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ABSTRACT 

          On the Diophantine equation  

 xn+1 + yn+1 = zn+1   +km+1, we analyse the integral 

solution for some value of m and n with k = 2. 

Observation found were recorded and presented. 
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INTRODUCTION 

          The theory of  Diophantine equations plays a 

significant role in higher arithmetic and has a marvelous 

effect on credulous people and always occupies a 

remarkable position due to unquestioned historical 

importance. Mathematicians worldwide have made a lot 

of discoveries, provided a huge number of theorems and 

have also deduced many amazing results[1 – 5]. 

           In [6 – 9], the Diophantine equations for which we 

require integral solutions or algebraic equations with 

integer coefficient. In this context, one may refer [10 – 

14] for various choices of the ternary quadratic 

Diophantine equations. 

           In this communication, we discussed with problem 

of obtaining infinitely many non-trivial integral solutions 

on the diophantine equation  xn+1 + yn+1 = zn+1   +km+1, 

for particular values of k, m and n. A few results were 

presented. 

METHOD 

           On the Diophantine equation  

  xn+1 + yn+1 = zn+1   +km+1, we discuss the integral 

solutions for particular values of k, m and n. 

           In this paper, we take k=2 and proceed with the 

equation. In choice 1, we consider m = 1 and n = 1, two 

different patterns are presented to find the integral 

solutions of equation I and various results are illustrated. 

Some numerical examples are also discussed, In choice 2, 

taking  m = 2 and n = 1, another two patterns are 

presented, with numerical examples. 

CHOICE 1: 

           Equation is reduced to ternary quadratic 

diophantine equation, To find the integral solutions, the 

pattern are presented below. 

PATTERN 1: 

              Assuming the value z = Rx in the ternary 

quadratic diophantine equation, we get a equation 

               y2 = (R2  - 1)x2 + 1 by considering the pellian y0 

= R, x0 = 1. 

The general solution (xs , ys) is given by    

 ys  +  (R2  −  1)xs = 2[R +  (R2  −  1)]s+1 

 ys  -  (R2  −  1)xs = 2[R −   (R2  −  1)]s+1 ,   s = 0, 1, 

2, …… because irrational roots occur in pairs, 

Solving the above two equations, we get 

  Ys  = [ R +    R2  −  1  
s+1

+  

              (R −    R2  −  1 )s+1]                  →  I 

   xs  = 
1

 (R2  − 1)
 

[ R +    R2  −  1  
s+1

−                                 (R −

   R2  −  1 )s+1]  →  II 
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Substituting in the assumption 

    zs  = 
R

 (R2  − 1)
 

[ R +   R2  −  1  
s+1

−                              (R −

   R2  −  1 )s+1]   →  III 

 

 

 

ILLUSTRATION: 

 𝑦4𝑠+3 = 𝑦𝑠
4  - 4𝑦𝑠

2  -16 

 𝑦2𝑠+1 - 𝑦𝑠
2 + 2 = 0 

 𝑦3𝑠+2 = 𝑦𝑠
3 - 3𝑦𝑠 

 𝑧3𝑠+2 = 𝑧𝑠[𝑦𝑠
2 − 1] 

 2𝑧2𝑠+1= 𝑅+1 𝑦𝑠[𝑥𝑠 + 𝑧𝑠] 

 
2𝑧2𝑠+1

𝑥2𝑠+1
  = (𝑅 + 1)2 

 𝑥2𝑠+1 =  𝑦𝑠𝑥𝑠  

  𝑅 + 1 𝑥2𝑠+1 = 𝑦𝑠[𝑥𝑠 + 𝑧𝑠] 

Recurrence relation satisfied by the solution are found by 

 ys+2 - 2Rys+1+ys  = o, xs+2 −2Rxs+1+xs  = o and zs+2 - 

2Rzs+1+zs  = o 

PATTERN 2: 

               Assuming the value of x as y + k, the general 

equation leads to  

   (2y + k)2 = 2z2+8-k2              →  IV 

 In order to reduce the equation into the well known 

pellian equation taking X = 2y +k. That is, to obtain the 

other solutions whose least positive integer solutions of 

IV is y0 = 2, x0 = k + 2 and z0  =  k + 2. 

Pellian equation is X2 = 2z2 + 1 whose general solution ( 

Xs ,
 zs ) can be simplified as the solution  

     Xs  
  +  2 zs  = (3 + 2 2)s+1, s = 0,1,2,……             

      Xs  
  -  2 zs  = (3 − 2 2)s+1, s = 0,1,2,……. 

By solving the above two equation  

       

 Xs  
  = 

1

2
 [(3 + 2 2)s+1 + (3 − 2 2)s+1]  

and hence 

        zs  = 
1

2 2
[(3 + 2 2)s+1 - (3 − 2 2)s+1] 

 

Applying Brahmagupta lemma between the solutions 

(X0 , z0) and ( Xs ,
 zs ) the other solutions are presented as  

      Xs+1 = 
1

2 2
[ 2(k + 4)U + 2(k + 2)V]    

      zs+1 = 
1

2 2
[ 2(k + 4)U + (k + 4)V]     →  V 

 where  U = (3 + 2 2)s+1 + (3 − 2 2)s+1 and 

             V = (3 + 2 2)s+1 - (3 − 2 2)s+1 

ys+1 were simplified from the results which are already 

available.Therefore, 

ys+1 = 
1

2
 [

1

2 2
{ 2(k + 4)U + 2(k + 2)V} – k] → VI 

Since we are interested in finding the integral solution of  

xs+1, by substituting ys+1, in the assumption we get  

 xs+1 = 
1

2
 [

1

2 2
{ 2(k + 4)U + 2(k + 2)V} – k] + k  

                                                        →  VII 

Therefore, the integral solution for the diophantine 

equation considered are V, VI and VII. 

NUMERICAL EXAMPLE 

                 Numerical examples are given below when k 

takes even values k = 2, 4 and 6.    

                

                                                    k = 2 

 𝑥𝑠+1 𝑦𝑠+1 𝑧𝑠+1 

S=0 18 16 24 

S=1 100 98 140 

S=2 578 576 816 
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S=3 3364 3362 4756 

S=4 19602 19600 27720 

S=5 114244 114242 161564 

                                                            k = 4 

 𝑥𝑠+1 𝑦𝑠+1 𝑧𝑠+1 

S=0 26 22 34 

S=1 142 138 198 

S=2 818 814 1154 

S=3 4758 4754 6726 

S=4 27722 27718 39202 

S=5 161566 161562 228486 

                                                              k = 6 

 
𝑥𝑠+1 𝑦𝑠+1 𝑧𝑠+1 

S=0 34 28 44 

S=1 184 178 256 

S=2 1058 1052 1492 

S=3 6152 6146 8696 

S=4 35842 35836 50684 

S=5 208888 208882 295408 

                                                             

           RESULTS: 

  (xs+1 + ys+1 + zs+1) =   xs+1 + ys+1 +

 zs+1  

 where s=0, 1, 2, ..…… 

 

  (xs+1 + ys+1 + zs+1), 

               xs+1, ys+1, zs+1≡ 0(mod 2) where   

             s=0, 1, 2, ……… 

 The difference between the summation of 

xs+1, ys+1, zs+1for k = 6 and for k = 4 is same as 

for k = 4 and k = 2. 

CHOICE 2: 

                  Two different patterns are exhibited to find the 

integral solution of ternary diophantine equation. 

PATTERN 1: 

                  Assuming the value of x as y + 3, the ternary 

diophantine equation is reduced to  

                            (2y + 3)2 = 2z2+7 

Applying the similar method followed in the previous 

section, we get  

                            ys  = 
1

4
 [ 3R +  2 S – 6] 

                            zs  = 
1

2 2
 [ 2 R + 3S] 

 and hence           xs= 
1

4
 [3R +  2 S + 6] 

R and S are taken as  

        R = (3 + 2 2)s+1 +  (3 − 2 2)s+1,     

        S = (3 + 2 2)s+1 - (3 − 2 2)s+1 Therefore the 

non-zero integral solutions of ternary diophantine 

equations are  

          xs= 
1

4
 [3R +  2 S + 6] 

           ys  = 
1

4
 [ 3R +  2 S – 6] 

            zs  = 
1

2 2
 [ 2 R + 3S] 

The recurrence relation satisfied by the values xs , ys  and 

zs  are expressed as                           

xs+2 - 6xs+1 + xs  = -6, ys+2 - 6ys+1 + ys  = 6 and zs+2 - 

6zs+1 + zs  = 0. 

The initial values are  

x0 = 8, x1 = 39, y0 = 5, y1 = 36, z0 = 9, z1 = 53. 

Numerical values recorded are  

s xs  ys  zs  

0 8 5 9 

1 39 36 53 

2 220 217 309 

3 1275 1272 1801 

4 7224 7421 10497 
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5 43263 43260 61181 

 

Analysing these numerical values, the results found 

among them are presented here. 

 x2s≡ 0(mod 4) s= 0, 1, 2, 3, ……… 

 zs + ( 2β + 1) ≡ 0(mod 2) β,  

                         s = 0, 1, 2,3,………. 

 7(12x2s+1 - 4z2s+1 - 4) = 

                          (12xs  −  4zs  −  18)2 

  (2xs  −  3)2 - 2zs  2 = 7 

 

It is observed that W = 6xs  - 2zs  - 9,  

T = 2xs  - 3zs  – 3 satisfy the diophantine equation 

W2 = 2X2 +  72 . 

PATTERN 2: 

 In order to find the non-zero integral solutions of ternary 

diophantine equation, the linear transformation is applied 

as z = r + s, x = r – s, by which the equation will reduce to  

                            y2  = 4rs + 8. 

 r ans s are distinct non-zero parameters. It is possible to 

choose r and s such that rs+2 is a square and the value of 

y is obtained. 

The solutions of x, y and z were found. 

Numerical illustration are elaborated in the following 

table as given below. 

r s x y z 

2 7 -5 8 9 

𝑛2 + 2𝑛
− 1 

1 n2 +

2n −

2          

    

2n+2               

n2 + 2n   

2 
2n2 

− 1 

3-

2n2                   
4n 

2n2 + 1          

2n2 + 4n

+ 1 
2 

2n2 +

4n −

1         

4n +

4            

2𝑛2 +
4𝑛 + 3          

 

CONCLUSION:    

                     In this communication, we tried to find the 

non-zero integral solutions of ternary diophantine 

equation for particular values of k, m and n. Few patterns 

and some relations are observed. Numerical examples are 

also discussed, In extension of this, one may search for 

other patterns. 
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