Proof: Let (G, \cdot) and (G', \cdot) be any two M-groups. Let $f: G \to G^{1}$ be a homomorphism. That is f(xy) =f(x)f(y), f(mx) = mf(x), for all x and y in G and m in M. Let V=f(A), where V is an intuitionistic anti Lfuzzy normal M-subgroup of G¹. We have to prove that A is an intuitionistic anti L-fuzzy normal Msubgroup of G. Let x and y in G. Then, clearly A is an intuitionistic anti L-fuzzy M-subgroup of a Mgroup G, since V is an intuitionistic anti L-fuzzy Msubgroup of a M-group G^I. Now, $\mu_A(xy) = \mu_V(f(xy))$)= $\mu_{V}(f(x)f(y)) = \mu_{V}(f(y)f(x)) = \mu_{V}(f(yx))$) = $\mu_A(yx)$, which implies that $\mu_A(xy) = \mu_A(yx)$, for all x and y in G. Now, $v_A(xy) = v_V(f(xy)) = v_V(f(xy))$ $f(x)f(y) = v_V(f(y)f(x)) = v_V(f(yx)) = v_A(yx),$ which implies that $v_A(xy) = v_A(yx)$, for all x and y in G. Hence A is an intuitionistic anti L-fuzzy normal M-subgroup of a M-group G.

4.3 Theorem: Let (G, \cdot) and (G', \cdot) be any two Mgroups. The anti-homomorphic image of an intuitionistic anti L-fuzzy normal M-subgroup of G is an intuitionistic anti L-fuzzy normal M-subgroup of G^{l} .

Proof: Let (G, \cdot) and (G', \cdot) be any two M-groups. Let $f: G \to G'$ be an anti-homomorphism. That is f(xy) = f(y)f(x), f(mx) = mf(x), for all x and y in G and m in M. Let V = f(A), where A is an intuitionistic anti L-fuzzy normal M-subgroup of G. We have to prove that V is an intuitionistic anti L-fuzzy normal M-subgroup of G'.For f(x) and f(y) in G', clearly V is an intuitionistic anti L-fuzzy M-subgroup (IALFMSG) of a M-group G', since A is an intuitionistic anti L-fuzzy M-subgroup G.

Now, $\mu_V(f(x)f(y)) = \mu_V(f(yx)) \le \mu_A(yx) = \mu_A(xy)$ $\ge \mu_V(f(xy)) = \mu_V(f(y)f(x))$, which implies that $\mu_V(f(x)f(y)) = \mu_V(f(y)f(x))$, for all x and y in G. And, $\nu_V(f(x)f(y)) = \nu_V(f(yx)) \ge \nu_A(yx) = \nu_A(xy)$

 $\leq v_V(f(xy)) = v_V(f(y)f(x)),$

which implies that $v_V(f(x)f(y)) = v_V(f(y)f(x))$. Hence V is an intuitionistic anti L-fuzzy normal M-subgroup of a M-group G^1 . **4.4 Theorem:** Let (G, \cdot) and (G', \cdot) be any two Mgroups. The anti-homomorphic pre-image of an intuitionistic anti L-fuzzy normal M-subgroup of G'is an intuitionistic anti L-fuzzy normal M-subgroup of G.

Proof: Let (G, \cdot) and (G', \cdot) be any two M-groups. Let $f: G \to G^1$ be an anti-homomorphism. That is f(xy) = f(y)f(x), f(mx) = mf(x), for all x and y in G and m in M. Let V=f(A), where V is an intuitionistic anti L-fuzzy normal M-subgroup of G¹. We have to prove that A is an intuitionistic anti L-fuzzy normal M-subgroup of G.Let x and y in G, we have clearly A is an intuitionistic anti L-fuzzy M-subgroup of a M-group G, since V is an intuitionistic L-fuzzy Msubgroup of a M-group G¹. Now, $\mu_A(xy) = \mu_V(f(xy))$ $= \mu_V(f(y)f(x)) = \mu_V(f(x)f(y)) = \mu_V(f(yx)) = \mu_A(yx),$ which implies that $\mu_A(xy) = \mu_A(yx)$, for all x and y in G. Now, $v_A(xy) = v_V(f(xy)) = v_V(f(y)f(x)) =$ $v_V(f(x)f(y)) = v_V(f(yx)) = v_A(yx)$, which implies that $v_A(xy)=v_A(yx)$, for all x and y in G. Hence A is an intuitionisticantiL-fuzzy normal M-subgroup of a Mgroup G.

In the following Theorem $\,\circ\,$ is the composition operation of functions

4.5 Theorem: Let A be an intuitionistic anti L-fuzzy M-subgroup of a M-group H and f is an isomorphism from a M-group G onto H.If A is an intuitionistic anti L-fuzzy normal M-subgroup of H, then $A \circ f$ is an intuitionisticanti L-fuzzy normal M-subgroup of a M-group G.

Proof: Let x and y in G and A be an intuitionistic anti L-fuzzy M-subgroup of a M-group H. We know that, A°f is an intuitionistic anti L-fuzzy M-subgroup of a M-group G. Then we have, $(\mu_A°f)(xy) = \mu_A(f(xy)) = \mu_A(f(x)f(y)) = \mu_A(f(y)f(x)) = \mu_A(f(yx)) = (\mu_A°f)(yx)$, which implies that $(\mu_A°f)(xy) = (\mu_A°f)(yx)$, for all x and y in G. Now, $(v_A°f)(xy) = v_A(f(x)f(y)) = v_A(f(y)f(x)) = v_A(f(yx)) = (\nu_A°f)(yx)$, which implies that $(\nu_A°f)(xy) = (\nu_A°f)(yx)$, which implies that $(\nu_A°f)(xy) = (\nu_A°f)(yx)$, for all x and y in G. Hence A°f is an intuitionistic anti L-fuzzy normal M-subgroup of a M-group G.

4.6 Theorem: Let A be an intuitionistic anti L-fuzzy M-subgroup of a M-group H and f is an antiisomorphism from a M-group G onto H. If A is an intuitionistic anti L-fuzzy normal M-subgroup of H, then A^of is an intuitionistic anti L-fuzzy normal M-subgroup of a M-group G.

Proof: Let x and y in G and A be an intuitionistic anti L-fuzzy M-subgroup of a M-group H. We know that, A°f is an intuitionistic anti L-fuzzy M-subgroup of a M-group G. Then we have, $(\mu_A°f)(xy) = \mu_A((f(x))) = \mu_A(f(y)f(x)) = \mu_A(f(x)f(y)) = \mu_A(f(yx)) = (\mu_A°f)(yx)$, which implies that $(\mu_A°f)(xy) = (\mu_A°f)(yx)$, for all x and y in G. Now, $(v_A°f)(xy) = v_A(f(xy)) = v_A(f(y)f(x)) = v_A(f(x)f(y)) = v_A(f(yx)) = (v_A°f)(yx)$, which implies that $(v_A°f)(xy) = (v_A°f)(yx)$, for all x and y in G. Hence (A°f) is an intuitionistic anti Lfuzzy normal M-subgroup of a M-group G.

V CONCLUSION

Further work is in progress in order to develop theintuitionistic anti L- fuzzy normal M-subgroups, intuitionisticanti L- fuzzy N-subgroup and intuitionistic anti L-fuzzy normalN-subgroups.

REFERENCES

- Aktas, H and Cagman, N., "Generalized product of fuzzysubgroup and t – levelsubgroups", Math. Commun, Vol. 11, pp.121–128, 2006.
- [2] Atanassov. K. T.," Intuitionistic fuzzy sets", Fuzzy sets and systems, Vol.20, pp. 87 96,1986
- [3] Atanassov. K. T., "New operations defined over the intuitionistic fuzzy sets", Fuzzy sets and systems, Vol. 61, pp.137-142, 1994
- [4] Azriel Rosenfeld, Fuzzy Groups, Journal of mathematical analysis and applications35, (1971) 512-517.
- [5] R. Biswas, Fuzzy subgroups and anti-fuzzy subgroups, Fuzzy Sets and Systems 35(1990), 121-124.
- [6] Choudhury. F. P and Chakraborty. A. B and Khare. S. S., "A note on fuzzy subgroups and fuzzy homomorphism", Journal of mathematical analysis and applications, Vol.131, pp.537 – 553,1988.
- [7] J.A. Goguen, L-fuzzy sets, J. Math. Anal.Appl.18(1967),145-179.
- [8] Jacobson. N., Lectures in abstract algebras. East west press, 1951.
- [9] Mohamed Asaad, Groups and Fuzzy Subgroups, Fuzzy Sets and Systems 39(1991)323-328.
- [10] Massa'deh. M. O and For a. A.A., "Centralizer of upper fuzzy groups", Pioneer journal of mathematics and mathematical sciences, Vol.1,pp. 81-88, 2011
- [11] N.Palaniappan, R.Muthuraj, The homomorphism, Antihomomorphism of a fuzzy and an anti-fuzzy group, Varahmihir Journal of mathematical Sciences, 4 (2)(2004) 387-399.
- [12] N.Palaniappan, S. Naganathan, & K. Arjunan, A Study on Intuitionistic L-FuzzySubgroups, Applied mathematical Sciences, 3 (53) (2009) 2619-2624.
- [13] Pandiammal. P, Natarajan. R, and Palaniappan. N, Anti Lfuzzy M-subgroups, Antarctica J. Math., Vol. 7, number 6, 683-691, (2010).

- [14] Pandiammal. P, Intuitionisticanti L-fuzzy M-subgroups, International Journal of computer and organization Trends – Volume 5 – February (2014) 43-52
- [15] Prabir Bhattacharya, Fuzzy subgroups: Some characterizations, J. Math. Anal. Appl. 128(1981) 241-252.
- [16] Rosenfeld. A.," Fuzzy groups", J. Math.Anal.Appl, Vol. 35, pp.512 – 517, 1971.
- [17] Roventa. A and Spircu. T.," Groups operating on fuzzy sets", Fuzzysets and systems, Vol. 120, pp. 543 – 548,2001.
 [18] Sulaiman. R and Ahmad. A. G.," The number of fuzzy
- [18] Sulaiman. R and Ahmad. A. G.," The number of fuzzy subgroups of finitencyclic groups", Int. Math. Forum, Vol.6, pp. 987 – 994,2011.
- [19] Tarnauceanu. M and Bentea.L.," On the number of fuzzy subgroup of finiteabelian groups", Fuzzy sets and systems, Vol. 159, pp. 1084 – 1096,2008.
- [20] L.A. Zadeh, Fuzzy sets, Information and control, 8, (1965) 338-353.