
International Journal of Computer & Organization Trends –Volume 4 Issue 4 July to August 2014 

ISSN: 2249-2593                                 http://www.ijcotjournal.org                                    Page 1 

Abstract-- This paper identifies the need for an 

integrated software solution to manage configuration 

requirements of currently popular software applications 

and tool chains used for the validation and verification 

tasks associated with embedded system design. The 

intended results of such an approach include: increased 

design development speed, decreased time to market 

and additional improvements in quality assurance. A 

theoretical unifying software automation process is 

proposed to link specifications and requirements 

documents not only through the design and test 

specification phases but directly into the testing 

platform itself including results and reporting. The 

result of this approach can be shown to streamline the 

design, verification and validation testing and reporting 

processes for an embedded software system. The 

observations and conclusions presented are based on an 

elementary user understanding of several software 

development tools and tool chains and their potential 

vs. intended extensibilities.  

 

Keywords: Software Tools, Validation, Verification, 

Testing, Embedded Systems, Software Automation 

Process, Integrated Testing Process Approach 

I. INTRODUCTION 

 

Human existence is defined in part by the need for 

mobility. In modern times such need is luxuriated and 

partially fulfilled by commercial interests of automotive 

and aerospace/avionic companies. In the terrestrial and 

aeronautic forms of personal and mass transportation, 

safety is a critical issue. Where human error or 

negligence in a real-time setting can result in human 

fatality on a growing scale, the reliance on machines to 

perform basic, repetitive and critical tasks grows in 

correlation to the consumer confidence in that 

technology. The more a technology‟s reliability is 

„proven‟, the more acceptable and trusted that 

technology becomes. In systems delivered by the 

transportation industry: buses, trains, planes, trucks, 

automobiles as well as in remote systems in which 

humans play little or no directly controlling role such as 

satellites and space stations, computerized systems with 

active real-time response capabilities become the 

control mechanism of choice. The more reliably real 

time embedded systems perform the more they are 

trusted and their use proliferates to the control of critical 

systems. The use of microcontroller units in the 

automotive industry has grown in recent years so 

considerably that there may now be found from 50 to 80 

electronic control units in an individual vehicle. In 

efforts to implement safety and redundancy features in 

larger commercial transportation vehicle such as 

airplanes, the „x-by-wire‟ (brake by wire, steer by wire, 

drive-by wire, etc.) concept is now being explored and 

implemented in aerospace companies that make or 

supply avionic systems into a „fly-by-wire‟ paradigm, 

that is, the proliferation of electronic control „by-wire‟ 

units over the mechanical aspects of the system.  

 

In the critical industries, automobile or aircraft 

development processes endure a time to market that is 

rarely measured in months but instead in years to tens of 

years, yet speed of development and time to market are 

every bit as critical as for small scale electronics items. 

The common thread among these commercial products 

is that they include embedded controllers and are 

therefore considered embedded systems. Product and 

process verification and validation, including end-of-

line testing, contribute to longer time to market at the 

cost of providing quality assurances that are necessary 

to product development. In industry of small-scale or 

personal electronics where time-to market can literally 

be the life or death of a product, validation, verification 

and testing processes are less likely to receive the level 

of attention that they do in mission-critical or life-

critical industries. An integrated software solution for 

validation, verification and testing procedures help 

address several issues including reduced complexity and 

decreased development time for embedded systems 

design of any size or scale. 

An embedded system is a control mechanism that 

includes hardware and software components. Hardware 

Validation and Verification for Embedded 

System Design – An Integrated Testing Process 

Approach 

 
 

*Adnan Shaout, Dennis Breton  
The University of Michigan – Dearborn  

The Electrical and Computer Engineering Department  

Dearborn, Michigan 



International Journal of Computer & Organization Trends –Volume 4 Issue 4 July to August 2014 

ISSN: 2249-2593                                 http://www.ijcotjournal.org                                    Page 2 

may include computers, microcomputers, and / or 

microcontrollers. Software components provide 

functional and logical control of the hardware. A major 

factor in the development time, cost and complexity of 

an embedded system is the software development. 

While the hardware provides the ability for a system to 

do useful work, the software controls an embedded 

system at all levels. The basic software is responsible 

for the low level functional control of the hardware 

components to ensure they are properly configured and 

integrated into the physical system in which they reside. 

The application software is responsible for control of 

the data input that is generally provided by external 

sensors and how that input is processed by the system, 

that is the application provides the hardware system 

behavior. While hardware presents its own set of 

complex challenges the concentration of this paper will 

be the software development in which a broad range of 

the complexities involved in the development of real-

time critical large scale systems is addressed. The 

products being designed are highly complex. The 

processes of design and quality assurance are deeply 

complex. The tools that are used and the process of 

using those tools are broadly complex. These 

compartmentalized considerations underscore the need 

for a theoretical model for large scale system 

integration. By reviewing the subjects of design, 

development process, testing, verification and 

validation, it will be shown that there is ample need for 

software application tools that provide links through all 

the stages of software development intended to reduce 

interface and integration complexity and provide 

traceability. This paper will entertain and propose 

several possible considerations of both the problems and 

the solutions for potential commercial software 

applications intended to fill several presently void 

aspects for the realization of a potentially unified all-in-

one process for the verification, validation and testing 

phases of a design project with focus on basic and 

application software and configuration and change 

management. Although there may be many possible 

solutions, this paper will present ideas that may 

contribute to increased speed of design, verification and 

validation testing and reporting processes for an 

embedded software system.  

 

The paper is organized as follows: section II will 

present an overview of a software development process, 

section III will present development process: 

requirements and resource methodology, section IV will 

present validation and verification methods, section V 

will present integration design process with 

validation/verification process: argument for an 

integrated solution, section VI will present testing at 

every level, section VII will present scaling upward 

toward fully integrated solutions, section VIII will 

present comparison of commercially available 

verification and validation tools, section IX will present 

the problem statement, section X will present the 

proposal for integrated solution, and section XI will 

present concluding remarks.  

   

II. OVERVIEW OF A SOFTWARE DEVELOPMENT 

PROCESS 

 

There is no argument to the usefulness and benefit of a 

software development process when considering a 

commercial product that employs an embedded system. 

A development process provides a developer 

(individual, group or enterprise) with some degree of 

control, predictability, traceability and repeatability. 

There are several useful process paradigms commonly 

used including the waterfall model of which the V 

design paradigm is a derivative process. The V 

development process depicts a modifiable paradigm in 

which the design verification phases of requirements 

management, system design, architecture design and 

module design flows down one branch of the V from 

high level (abstracted) to low level (detailed). The 

design validation phases of unit testing, integration 

testing and system testing flow up the opposing branch 

of the V from low level to high level. Each successive 

level or phase relies on the accumulated framework of a 

previous phase for its developmental foundation. 

 

 
Figure 1: Modified "V" Development Process [1] 

 

Figure 1 depicts a V-model software development 

process that has been modified to include concurrent 

test design phases that are derived from the fundamental 

stages of the design process. Extensions to the V model 

such as the Dual-V provide for further concurrency by 

allowing for phases to be stacked (layered) in the time 

domain (adding dimensionality) even to the degree that 

a stage may itself spawn an orthogonal design tangent to 

the original V, further multiplying the concurrent 



International Journal of Computer & Organization Trends –Volume 4 Issue 4 July to August 2014 

ISSN: 2249-2593                                 http://www.ijcotjournal.org                                    Page 3 

possibilities that lead to a linear decrease in 

development time. A key feature of figure 1 is that test 

designs are linked to phases in both the design arm (the 

leftmost process from high level to low level) of the V 

and the Verification and Validation arm (the rightmost 

branch of the V from low level back up to high level). 

Although this process suggests that a testing suite for 

complete verification and validation is easily linked 

throughout the design process, in practice this is far 

from the case.  An internet survey for verification 

validation and testing process software application tools 

quickly reveals the absence of unifying tool support for 

conjoining the terminal phase to supporting pre-design 

and post-design documentation as is vastly utilized in 

the design branch of the process. There is a variety of 

commercial software tools available that provide 

process stages some which singularly or in tandem 

incrementally approach a complete solution, however 

nothing currently fills 100% of the void.  

 

 
 

Figure 2: “V” Process Model modified to indicate the 

potential for a completely unified process approach 

[1] 

 

Figure 2 depicts a Flow diagram of product–process 

development based on the V model. The intention of 

this diagram is the graphical representation of series and 

parallel activities at several levels of detail over time 

during the development of a product.  The subset of 

phases along the bottom of the diagram effectively 

represent required activities that are not necessarily 

associated with particular phases connected to the V 

path, however constitute their own set of interdependent 

phases that may occur along the timeline as the process 

is implemented from the leftmost to the rightmost phase 

of the V represented phases. This diagram is color 

coded such that commonly colored stages represent a 

known and/or proven process trace among like-colored 

phases. For the phases and chains of phases colored in 

red, Software tools are not available. The phases color 

coded in yellow represent emerging software tool 

developments. For the green colored components there 

may be one or more well known or proven software 

tools however these may not necessarily be 

interoperable or are used inefficiently [2]. Figure 2 

plainly indicates the lack of conjunctive applications to 

facilitate a unified process flow conjoining requirements 

and design to validation and verification phases at all 

levels of development. Some design/development 

platforms however such as MATLAB/Simulink offer 

solutions that partially bridge the gap. Some source 

integrity and requirements management tools also 

provide solutions that may however involve complex 

configuration management or require users to learn 

additional program languages or syntaxes.  

 

III. DEVELOPMENT PROCESS: REQUIREMENTS 

AND RESOURCE METHODOLGIES 

 

In reference again to figure 2 it is plainly evident that a 

high degree of parallel development is desirable and 

should be achievable. By deployment of concurrent 

development the cycle is shortened along its linear 

timeline thereby potentially reducing time-to-market of 

a product. While having obvious practical implications, 

the implementation of such an enhanced development 

paradigm however is farther from a plug-and-play 

solution than might initially be expected. The problem 

lies mainly in the lack of an all-in-one utility that 

particularly unites the requirements and resource 

development stages with the validation, verification, 

change management and test reporting stages. As a 

contextual foundation it is natural to expect source 

integrity or requirements management tools would 

provide the required extensibility to allow for a 

completely unified development environment. A brief 

overview of such tools as follows indicates the contrary. 

However with further investiture the contextual 

foundation concept may be eventually grown to 

necessary proportions to accommodate a truly integrated 

process and development environment. 

 

A.  Source Integrity and Repository Bases  

 

Source integrity tools such as MKS, a data management 

tool that is intended to provide secure repository 

services for project resources, provide a database 

foundation for process elements. The MKS tool is 

primarily adept at database management for elements in 

the design, validation and reporting phases of 

development. A project can be safely versioned, stored 

and securely managed in MKS however does not 

provide checks and balances against individual user 

sandbox development. While this does allow for nearly 

unlimited development concurrency, it can also blind 



International Journal of Computer & Organization Trends –Volume 4 Issue 4 July to August 2014 

ISSN: 2249-2593                                 http://www.ijcotjournal.org                                    Page 4 

each developer from the work of the other which may in 

turn result in concurrent development proceeding in 

many different directions. Because source integrity tools 

allow resources to be continually added to a project 

database or namespace at any time during development, 

these applications provide a thorough resource and 

configuration management service, but do not 

necessarily facilitate cross-platform utility. Depending 

on the level of user sophistication such resources can 

support workaround applications for example using a 

MATLAB/Simulink model file (.mdl) to read data 

(parametric I/O, test scripts, etc.) from a Microsoft 

Excel spreadsheet, process the data and write the result 

back to a file, however this is done on an individual user 

sandbox platform and does also require some 

managerial arbitration of model configurations that are 

permissible to be checked-in to the repository. The 

project member versioning update paradigm used by 

MKS does provide for protection of baselined resources 

but can not protect against the propagation of faulty or 

erroneous member versions contributable to human or 

machine error. Traceability is supported through 

member versioning however without highly disciplined 

administration of the tool use and privileges, erroneous 

work can be extensively „fanned out‟ especially across a 

highly concurrent development environment.  

 

B. Requirements Management Platforms 

 

The website for Reqtify, A Graphical Requirements 

Traceability Environment accordingly reports: 

“Requirements Management is now recognized as a 

Best Practice for project management. At a minimum, a 

sound requirements management process is mandatory 

for CMMI level 3” [3]. The preceding statement 

underscores the importance of oversight and leadership 

at the highest project level. 

 

IBM/Telelogic DOORs is a requirements management 

application that provides “a variety of features, such as 

views, links and traceability analyses” [4]. Features of 

newer releases (currently 9.5 dating back to version 8.1) 

takes advantage of a  Uniform Resource Locator (URL) 

identifier protocol handler that permits resource locating 

for boundary crossing between file namespaces. This is 

a major step in the direction of allowing access to and 

from database files that are not necessary part of a 

DOORs project. This is an essential mechanism for 

providing “cross-database linking” access between 

independent software platforms by assignment of 

unique URL identifiers to each internal resource (object, 

database, module, folder, etc) and extension of these 

URLs to any URL aware [5] browser application. 

Although this extensibility is provided as part of the 

software package, it is expected to be implemented by 

the users who “are responsible for writing a protocol 

handler and setting up the communication channel 

between the protocol handler and the application that 

will open the URL” [5]. Versions since 8.3 of this 

software are extensible for test tracking system creation 

that allows creation or importing of Test Definition 

resources. Through the DOORs adaptation of the URL 

protocol, traceability is achieved within and without the 

repository. One of the inherent deficiencies of DOORs 

is that to run active test utilities the testing platform may 

be required to sustain a real-time connection to the 

repository server which can severely limit accessibility 

to physical test environments and may inhibit the 

achievement of necessary processing speeds for desired 

test data capturing rates in real-time environments.  

 

Some graphical requirements management tools like 

TNI-Software/ChiasTek Inc.‟s Reqtify offer solutions 

for “Traceability through Entire Project from High-level 

Requirements to Models, Code, Test Scripts, and Test 

Results” and a “solution to link development and 

verification processes with requirements” [3]. The 

implication of these claims is supporting traceability 

from requirements to test scripts and test results 

however there is apparently no facility provided for 

generation/auto-generation or template type creation of 

validating test scripts or verifying test environments. 

Therefore such tools stop short of offering any new 

linking capabilities beyond those that already exist in 

other development design paradigms, thereby providing 

only an alternative choice and not necessarily a further 

extensible one. 

 

IV. VALIDATION AND VERIFICATION 

METHODS 

Model Based Development/Design has become a 

standard engineering industry operating procedure in 

CAD/CAE. There are several proven capable and 

trusted tools for graphical modeling and simulation of 

commonly engineered systems such as manufacturing, 

electrical, medical, computational, mechanical, and 

communications.   Commercial software simulation 

tools are presently in a highly advanced state of 

development having long since proven their usefulness 

and reliability in many engineering fields in the global 

marketplace. The concept of graphical modeling is 

simple representation of any physical system by its 

inputs, a black box containing functional logic and 

outputs. The approach can be a top-down or bottom-up 

hierarchical structure within which each a black box 

may contain multiple subsystems with the lowest level 

containing the basic logic and arithmetic operations, 

even down to bit level control if so required. The 

architecture of a given physical system is graphically 

arranged or designed to best simplify conceptualization 

and understanding of underlying logic. This has 



International Journal of Computer & Organization Trends –Volume 4 Issue 4 July to August 2014 

ISSN: 2249-2593                                 http://www.ijcotjournal.org                                    Page 5 

tremendous advantages over interpretation of a system 

by analysis of potentially hundreds of thousands of lines 

of code. Extensive efforts are made by simulation 

suppliers to continually upgrade and extend the 

application potential for their products however less 

progress has been made towards easing integration 

complexity. 

Validation and verification can be viewed as an integral 

part of what control theory considers the “formulation 

of an optimal control problem” [6]. Description and 

statement of physical constraints are the first two stages 

and the performance measure is considered as the final 

of three major stages of problem formulation. Included 

tasks in problem formulation are: mathematical 

modeling such as creation of state diagrams, Mealy-

Moore finite state machines or through the use the 

software tools that represent states and transitional 

conditions graphically such as Telelogic Statemate or 

MATLAB/Simulink/State flow. The statement of 

physical constraints equates to a requirements 

specification of a system. Together these phases provide 

the leftmost branch of the V-design paradigm relating to 

design which must undergo validation. Each of the 

hardware and software components of the system may 

have their own set of requirements documents extending 

down to the lowest modular level of the basic system 

component. The mathematical model may be replaced 

with a virtual or conceptual representation through 

block diagrams or graphical user interface software that 

can interactively or reactively describe the behavior of a 

physical system by using black box components to 

represent the functionality of a system down to its 

lowest modular level. The usefulness of this approach is 

that in a well modeled system using the proper software 

tools, the generated software that commands the model 

can be optimized as source control software for micro 

processors and micro controllers in the real physical 

system. This approach also lends itself to an iterative 

validation or verification approach in that the custom 

hand written or software computer generated code can 

be tested at multiple levels and with a number of 

interfaces that progressively approach integration into 

the final physical system. This iterative approach is 

commonly recognized in modern design engineering as 

the successive in-the-loop processes of 

MIL/SIL/PIL/HIL testing.  

 

Model in the loop (MIL) occurs with model components 

interfaced with logical models for model level 

correctness testing.  

 

 
Figure 3: MIL process from dSPACE Catalog © 

dSPACE 2014[7] 

 

As illustrated in figure 3 culled from the current 

dSPACE 2014 product catalog, a controller model is 

introduced into a closed-loop system with the logical 

model. The control model is not limited to a model 

based design. It can be any variety of testing extension, 

tool box, or third party application that can be interfaced 

with a graphical programming tool such as 

MATLAB/Simulink or dSPACE/Targetlink.  

 

MIL testing of a software system design is the initial 

phase in which a system that is considered ready for 

testing is subject to simulated environmental control. 

The base model considered to be the plant model which 

includes the stimulus signals is the constant factor in the 

loop-testing sequence. The plant model is driven or 

stimulated by a specially developed controller model. In 

the same context that the software itself represents a 

physical reality, it is reasonable to expect that a software 

representation of inputs to the system can achieve the 

desired validation results. As the system has been 

designed and is ready for testing, so can test software be 

designed to represent real world input to the system. A 

reasonable validation procedure can be undertaken by 

replacing inputs with data sources that are expected, 

calculable or otherwise predefined and monitoring the 

output for expected results is an ordinary means of 

simulating real system behavior.  

 



International Journal of Computer & Organization Trends –Volume 4 Issue 4 July to August 2014 

ISSN: 2249-2593                                 http://www.ijcotjournal.org                                    Page 6 

 
Figure 4: SIL process from dSPACE Catalog © 

dSPACE 214 [7] 

 

Figure 4 represents the closed-loop system consisting of 

design model software interfaced with c-code running 

on a PC hosted application. The plant model remains 

consistent inasmuch as its performance proved 

satisfactory at the previous MIL stage. Software in the 

loop (SIL) occurs after code has been generated from a 

model and run as an executable file that is configured to 

interact with the plant model software. This midway 

point in the V design methodology is perhaps the most 

important stage of testing as the progression will begin 

at this point to lead into hardware testing. This is the 

optimal stage at which code optimization for hardware 

should be considered, especially before the 

configuration grows in complexity. Code optimization 

is dependent on the constraints of the design under test 

(DUT). For example it may be necessary to minimize 

line of code count in order to not exceed ROM 

limitations based on particular micro-processor 

architecture. Other code optimizations may be aimed at 

RAM availability and can include pipelining and loop 

unraveling. 

 

From this point Processor in the loop (PIL) testing is 

undertaken for proof that the generated code can run on 

a hardware platform such as micro controller, 

E/EE/PROM or FPGA. Figure 5 represents the PIL 

stage by illustrating the inclusion of an „evaluation 

board‟ however this may be any target processor 

platform sufficiently design to show proof of design at 

the project level. Once this stage is adequately secure 

Hardware in the loop (HIL), if applicable to a system, is 

performed. At this point a test procedure such as 

JTAG/boundary scan may be considered for hardware 

testing prior to implementing a system under test (SUT) 

scheme. Joint Test Action Group (JTAG) Boundary 

scan specification outlines a method to test input and 

output connections, memory hardware and other logical 

subcomponents that reside within the controller module 

or printed circuit board. The JTAG specification makes 

it possible to transparently access structural areas of the 

board under test using a software controlled approach. 

By isolating physical substructures on a circuit board 

these areas can be considered as independent circuits. 

Path tracing on individual areas can then be 

implemented to reveal unreachable real estate in the 

circuitry, signifying a defect in the hardware. This 

technique also allows further software control and test 

procedures can be implemented across the circuit 

subsystems using a „scan chain‟. When used in 

conjunction with built-in-test (BIT) testing modules 

coded into the control software, the JTAG/boundary 

scan procedure can be extended to act as a debugger and 

diagnostic tool for embedded systems. 

 

 
Figure 5: PIL process from dSPACE Catalog © 

dSPACE 2014 [7] 

 



International Journal of Computer & Organization Trends –Volume 4 Issue 4 July to August 2014 

ISSN: 2249-2593                                 http://www.ijcotjournal.org                                    Page 7 

Once there is certainty that the software performs as 

intended and that there are no defects in the hardware, 

the final „In the Loop‟ stage Hardware (HIL) is 

undertaken to prove that the control mechanism can 

perform its intended functionality of operating on a 

hardware system. 

According to joint open source initiative United 

Simulation Environment (UNISIM @: 

www.unisim.org) “Simulation is a solution to the test 

needs of both microprocessors and software running on 

microprocessors” [i.e. embedded systems]. “A silicon 

implementation of these microprocessors is usually not 

available before the end of the architecture design flow, 

essentially for cost reasons. The sooner these simulation 

models are available, the sooner the compilers, the 

operating system and the applications can be designed 

while meeting a good integration with the architecture.”  

Design Verification Process Validation (DVPV) Testing 

has become overwhelmingly reliant on graphical design 

with simulation tools such MATLAB/Simulink, 

dSPACE/Targetlink, Simplorer, and 

IBM/Telelogic/Statemate. This is in part due to their 

sophistication and versatility and largely due to their 

added functionality of automated code generation. 

Simulation tools make for excellent testing tools 

because they are capable of providing instantaneous 

feedback to system or subsystem design. Test input may 

be provided internally, modularly, and/or from external 

scripts/application resources. Simulation allows 

developers to quickly test designs for completeness and 

correctness and many tools also offer auto-generated 

test reports such as for code coverage and reach-ability 

of generated code. 

As mathematics and physics are used as interpretive 

similes of real life systems, so computer aided 

simulation offers a means of interpretive modeling of 

those systems. Sophisticated software applications allow 

increasingly numerous phases of design and 

development to remain in a unified development 

environment. Such an environment may include single 

or multiple-tool custom tool chains where the software 

applications required are correlated to choice of target 

hardware (micro-controllers, communication networks, 

etc.) or the need for a sophisticated compiler/debugger 

scenario in the case of some more sophisticated 

projects. For example a configuration of software tools 

to support the Motorola MPC555 can be implemented 

with a particular MATLAB configuration while support 

to develop a system using an NEC V800 series micro 

controller could include MATLAB but would 

additionally require dSPACE Targetlink and a 

debugging tool such as included in the Green Hills 

Multi Integration Development Environment tool. 

While there may be redundancy amongst some software 

applications in the supported hardware, there is 

presently no single tool that easily configures to a broad 

base hardware support. The ongoing development of 

many of these tools is largely relegated to the logical 

and functional domains while the needle has barely been 

moved in the domain of external interface configuration, 

integrated hardware testing, and change management. 

While simulation remains the most common verification 

method for embedded systems design, there is room for 

vast improvement that a move toward a unified 

integrated development environment would be duly 

suited to. 

 

V. INTEGRATING DESIGN PROCESS WITH 

VALADATION/VERIFICATION PROCESS: 

ARGUMENT FOR AN INTEGRATED SOLUTION 

 

Testing, debugging, verification and validation are 

inarguably essential tasks of embedded system 

development regardless of the process adopted. By 

extending the abilities of existing tools to enable the 

addition of an integrated test procedure suite and 

making it applicable at the earliest development stages, 

the ability to move from left to right across the “V” gap 

can become greatly enhanced.  

 

 
Figure 6: Theoretical V-design paradigm depicting 

one-to-one, one-to-many, many-to-one, and many-to-

many associations between design, testing and 

management phases.  The implication of these 

associations is that they should take place in a single 

unified development environment. 

 

Figure 6 depicts a theoretical V-design paradigm in 

which design flow can be considered to spiral through 

any given combination of the design, testing and 

management phases even as the overall V-progression 

propagates from left to right, and through top-bottom-

top progression. The associations amongst phases can 

and should be not only one-to-one but may concurrently 



International Journal of Computer & Organization Trends –Volume 4 Issue 4 July to August 2014 

ISSN: 2249-2593                                 http://www.ijcotjournal.org                                    Page 8 

be one-to-many, many-to-one, or many-to-many. A 

further consideration is that the entire design paradigm 

should be contained within a single software/hardware 

development platform. This conceptual framework 

should combine the current abilities of resource 

management tools such as DOORs, source integrity 

database and versioning tools such as MKS, model 

based design tools such as MATLAB/Simulink and 

dSPACE Targetlink, in-the-loop-testing paradigms such 

as provide by dSPACE, sophisticated 

compiler/debugger and IDE utilities such as Green 

Hills‟ Multi environment, communication protocol 

software such as CANoe/CANape,  measurement 

testing and data logging tools such as National 

Instruments‟ LabVIEW. A change-management, 

versioning process and report generation facility should 

all be included, eliminating the need to leave a single 

unified development environment. These applications 

can be plugged in to such a work flow block diagram as 

follows below in figure 7. 

 

 
Figure 7: Work flow block diagram where blocks 

represent development stages that can have 

applications substituted for each process phase. 

 

It is easy to recognize that a developmental paradigm 

such as the one depicted in figure 7 poses a highly 

complicated configuration process to represent as a 

single tool chain. It is therefore suggested that a use of 

single tool approach can drastically reduce the 

complexity and time spent on such a configuration. 

What can be gained from this approach is a very high 

degree of concurrent development bolstering early fault 

detection, design enhancement and the potential 

shortening of overall development time. The existence 

of such a tool could easily eliminate hundreds of hours 

spent just in configuration of such a tool chain of 

independent applications. Although the diagram in 

figure 2 is somewhat outdated, it clearly depicts 

deficiencies in current software tools and tool 

availability to meet well defined tasks and requirements. 

While there are Software companies that are making 

inroads to these territories, it is also evident that gross 

discontinuities exist between the conceptual framework 

of a development process and a real-world ability to 

economically implement such a process. Furthermore, 

figure 2 makes clear the need for unification of the sub 

processes that can lead to the unification of an entire 

system process that allows real-world implementation of 

the theoretical model. The color coding in Figure 2 

represents a bridging process applicable to components 

of an overall system development process considered 

analogous with concurrent engineering design, and 

design for manufacturing and assembly which are also 

accepted development processes. It is evident that an 

evolution towards integration of these sub-processes can 

increase oversight and concurrency at all levels of 

development.  

 

Typical engineering projects of systems with even low 

to moderate complexity can become overly convoluted 

when multiple tools are required to complete the various 

aspects of the overall system tasks. It is typical for a 

modern software engineering project to have multiple 

resource databases for specifications, requirements, 

project files, design and testing tools, change 

management and reporting formats. A fully integrated 

and unified process that bridges the V gap would solve 

the problem of configuring multiple tools and databases 

to meet the needs of a single project. Furthermore such 

an approach can simplify a process that follows recent 

developmental trends of increased utilization of a 

„model based design‟ paradigm.  

 

Potential benefits of an integrated development process 

include 

  

 high degree of traceability resulting in ease of 

project navigation at all levels of 

engineering/management 

 high degree of concurrent development 

resulting in reduction of overall project 

development time/time to market 

 testing at early/all stages enabled resulting in 

potential for improved product and reduced 

debugging costs. 

 

These benefits alone address several of the largest issues 

faced by developers to improve quality, reduce costs 

and therefore remain competitive in the global 

marketplace. Benefits also apply to other developmental 



International Journal of Computer & Organization Trends –Volume 4 Issue 4 July to August 2014 

ISSN: 2249-2593                                 http://www.ijcotjournal.org                                    Page 9 

practices adapted to enhance recent-trend design and 

quality processes such as the model based design 

paradigm in which testing can be done iteratively 

throughout the entire development process.  An 

integrated process can also add utility to reiterative 

process structures such as CMMI and Six Sigma/DFSS 

which have become instrumental practices for quality 

assurance. 

 

In model based design testing an integrated 

development process will enhance and simplify 

procedures on multiple levels. Because model based 

design lends itself to modularization of components 

using serial systems, parallel systems and subsystems 

that may be embedded ad-infinitum, testing can begin 

near the beginning of the design process as opposed to a 

post-integration phase as in legacy testing paradigms. 

Component level, system level, software and hardware 

testing can be increased and testing can begin at earlier 

stages in the design. Testing can additionally occur with 

more concurrency due to the modular nature of the 

newer design paradigms, decreasing the time to market 

via a parallel/pipeline type of approach.  

  
Figure 8: Cost of repair increase estimated against 

development time scale [8] 

 

As indicated in figure 8 above, changes and 

improvements made later in the design process are far 

more costly than those made in the earlier stages. 

 

Validation and Verification procedures are a certain 

means of improving product quality and customer 

satisfaction. By applying such procedures at every step 

of the development, an enormous cost savings can be 

realized by iterating improvements at the earliest 

possible stage of the development when integration is 

considerably less complex. 

VI. TESTING AT EVERY LEVEL 

 

Like the product design itself, it is important that a clear 

and concise testing specification is provided so that 

appropriate tests can be developed. Test specifications 

should have a built in mechanism of flexibility so that 

additional tests can be developed that may not have 

been considered in the original concept of the design. 

The test specification development stage can be greatly 

enhanced when test requirements documents reside in 

the same source repository as hardware and software 

requirements documents and are likewise derived from 

the original customer specification documents and 

traced through object linking. Creation of test plans can 

therefore have flexibility and also be created or changed 

any time a requirement object changes, is added or 

deleted.  

 

With available test requirements and a source 

repository/requirements management system in place, 

testing plans can be devised concurrent in time to design 

development along the initial arm of the V model.  The 

proposed scheme of a unified testing, validation, 

verification and development software tool or utility can 

greatly increase the level of control maintainable over 

the lifecycle management aspects of a project and take 

concurrent test development to new heights. By 

implementing and maintaining a configuration that 

reduces the number of software platforms deployed in a 

standard embedded system design project the 

development process can also gain the effects of 

enhanced traceability and enable testing to occur at 

every level.  

 

The traceability inherent in a unified integrated solution 

is an important aspect which simplifies the process of 

relating auto-generated code back to its source.  

Furthermore by forward and backward linking ability, 

greater traceability can be achieved across the entire 

environment e.g. from a test report to executable code, 

to a model, to requirements documents, to the customer 

specification. Linking across test requirements and 

specifications can also provide for useful data 

management strategies such as the separation of 

operating system and application software to separate 

storage drives than test application software and test log 

files. A linkable platform allows an engineer to have 

immediate access to these separate directories or servers 

from within a single configurable environment. 

Enabling of linkable functional test stations can be made 

to occur in intermediate stages throughout the 

manufacture process and ultimately for End of Line 

(EOL) testing where the final product is tested at the 

end of the assembly process in a simulated use 

environment. The test bases can remain as part of the 

development environment with strong basis, perhaps 

automated derivation, from the available test 

requirements documents. Since the most important 

aspect of complete and adequate project DVPV could be 

considered to be testing requirements documents, it 



International Journal of Computer & Organization Trends –Volume 4 Issue 4 July to August 2014 

ISSN: 2249-2593                                 http://www.ijcotjournal.org                                    Page 10 

follows that a direct linking from test specification to a 

design plan and further to a design report would add 

both economical and temporal efficiency across the 

process. 

 

According to “Professional quality management and 

assessment when developing software for embedded 

systems”, a white paper from IBM/Telelogic: “Wrong 

estimates that are frequently made in the planning of 

complex software development projects are often due to 

the erroneous assumption that less time is needed to test 

software than to actually specify, develop and encode it. 

And since the implementation phase takes longer than 

was originally assumed in the vast majority of 

development projects, the test phase that is planned to 

follow on after it gets shifted back too" [8]. The 

implication of this statement is that test planning and 

implementation that is delayed until later stages in the 

development process may be marginalized or omitted 

based on an improperly budgeted project. With a unified 

approach testing can be projected, planned for and 

initiated at the earliest design stage. The fact that 

systems and system components may undergo multiple 

revisions during or preceding any of the stages of the 

development process reinforces the need for early test 

development that is also linkable / traceable to its 

requirement source for increasing change management 

control. Also, well documented test cases, test scripts 

and test results will have the added benefit that in later 

maintenance stages of the process when the original 

architects, engineers, designers or suppliers may no 

longer be retained or available, in which case there 

should be clarity in documentation that guarantees any 

qualified entity or individual will have documentation 

available to enable quickly coming up to speed on the 

details and needs of the project. This can be affected by 

having the individual test environments embedded into 

a sole development process.  

 

Admittedly even the major software system application 

developers are aware of the inability for the marketplace 

to keep pace with the academic and theoretical progress: 

“testing and debugging tools have not kept pace with 

the increases in embedded software size and 

complexity. As a result, the cost of testing an embedded 

system today can be up to 50% of total development 

costs” [9]. Early code verification can help to reduce the 

number of latent faults, that is, run time errors that are 

not evident in normal operational testing. The types of 

code verification testing usually employed are: manual 

code review, static analysis (evaluation of static 

expressions, constants, etc.), dynamic (script based, 

batch based) testing. 

 

Currently there is emphasis from software testing tool 

providers for automation of testing.  Automation offers 

advantages such as reduction of erroneous data logging 

or transcription, and improved repeatability. 

Accordingly for systems with “complex operations with 

many inputs and outputs” test automation provides the 

advantage of “increased data throughput” [10].  

   

Other potential befits of automated testing is 

summarized as follows: 

 elimination of redundant tasks such as 

redefinition of the test specifications to be used 

in a test plan 

 re-usability – in which a test configuration can 

be reused on the same or different projects by 

modification of only parameters or parameter 

names  

 allow for the use of tool sets or software 

applications to port across platforms by 

placement or automated recognition of files 

extensions or types which in turn eliminates 

some human error in terms of physical 

portability [9].   

 

The most important effect of testing at every level is 

that requirements documents from a test specification 

can be developed, tested, reported, linked and updated 

iteratively and concurrently.  

 

VII. SCALING UPDWARD TOWARD FULLY 

INTEGRATED SOLUTIONS 

 

By way of acknowledging the absence and need of an 

all-in-one based development approach, some 

companies are moving in the direction of offering 

extended applications to their existing tools sets either 

through internal research and development or 

acquisition and assimilation of third party software 

applications. Software Tool providers must continually 

provide improvement and extensibility of their products 

in order to maintain a relevant position in the 

marketplace. The growing complexity of these tools, the 

need to keep pace with technological advances and 

theoretical design ideologies places considerable burden 

on tool providers. The inability of software process tool 

development to provide a unified process is evident by 

the variety of applications available to patch between 

design and testing environments and the general lack of 

all-in-one or multi-tools to meet design validation and 

verification demands. The resulting disparity between 

acceptable theoretical development paradigm and the 

availability of a tool to fill those requirements is plainly 

revealed. Due to colossal time and financial resources 

that impede the development process itself, the gap 

between need and fulfillment is further perpetuated. 

Even though a given software tool provider may be 



International Journal of Computer & Organization Trends –Volume 4 Issue 4 July to August 2014 

ISSN: 2249-2593                                 http://www.ijcotjournal.org                                    Page 11 

presently engaged in research and development of a 

unified solution, many providers are nonetheless forced 

into the position of stop-gap (quick fix) solutions in 

order not only to remain competitive, but to avoid 

obsolescence. One approach has been incremental steps, 

micro-solutions, modulating and linking smaller 

processes and software solutions. One problem with this 

approach is that it moves software engineering 

processes further away from unification because the 

overall integration solution can become further 

complicated by difficult configuration strategies. In 

extreme though not uncommon cases engineers are 

expected to learn entirely new programming languages 

to support new tools and tool functionalities. For 

example IBM‟s Telelogic DOORs offers extensibility 

through development of external interfaces or 

applications executable though a proprietary language 

“DXL”. Another drawback of such a stop-gap approach 

is that by requiring a user defined tool set extension 

focus from the project is detracted and forced instead to 

the underlying process which can severely inhibit 

productivity and introduce further engineering 

complications and error. 

 

Some patchwork offerings are available that make 

initial inroads toward a process that may be more or less 

easily propagated further through a tool chain. However 

these tend to offer features defined by the provider and 

may resolve only small partial issues relative to a 

universal environmental approach. One example is an 

offering from Telelogic; the tool TTCN for Testing and 

Test Control Notation [11]. This tool is intended for use 

in conjunction with Telelogic‟s source repository tool 

DOORs, although it may also be used as a third party 

standalone or add-on to other development 

environments. TTCN offers the ability for testing 

modules and application interfaces (APIs), however 

with the expectation that the user has a desire to learn an 

entirely new programming language. Contrarily a 

system with a more user friendly graphical interface not 

unlike navigating a modern webpage would naturally 

reduce development time over one that would require 

new programming knowledge. To utilize the TTCN 

conceptual framework, the Telelogic company 

commercially markets an “integrated environment” that 

provides utility to the new language and framework. 

The Telelogic Tester provides several utilities whose 

need has been extolled here such as a high degree of 

automation however again; this company expects that 

users of this tool chain will afford the time and financial 

commitment to learning a new programming 

environment.  

 

 
Figure 9: MATHWORKS® Simulink Verification 

and Validation Tool box example. A platform for 

logic testing application extensions. An example of a 

model based development platform [12] 

 

Figure 9 above depicts another example of a utility add-

on. MATHWORK‟s Simulink Verification and 

Validation add-on “enables you to develop 

requirements-based designs and test cases in Simulink 

and Stateflow and measure test coverage. By linking 

requirements to your designs and test cases and 

performing coverage analysis at the model level, you 

can trace requirements, validate your design, identify 

inadequate requirements, and expose unnecessary 

constructs and design flaws” [11]. However this tool 

does not extend across platforms toward lower level 

code generation testing, validation and optimization for 

production code outside of the MATLAB MIL 

environment and is thus not applicable to HIL testing. 

Mathwork‟s Simulink Verification and Validation Tool 

box provides one small incremental step towards testing 

integration into the overall development however does 

not match the capabilities found in other testing suites 

such as National Instruments (NI) LabVIEW. Like 

Simulink, LabVIEW (a graphical programming 

paradigm with its own G programming language) is 

further utilizable as a control and data acquisition 

package supporting HIL level testing external to the 

design environment. 

VIII.  COMPARISON OF COMMERCIALLY AVAILABLE 

VERIFICATION AND VALIDATION TOOLS 

Many code-generation, partial process automation, or 

test-bench generation tools require the use of additional 

software tools for patching through to another root 

software platform to complete an uninterrupted tool 

chain. Here follows a brief overview of commercially 

available tools that are integral pieces, providing 

essential large-stage or small-step additions to a 

movement towards a universal all-in-one tool paradigm. 



International Journal of Computer & Organization Trends –Volume 4 Issue 4 July to August 2014 

ISSN: 2249-2593                                 http://www.ijcotjournal.org                                    Page 12 

A.  MATHWORKS HDL CODER: 

 

MATHWORKS provides a widely used and highly 

sophisticated tool set for model based design and a 

variety of code generation utilities for application 

software development. One example of an extension 

product that does not fulfill the implications of its utility 

is the Simulink HDL Coder [13]. Hardware Description 

Language (HDL) Coder is an extension of the model 

based development package whose intended use is the 

auto-creation of HDL code for use in a third party 

synthesis tool. Although the HDL coder offers 

automation of a test bench and saves the user from 

learning additional software programming languages 

(VHDL or Verilog-HDL), it still lacks a complete 

solution because the tool requires the acquisition of 

other tool sets: synthesizers such as Synplify® and 

simulation tools Mentor Graphics® ModelSim® 

simulator or Cadence Incisive® to affect code 

instrumentation (device programming with production 

ready micro controller code). The end result is that this 

tool is really just a conversion instrument from one type 

of simulation (model based) to another (hardware 

description) prompting third party providers such as 

Impulse C to develop their own code optimization 

extension tool, again with the impetus landing on the 

engineer to learn to navigate an additional development 

platform complete with new flavors of proprietary c-

code syntax. 

 

B. dSPACE Targetlink Production Code Generator   

 

dSPACE is an internationally reputable provider of 

complete system development software (Control Desk 

and Automation Desk IDEs, Targetlink Model 

Simulator), hardware (HIL testers, load-boxes) and staff 

solutions for Automotive and Aerospace industries. 

Basing observations on page 186 of the 2014 dSPACE 

Product Catalog [7] design and code implementation, 

dSPACE offers a complete MIL/SIL/PIL integrated 

environment. In the dSPACE design workflow 

Modeling Simulation and Code Specification 

encompasses several tasks including behavioral validity 

checking that can be tested in Model in the Loop 

Paradigm.  This stage is related to reference checking. 

The next stage of the design process testing is software 

in the loop in which production code is hosted in the 

simulation environment. This stage is related to 

precision checking.  The next stage of the design 

process facilitates "Production Code Target Simulation" 

that encompasses several tasks including target code 

verification testing with processor in the loop 

evaluation. This stage is related to optimization of 

production code. What the architecture of this 

environment lacks is clarity as to the configuration and 

interface needs and complexity required to link 

Simulink modeling, third party calibration tools and 

ECU programmers. Again the onus is left to engineering 

for configuration and interface. 

 

C: Micro-Max Technology MxVDEV– Unit/System 

Test Tool Solution 

 

Micro-Max Technology offers a foundation 

development environment, a Virtual Development 

Bench of programs used for requirements capture, 

design, development and test of real-time control 

systems. Some components of this suite include:  

 

 Mx-VDev™ Unit/System Test Tool 

 Mx-Sim™ System Simulator 

 Mx-Automate™ Continuous Integration Tool 

 Mx-Xchange™  Test Data Interchange Tool 

 

 
 

Figure 10: Micro Max Technology’s Mx-VDev™ 

Unit/ System Test Tool [14] 

 

Again the referring back to figure 2 the configuration 

given implies a complete development environment yet 

remains vague in the areas of model development, 

integration and especially verification, validation and 

test reporting as the project moves towards completion 

along the right arm of the V. Alternatively figure 10 

indicates the extensibility requirements of tool chains 

utilizing the V design in which the Mx-VDev unit test 

tool can provide an integral component for integration 

of test development. Other issues involved with this and 

other tools include server/resource repository storage, 

mapping and configuration. 

 

D: Hewlett-Packard Quality Center Solution 

 

Adding yet further quality management concerns into 

the mix, Hewlett-Packard provides their Quality Center 

Solution tool boasting an enterprise ready integration 

approach to quality management that extends visibility 

and control up to a generalized/project management 

level including “out-of-the box capabilities for SAP, 

SOP and Oracle quality management” [15] 



International Journal of Computer & Organization Trends –Volume 4 Issue 4 July to August 2014 

ISSN: 2249-2593                                 http://www.ijcotjournal.org                                    Page 13 

environments. This high level control environment 

empowers the strictest management up to and including 

purchasing, billing and individual time management 

control over all aspects of a project. This tool enables 

top-level project management with respect to business 

strategies but provides little or no facility for low level 

engineering. For this reason the Quality Center Solution 

does not particularly lend itself to a software 

development process.  

 

Table 1 Part A and Part B indicate a comparison of the 

features and available utilities in commercial off the 

shelf software applications (COTS). Note that a process 

can be traced across the development phases by 

connecting a variety of tools however no single tool 

provides a direct trace through an entire process. 

Table 1-A 

COTS Software Application Comparison Table 1 

part A.  

 
 Source 

Integrity / 

Database/ 

Repository 

Version 

Support /  

Linking  

Features 

Model 

Based 

Design 

IDE 

DOORs X X   

Telelogic / 

Tau 

  X  X  

Telelogic 

Tester 

X X    

MKS X X   

Matlab   X X 

dSPACE   X X 

Green Hills 

Multi 

   X 

NI Labview   X X 

 

Table1-B 

COTS Software Application Comparison Table 1 

part B.  

 
 Requireme

nts 

& Design 

Validation 

Compil

er/ 

Debugg

er 

Produ

ct 

Verifi

cation 

Testing 

Extensibilit

y 

DOORs X   X   X  

Telelogic / Tau X  X  X   

Telelogic Tester  X  X  

MKS     

Matlab X X X  

dSPACE X X X X 

Green Hills 

Multi 

X X X  

NI Labview X   X X 

 

IX. PROBLEM STATEMENT 

 

Without a standardized design process, especially in a 

large modular design paradigm that may require 

multiple individuals or multiple groups to work 

concurrently on different aspects of a project to be 

integrated at a later stage into the final project, tracking 

changes, collecting and evaluating data and especially 

phase and software integrating can be extremely 

difficult at best. 

 

A company may hire a new employee who is required to 

use specific software tools and tool chains requiring 

very specific configurations on multiple levels. At the 

first level installation and configuration may be difficult 

due to some software tool combinations and depending 

on the clarity of installation/configuration instructions 

of the tools. There may be additional complexity based 

on the license management such as product key and 

directory installation requirements of each link in the 

software chain. Once this installation is complete at the 

top level, there may be further convolution with 

additional complexity of maintaining projects with links 

to multiple directories which are necessary for user 

defined scripts that direct software applications to share 

scripts with other applications. If not well documented 

in a large project, this task in itself may require an 

extensive „debugging‟ process rivaling that of the 

software project itself.  While it is not a difficult matter 

to develop and track such configurations on a single 

user computer, it can be particularly burdensome when 

a new developer is added to an existing project. 

Likewise when additional developers are added to a 

project, it will be imperative that their configurations 

appropriately mirror a master configuration in order to 

have the same utility in matters of design debug, 

simulation, and compilation as well as further forward 

moving development. With a process in place to ensure 

that all users begin with a common configuration, 

project management is simplified and may even be 

relegated to a software application for source integrity 

such as MKS or a communized resource repository tool 

such as Telelogic‟s DOORs requirements management 

application. Furthermore, in a modular design paradigm 

for instance with a large and complex project, pieces, 

modules, components can tend to get scattered over 

many resource repositories such as storage drives, 

individual computers, and software specific directories. 

Without strict process and project management this can 

result in dramatically increased complexity for 

integrating, especially in the absence of a top level 

topology. 

 



International Journal of Computer & Organization Trends –Volume 4 Issue 4 July to August 2014 

ISSN: 2249-2593                                 http://www.ijcotjournal.org                                    Page 14 

X. PROPOSAL FOR INTEGRATED SOLUTION 

 

The proposal for an integrated solution for a complete 

and universal software system application process must 

take an approach adapted to circumvent the necessity of 

third party component tools to enable a truly integrated 

development environment from start to finish. The 

present benefit of leaving the development process 

environment to utilize third party tools is that each 

component can be a highly specialized component 

designed specifically by a supplier that specializes 

explicitly in a given aspect of the overall development. 

For example Matlab is a specialty graphical 

programming language and IDE for model based design 

and code generation. The drawback to the present 

approach is that maintaining a replicable configuration 

of integrated third party utilities and extensions can be 

and generally is complex, non-intuitive, may not be 

portable to other platforms and may not be easily 

duplicated. 

 

 
Figure 11: Screen shot of Link tab in the DOORs 

Object GUI editor.  

 

An ideal integrated development environment will 

include functional elements such as DOORs ability to 

link multiple requirements documents to other 

documents on a line item by line item / function by 

function / parameter by parameter basis as indicated in 

figure 11 above.  Using this same utility/functionality of 

the DOORs tools, individual 

functions/process/parameter/stages may be externally 

linked to a specific test requirements document that may 

be linked to other software applications or may be even 

be developed as a custom template/application as 

extension to the existing DOORs environment. DOORs 

do provide this facility for development of user defined 

extensions to the tool.  

 

 
Figure 12: Screen shot of DOORs Properties GUI 

editor.  

 

The History tab in the Property Editor GUI in Figure 12 

above reports versioning and modification data on every 

given object in the repository. This DOORs feature may 

also receive future modifications that allow provision of 

test applications, configuration, and change 

management tracking that is routinely done in third 

party applications. In the same manner that a numerical 

hierarchy outline is kept which also allows inclusion of 

tables, spreadsheets or other graphic objects into the 

editor, DOORs may be modifiable to represent 

complicated test chain applications and environments. 

The property editor can and should be configured with 

drop down menus and URL hot links; however these 

links could also be sourced within the tool itself. Any 

GUI type application for importing/exporting test 

templates that can take advantage of the same DOORs-

like functionalities for up-linking and down-linking to 

other documents would be suitable but should provide 

measures further for linking to other applications, or 

sub-environments including entire test environments 

that may include tool-chains such as Campbell 

Scientific PC9000 data logging / with CAN data 

communication combination evaluated through an NI 

Labview testing environment. 

 

The ideal solution for an integrated solution is that the 

integrated environment features the best of all worlds, 

that is to say that the environment uses the optimal 

resource, design, test and capture/reporting tools 

without ever leaving the integrated development and 

with a minimal of integration effort. The benefit of this 

approach is that configurations can be embedded 

(contained) within the resource environment itself as 

opposed to keeping external records (or human 

memory) about configurations required between dev 

stages. The system can be portable from the aspect that 

a designer should be able to expect the ability to log in 

to the source repository and have at a single button press 

the entire development and its history loaded and built 



International Journal of Computer & Organization Trends –Volume 4 Issue 4 July to August 2014 

ISSN: 2249-2593                                 http://www.ijcotjournal.org                                    Page 15 

to a unique environment. Real-time tracking and 

traceability can be implemented if such a feature is 

necessary or desired. It is a perfectly sound notion to 

base such a contextual framework on the already 

accepted theoretical design paradigm models such as the 

V-model. 

  

A traditional or standard process such as the 

aforementioned V model should minimally consist of 

the following stages: 

 

 Definition 

 Design 

 Development  

 Integration 

 Testing 

 Prototype 

  

“In classical design paradigms a performance measure 

may have been resolvable to a single (quantitative) 

parameter or set of outputs. A more complex system 

may require a multi-faceted approach to gather multiple 

performance measures including: Minimum-time 

problems, Terminal Control Problems, Minimum 

control-effort Problems, Tracking Problems, and 

Regulator Problems [16]”. 

 

While simulating real I/O is an effective testing 

approach for verifying and validating a process control 

system, there remains many missing components 

required to apply simulation techniques across the entire 

system development while remaining in a single 

integrated environment. This deficiency extends to the 

complete application lifecycle management in systems 

engineering and software development 

 

In order to facilitate progress from traditional and 

classic scenarios to implement the developmental 

complexity of modern control systems the following 

tasks and/or resultant design stages require additional 

consideration. 

 

 Composability - support for modular 

development and integration without side-

effects  

 Test automation 

 Linkable test software 

 Auto-publishing to requirements document 

repository/source integrity tool. 

 Integration  

 System Configuration management 

 

Important test factors to ensure software verification 

and validation quality and reliability include accuracy 

and repeatability. Testing shall be done against 

customer specifications. Testing shall be done against 

failure. Additionally, a test requirements document may 

call for Statistical Process Control test and reporting in 

which an SPC value dictates a requisite number of times 

that a specific test is requested run on the same device 

thereby providing statistical analysis figures. 

 

With these requisite developmental stages in mind, the 

remainder of this section outlines a template for an 

application that may have foundation in existing COTS 

or may take the best features from any of those 

environments to create a new software application that 

supports a complete beginning-to-end IDE with features 

that additionally include/address concurrent 

development, link-ability, integrated testing/reporting, 

source integrity, configuration management. The idea 

behind such a SW application is to replace the necessity 

for having to learn new proprietary coding languages 

when it is necessary to add enhanced utility or extend 

the application tools beyond its foreseeable use.  

 

Fundamental rules: 

 

 The application shall be maintainable in a 

SINGLE document repository or source 

integrity software tool such as Telelogic 

DOORS or MKS. 

 The application shall be associated (linkable) 

to relative resource documents either through 

object linking (for traceability) in the case of 

DOORs or through logistical file management 

as in the case of MKS. 

 The application shall have an appropriate menu 

option for linking utilities. 

 The application shall have an appropriate menu 

option for directory/path maintenance for use 

in tools like MKS and 

MATHWORKS/dSPACE related tools. 

 The application shall utilize a windows/OLE 

type of object embedding utility so that entire 

documents can be associated with an iconic 

link. 

 The application shall have a project 

initialization utility upon creation that allows 

user input of known parameters and other data 

intended to be v&v by the user. 

 The application shall maintain traces to 

software tool configuration/installation 

management documentation. 

 The application shall maintain traces to a pre-

configured or configurable directory or data 

path. 

 The application shall allow installation, 

configuration, launch of software application 

and/or tool chains from within, and further it 



International Journal of Computer & Organization Trends –Volume 4 Issue 4 July to August 2014 

ISSN: 2249-2593                                 http://www.ijcotjournal.org                                    Page 16 

should allow this feature by a right-click of a 

given test parameter to initialize either/and/or 

data acquisition functionality or already 

acquired result data. 

 The application shall allow navigation through 

either/or: reference frame, callout, data tree, 

hierarchical structure. 

 The application may allow the user to 

enable/create functionality through drop down 

menus and other graphical programming 

techniques.  

 The application/project should maintain 

configuration data/repository of records 

through links and directory paths to locations 

on a computer or server, thereby also allowing 

the IDE to be portable across computers or 

workstations. 

 

Telelogic/Quality Management tools seem the most 

likely developer to provide an overall integrated 

solution for verification and validation. In its present 

incarnation it can support most of the 

repository/linking/interfacing/reporting needs for a 

software development project. Telelogic DOORs 

repository/integrity functionality and powerful GUI 

editing interface provides an excellent example of what 

can and should be made available in an all-in-one tool. 

Note the tabbed editing capabilities in the GUI editor in 

figure 13 below.  

 

 

 
Figure 13: Screen shot of DOORs GUI editor.  

 

Added features can be implemented in this same 

paradigm with the addition of new tabbed properties per 

each object or feature. 

 

New windows can be added for the following types of 

features:  

 

 input of I/O named parameters intended for 

testing, measuring, verification and validation. 

 Integration/choice of data logging tools known 

in advance by engineer such as Campbell 

Sci/CAN input (such as P(eak)-CAN). 

 choice of methods of data representation 

known in advance such as 

spreadsheet/tables/charts/graphs 

 a properties-type of data association that allows 

modification/editing of parameters  

 

In addition to the rules and features the project 

development process stages should be considered to 

extend/implement the additional following features and 

support the following tasks and functionalities: 

 

 Identification of test parameters in the 

hardware or software requirement documents. 

 Create external links from source documents in 

the basic outline or template of the test 

requirement document. 

 Outline the test requirement document 

capabilities  

 Ability to choose testing software (perhaps 

even with a drop-down menu of pre-

configured pre-installed software suites – 

additionally must have the ability to “Add” 

from the drop-down menu.) 

 Ability to identify and/or create tool chain 

of multiple software applications 

 Ability to link timeline/scheduling 

information/Gannt chart type of 

representation for testing environment. 

 Multiple item choice window application that 

allows selection of parameters/functions, etc to be 

simultaneously chosen and directed to a master test-

overview. 

 From master overview, ability to group and 

direct individual parameter groupings to the 

software app to which they are best suited for 

testing.  

 Test plan development complete with notes 

area for the lowest level of instruction. 

 Collection of test data/integration of test tools 

 Evaluation of test data, explanation of 

procedures and observation notes. 

 Comparison of test data against original 

requirements. 

 Population of an indicator in original test 

specification such as columns with drop down 

menus that allow quick linking and quick checking 

of such parameters as: test performed (y/n; date; 

type; SW), evaluation complete (y/n; date; by 

whom), presented for review to higher level 

engineers or managers; sign off (date, by whom).  



International Journal of Computer & Organization Trends –Volume 4 Issue 4 July to August 2014 

ISSN: 2249-2593                                 http://www.ijcotjournal.org                                    Page 17 

Note the top level requirements document should link 

down level by level to test specification, test data, 

evaluation of data, which can in turn link to a hardware 

or software modular requirement. Benefits are 

illustrated by another prime example set by Telelogic‟s 

Statemate which is noted for its ability to use simulation 

software to “capture” and “Include” information in a 

test specification such that an “engineer can explore 

what-if scenarios to determine if the behavior and the 

interactions between system elements are correct. These 

scenarios can be captured and included in Test Plans 

which are later run on the embedded system to ensure 

that what gets built meets what was specified. This 

executable specification is also used to communicate 

with the customer or end user to confirm that the 

specification meets their requirements” [17], Statemate 

offers back-end high-to-mid level approach for 

validation via customer/user feedback mechanism, 

while MATHWORKS Simulink sets the leading 

example as an extensible environment by interfacing to 

add-on tools used for verification via multi-domain 

modeling. Either of these tools can provide a solid 

foundation for development of a complete integrated 

software development process tool. 

XI. CONCLUSION 

A successful product is expected to meet the customer‟s 

needs and expectations within a budget that has been 

agreed upon and is delivered in a timely manner. To 

meet marketable requirements and time and budget 

constraints, the developer of a product may cut corners 

on testing, verification and validation of a final product. 

Such omissions may result in reduced customer 

satisfaction and unanticipated product failures that are 

exponentially more costly to rectify once a product has 

evolved beyond the design stage. Rigorous testing, 

validation and verification are important final steps to 

making a delivery that meets the client needs. Not only 

does this impress and reinforce customer satisfaction 

but a thorough testing, verification and validation 

process can also save on the long term maintenance 

phase of the project. A major step in enhancing quality 

assurance will be to provide the ability to automate and 

link an entire testing, validation and verification process 

with extended design and reporting domains to provide 

linked processes at all levels for example bridging the 

gap of a V development process flow. A linking, 

unifying process helps to facilitate not only concurrent 

test specification development but also early stage 

testing in which discovered areas of improvement can 

be exponentially less costly than if required at later 

stages of development. Testing at every level becomes 

possible including Model in the Loop (MIL), Software 

in the Loop (SIL), Processor in the Loop (PIL) and 

Hardware in the Loop (HIL) stages. By linking at initial 

and terminal stages, a testing paradigm can be 

implemented that insures testing against customer 

specifications as well as against product failure and 

provides a traceable link to any stage on the product 

development and lifecycle. By encapsulating an entire 

development process within a test-friendly context, an 

adopted process may be enhanced for parallel or 

concurrent implementation that allows for wider access 

(multiple developers), greater management capabilities 

(a project with an aggressive deadline may even be 

projected into a real-time environment such that a server 

based repository can facilitate real-time updating), 

control (checks and balances against specifications and 

requirements at every level), and finally correctness and 

repeatability of the entire development process.  

REFERENCES 

 
[1] V-Model (Software Development) 

http://en.wikipedia.org/wiki/V-Model_(software_development) 

[2]  “Flow Diagram of Product-Process Development” Retooling 
Manufacturing: Bridging Design, Materials, and Production 

Committee on Bridging Design and Manufacturing, National 

Research Council ISBN: 0-309-09266-3, 123 pages, 8 1/2 x 11, 
(2004). Page 15. http://www.nap.edu/catalog/11049.html 

[3]  Reqtify – A Graphical Requirements Traceability Environment. 

http://www.chiastek.com/products/reqtify.html  
[4]  “Telelogic Lifecycle Solutions: Getting Started with DOORS” 

doors_getting_started.pdf@ http://support.telelogic.com 

[5]  “External links and DOORS URLs” 
external_links_and_DOORS_URLs.pdf @ 

http://support.telelogic.com 

[6]  Donald E. Kirk, Optimal Control Theory – An Introduction, 
First Dover Addition, 2004, Dover Publications, Inc. 

[7]  SPACE Catalog 2014, page 185. Catalog 2014, dSPACE, 

Technologiepark 25, 33100 Paderborn, Germany: 
http://www.dSPACE.de 

[8]  “Professional quality management and assessment when 

developing software for embedded systems” page 1. Quality 
Management and Assessment: Renate Stuecka, Telelogic 

Deutschland GmbH, Otto-Brenner-Strasse 247, 33604 Bielefeld, 

Germany, Tel ++49 (0) 521-14 503-254, 
http://download.telelogic.com/download/paper/qualitymanagem

ent.pdf  

[9]  “Code Verification and Run-Time Error Detection Through 
Abstract Interpretation, A Solution to Today‟s Embedded 

Software Testing Challenges”, 

Polyspace_white_paper_abstract_interpretation.pdf. @: 
www.mathworks.com/polyspace 

[10]  Gary W. Johnson, Richard Jennings, LabVIEW Graphical 
Programming Fourth Addition, 2006, McGraw Hill 

[11]  “Automated Testing In Software Development: Standards Drive 

Improved Quality” Version 2, August 2008, Irv Badr, Renate 

Stuecka, Telelogic, 

Tester_WP_Automated_Testing_In_Software_Development_FI

NAL_080804.pdf @: www.telelogic.com 
[12]  “Early Verification and Validation in Model-Based Design” 

presented by Amory Wakefield at Mathworks Automotive 

[Interactive Web] Conference. Tuesday, October 28, 2008. 
[13]  Simulink® HDL Coder™ 1, User‟s Guide (slhdlcoder_ug)@: 

www.mathworks.com 

[14]  Micro Max Technology @:  http://www.mrmx.com/products 
[15]  “HP Quality Center: Combine requirement, test and defect 

management into a single quality platform.” HP Quality 

Center.pdf @ www.hp.com/go/software 



International Journal of Computer & Organization Trends –Volume 4 Issue 4 July to August 2014 

ISSN: 2249-2593                                 http://www.ijcotjournal.org                                    Page 18 

[16]  Vahid/Givargis, Embedded System Design: A Unified 

Hardware/Software Introduction: Chapter 11: Design 
Technology 

 


