
International Journal of Computer & Organization Trends –Volume 3 Issue 4 July to August 2013 

ISSN: 2249-2593                                  http://www.ijcotjournal.org                              Page 66 

Cataloguing and Avoiding the Buffer Overflow 

Attacks in Network Operating Systems 
*P.Vadivelmurugan  #K.Alagarsamy 

*Research Scholar, Department of Computer Center, Madurai Kamaraj University, Madurai, Tamil Nadu, India 

#Associate Professor, Department of Computer Center, Madurai Kamaraj University, Madurai, Tamil Nadu, India 

 

Abstract: 

The application software has a different dimension, size 

and intricacies is rising rapidly in current technology 

era and simultaneously increase a programming bugs 

also. The programming bugs cause vulnerabilities to 

the security systems. The large number of exploit is 

based on the buffer overflow vulnerability. In this 

paper, we classify the number of buffer overflow attacks 

with generation. Buffer overflow attacks are very 

harmful to current scenario; programmer writes a 

coding, in a buffer that overflows the boundary and 

overwrites in adjacent memory. This causes the erratic 

result and crash or breaks the computer security. We 

suggest the tools to prevent the buffer overflow 

vulnerability. 

Keywords: buffer overflow, stack smashing, heap 

overflow, corrupting memory, malicious code. 

 

                 I.INTRODUCTION 

The growth of the networking and internet based 

applications, the number of security exploits are also 

increased simultaneously.  The internet has 

interconnected the world and possible to share the ideas 

and resources. Unfortunately, the same technology 

permits the attacker to cause the vulnerability to the 

system. As a result software security is needed to detect 

and prevent the exploits caused by the attackers. 

Among the exploits Buffer overflow attack has been 

known for a long time, it has been from 1960[1] The 

most famous buffer overflow attack is the internet 

worm written by RoberT.Morris in 1988.A buffer 

overflow attack is done intentionally entering more data 

than a program was written to handle. Buffer overflow 

attacks exploit a dearth of boundary checking on the 

size of input being stored in a buffer. The extra data will 

overflow the memory set aside to accept it and 

overwrite another region of memory that was meant to 

hold some of the program’s instruction. The result of 

this is a cascade, which can finally halt the application 

or the system it is running on.  The outline values can 

be new  

 

 

 

instructions, which could give the attacker control of 

the target machine depending on what was input. 

There are two main internet worms have exploited 

buffer overflows to a large number of internet systems. 

In the year 2001, code Red worm which exploited a 

buffer overflow in Microsoft's Internet Information 

Services (IIS) 5.0 and in 2003 the SQL Slammer worm 

attacks machines running Microsoft SQL Server 2000. 

The given buffer overflow sample program, help us to 

understand the vulnerability easily  

 

int main () 

{ 

int buffer[100]; 

buffer [200] = 300; 

} 

 

The above code which is given is a valid program, 

every compiler compile this program without any errors 

in each times. But, this program takes additional 

memory to write data, which is larger than the 

allocation, which gives the result in unexpected way 

[2]. 

 

I FUNDAMENTALS OF BUFFER 

OVERFLOW ATTACK 

 

The researchers pointed out that there are three 

necessary conditions for bufferoverflow attacks to be 

successful: (i) injecting malicious code and (ii) 

redirecting the program control flow to execute that 

code (iii) writing the code with improper looping. In the 

most of attacks, control data is the objective of the 

attacker, so prevention methods have focused on control 

data. Control data can be divided into three types. They 

are return addresses, function pointers, and branch slots. 

Return addresses have been the primary target since 

their location can easily identify.  

 

 

 

 

 

 

 

 

 

 

 



International Journal of Computer & Organization Trends –Volume 3 Issue 4 July to August 2013 

ISSN: 2249-2593                                  http://www.ijcotjournal.org                              Page 67 

 

 

 

 

 

 

 

 

Figure 1: Classification of buffer overflow attack 

The overflow problem transpired because not enough 

memory was assigned previous to being passed to one 

of the string library functions. The buffer overflow 

problems also occur in built-in functions of PHP, Ajax, 

Jquery and JAVA language. For performing buffer 

overflow attacks we give large amount of data in to the 

input field. Perl language is the one of the suited 

programming language for conducting a buffer 

overflow attacks. Buffer overflow is also tested by 

sending the repetitive request to the application and 

record response by the server. The server may 

irresponsible of the request and makes the memory 

overflow and it cause the server crash. 

A. First generations - Stack smashing attacks 

Injecting malicious code is not necessary since the code 

can be resident code found in library files. For example, 

jumping to resident shell code while in privileged mode 

is sufficient.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

voidfunc (char *p, inti) 

{ 

Int j=0 

/* local variable*/ 

Vulnerable code…..; 

Char b[128]; 

Strcpy(b,p); 

} 

 

Data can be inserted into the stack (popped) in a last-in 

and first out method. A stack is a place to store 

automatic variables, and these variables are considered 

only for that subroutine in which they are declared. 

Stack is used to linking the loops in a program. Stack 

pushes the return address on the stack and the 

subroutine is called. If the stack returns, the stored 

value from the stacks and jump to find the address. 

Stack is accessed by the registers that are called the 

Stack pointer, which indicates the current upper value 

of the stack. In the stack there is another pointer (Frame 

pointer) which is used to points to some static points in 

the frame structure, such as the place of return address 

Stack buffer overflow are initiated when a program 

writesadditional data in a buffer, located on the stack 

than there was actually assigned for that buffer.  

 

 

 

 Figure2: Function of stack pointer 

 

 

 

This cause the corruption of contiguous data on the 

stack, and in cases where theoverflow was caused by 

fault, it causes the program to crash or function 

erroneously. 

 

Buffers Other 

variables 

EBP EIP ARGS 

Buffer overflow 

First generation 

Second generation 

Third generation 

Stack smashing attacks 

Heap overflow 

Function pointer 

Off by one Format string attacks 

Char b [128];  --- buffers 
 
 
Int j=0 
Vulnerable code…..;----other 
variables 

 

 

         Buffer 

                          Frame pointer 

                         Return address 

                Function parameter 

Stack Pointer 

D
at

a
 

Vulnerable code 



International Journal of Computer & Organization Trends –Volume 3 Issue 4 July to August 2013 

ISSN: 2249-2593                                  http://www.ijcotjournal.org                              Page 68 

B. Second generations - Heap overflow 

A buffer overflow attack on a heap works by corrupting 

data in the heap. Heap overflow attacks are normally 

harder to perform than a Stack based attack, because the 

overflow is not the only factor that regulates the 

realization, quite repeatedly the data in the heap must be 

corrupted not overwritten. 

There are two ways a heap overflow attack is used, they 

are (1) To overwrite data stored in the heap (2) To 

overwrite a pointer this could be used to modify things 

akin to a pointer that points the code that is performed 

and change it to point to a malicious code from the 

attacker. [3] 

 

Figure 3: Stack and heap function the buffer  

 

 

 

 

 

 

Off by one 

An off-by-one overflow specifies a one-byte buffer 

overflow. Such an error is made exceedingly often in 

loop conditions [4] 

Programmers who try to use in safe functions in the 

program such as strncpy, unnecessarily make their 

programs more secure from buffer overflows. Let 

consider the below program where the programmer has 

incorrectly used “less than or equal to [for (i=0; 

i<=128;i++)] ” in the place of “less than” symbol [5] 

#include <stdio.h> 

#include <conio.h> 

int x; 

voidvuln(char *malicious) 

{ 

char buffer [128]; 

for (x=0;x<=128;x++) 

buffer[x]= malicious [x]; 

} 

void main(intargc, char *argv[]) 

{ 

if (argc==2) 

vuln(argv[1]); 

} 

 

Function pointer A function pointer error occurs if 

function in theprogram. In a memory, a function pointer 

follows a buffer; there is a chance to overwrite the 

function pointer if the buffer is unchecked.  The local 

and shared function pointer may cause the vulnerable to 

the buffer. 

C. Third generation Format string attack Crashing 

the program printf 

("%s%s%s%s%s%s%s%s%s%s%s%s"); 

For every %s statement , printf() will fetch a number 

from the stack, it consider this number as an address, 

and print out the memory contents pointed by this 

address as a string, until a NULL character like (i.e., 

number 0, not character 0) is encountered. 

- Since the number fetched by printf () might not be an 

address, the memory pointed by this number might not 

occur (i.e. no physical memory has been allocated to 

such an address), and the program will crash. 

- It is also possible that the number happens to be a 

correct address, but the address space is secured (e.g. it 

is reserved for kernel memory). In this case, the 

program will also crash. 

 Viewing the stack printf ("%08x %08x %08x %08x 

%08x\n"); 

- This instructs the printf-function to retrieve five 

parameters from the stack and display them as 8-digit 

padded hexadecimal numbers. So a possible output may 

look like: 40012980 080628c4 bffff7a4 00000005 

08059c04 

                      III PROTECTION MECHANISM  

There are several numbers of approaches that have been 

developed to make buffer overflow attacks more 

difficult to achieve; still the effective coding, that is not 

vulnerable by using strong libraries and strong 

languages. Since the developers are not making safe 

software’s, a number of h approaches have been 

implemented and try to protect against the occasional 

error: 

Stack data area( Grows downward) 

Heap data area (Grows upward) 

Static data area (uninitialized) 

Static data area (initialized) 

Text area (program code) 

#include <stdio.h> 

#include <stdlib.h> 

#include <string.h> 

void main(intargc, char **argv) 

{ 

char *buffer = (char *) malloc(10); 

char *input = (char *) malloc(10); 

} 



International Journal of Computer & Organization Trends –Volume 3 Issue 4 July to August 2013 

ISSN: 2249-2593                                  http://www.ijcotjournal.org                              Page 69 

Address Space Randomization Address Space Layout 

Randomization isrearranging the order of the elements 

of the stack. It means the attacker cannot rely 

overwriting system specific information by overflowing 

a variable. This type of protection is effective against 

automated attacks because there is no way for the 

automated program to know the way that the 

information is laid out, however the attacker  can try the 

attack a with different ways and find a way to deploy 

the program.  

For security purposethe data which involves arrange the 

positionsof key data areas, mainly it includes the 

position of librariesand base of the executable stack and 

heap, randomly in aprocess' of address space. It is based 

on the static values such as addresses which 

arecontaining specificoperands or pointers to the known 

location in a buffer on thestack.Virtual memory address 

on which variables and functions aresaved can make 

removing the buffer overflow more difficult,but it is 

also possible to eliminate it. [6] 

 

Canaries The canaries in computer are planned to work 

in between the data and the system information that 

could be targeted. In this way if an attacker write the 

coding to make overflow a value and tries to change the 

return pointer it will overwrite the canary too. If this 

value is known and if it is found to have changed, when 

the subprocess returns then the process fails and it does 

not call the return again. 

The contents of the canaries vary on which of the 

following types they are: 

(i) Random Canaries (ii) Terminator 

Canaries(iii) Random XOR Canaries 

Deep Packet Inspection This type of attacks 

originating from network and often come from the 

internet,in a remote computer it’s possible to use Deep 

Packet Inspection to find the attack and stop the packet 

earlier it gets to the program to become vulnerable.  

It is used to detect, at the network computer, the remote 

attempts to remove bufferoverflow attacks by using 

attack signature. Deep packetinspection (DPI) is able to 

block the packets which have thesignature of any type 

of known attack, or if No OPeration instructions (NOP) 

are detected, these are used in that timewhen the 

location of the exploits payload is may not static. 

DPIengines are placed at network boundaries at that 

place of securitycontrols and bandwidth is logically 

implemented. 

Executable Space Protection In a lot of attacks an 

attacker is writing in the code that they want executed 

into the variable that is used by the program and then 

over writing the return address to point to this code. 

Executable Space Protection plans at fixing this by not 

allowing assured parts of the stack or heap to be 

executed. This protects against this one type of attack 

however it still allows an attacker to run existing code 

and change variables that they wish. This is another 

piece of code intended to protect the user from 

vulnerable programs but that does not protect the 

program from malicious users. 

In this method stack and heap are protected from buffer 

overflow. It is a technique of buffer overflow attack 

protection whichprevents execution of code in heap and 

stack. An attacker mayuse buffer overflows to inserting 

impartment code into the program memory, but when 

we use Execution space protection, any attempt to 

execute the code will cause the exception.Executable 

space protection is an approach to buffer overflow 

protection which prevents execution of code on the 

stack or theheap. An attacker may use buffer overflows 

to insert arbitrarycode into the memory of a program, 

but with executable spaceprotection, any attempt to 

execute that code will cause an exception. New 

operating system of Microsoft support the executable 

space protection technique, it contains two tools which 

is used to secure from buffer overflow. 

 Buffer Shield and Stack Defender Return-to-libc 

attacks are not usually confined by Executable space 

protection, and also not protect any other or attack 

which is not rely on the implementation of the 

attacker’s coding. However, on 64-bit systems using 

Address Space Layout Randomization , executable 

memory space protection makes more difficult to 

execute such attacks. 

Pointer Protection Pointer protection is a planned 

process of encoding and decoding of pointers. In XOR a 

pointer with a known value when it is saved into the 

stack or heap and then XOR it once more when it is 

used by the program. This makes it so that if the 

attacker alters the pointers they have to XOR it with the 

known value and if they don't know they value and just 

input it the program would crash from the null pointer 

exception.  As with most all of the security methods it is 

possible to overcome this protection even though this 

protection is one of the few that if used does protect the 

program from the user as well as the user from a 

susceptible program from the user. 

It protects the program from the user because even if a 

user uses a debugger and examines the stack it will be 

hard for them to know that this is being used. 

https://www.google.co.in/url?sa=t&rct=j&q=&esrc=s&source=web&cd=3&cad=rja&sqi=2&ved=0CDkQFjAC&url=http%3A%2F%2Fwww.digitalbond.com%2Fscadapedia%2Fsecurity-controls%2Faddress-space-layout-randomization-aslr%2F&ei=fjRAUs3UHoT5rQeG9YDAAw&usg=AFQjCNEDybmv0RUBR-Hjw8Q29CU66zkvPQ&bvm=bv.52434380,d.bmk


International Journal of Computer & Organization Trends –Volume 3 Issue 4 July to August 2013 

ISSN: 2249-2593                                  http://www.ijcotjournal.org                              Page 70 

Use of safe libraries The libraries which is written and 

tested data types are automatically perform the buffer 

management, includes boundary checking, reduce the 

incident of buffer overflow attacks. String and arrays 

are two main types of data in the C, C++ languages in 

which buffer overflow unclearly occurs. Thus the safe 

libraries prevents buffer overflow which occurs by 

these type of data types.  

IV RESEARCH CONCLUSION 

 

In the systems, buffer overflow attack is done by the 

attacker is most vulnerable in the recent era. In this 

research work is categorizing the input validation 

attacks after that catalog of buffer overflow according 

to the generation of buffer overflow. The buffer 

overflow attack is the most famous vulnerable attack in 

past decade. Here we move towards to use all the 

security method to prevent buffer overflow, and the 

research work is contribute to solve the problems 

caused by the buffer overflow in stack and heap. 

 

V REFERENCES 

[1] Crispin Cowan. “Posting to bug mailing” List. http://geek-

girl.com/bugtraq/1999_1/0481.html 
[2] “Classification and Prevention Techniques of Buffer Overflow 

Attacks” Seema Yadav, Khaleel Ahmad and Jayant Shekhar 

Proceedings of the 5th National Conference; INDIACom-2011 
Computing for Nation Development, March 10 – 11, 2011 

Bharati Vidyapeeth’s Institute of Computer Applications and 

Management, New Delhi 

[3] https://sites.google.com/site/bufferattack/attacks/heap 

[4] “On the Evolution of Buffer Overflows”, 

MatthiasVallentin,vallentin@icsi.berkeley.edu May 20, 2007 
[5] “Classification and Prevention Techniques of Buffer Overflow 

Attacks” Proceedings of the 5th National Conference; 

INDIACom-2011 Computing For Nation Development, March 
10 – 11, 2011 Seema Yadav, Khaleel Ahmad and Jayant 

Shekhar. 

[6] “A comparison buffer overflow prevention, implementation and 
weakness” written by: peter Silverman and Richard Johnson 

[7] "Buffer Overflow Attack Vulnerability in Stack." P. Vadivel 

Murugan, and K. Alagarsamy, International Journal of 
Computer Applications 13.5 (2011): 1-2. 

[8] 8 “A Lightweight Buffer Overflow Protection Mechanism with 

Failure-Oblivious Capability”,  Tz-Rung Lee1, Kwo-Cheng 
Chiu1, and Da-Wei Chang2 A. Hua and S.-L. Chang (Eds.): 

ICA3PP 2009, LNCS 5574, pp. 661–672, 2009.  Springer - 

Verlag Berlin Heidelberg 2009 
[9] “Averting Buffer Overflow Attack in Networking OS using – 

BOAT Controller”, Vadivel Murugan.P K.Alagarsamy, 

International Journal of Computer Trends and Technology 
(IJCTT) – volume 4 Issue 7–July 2013 

[10] “Comparative Analysis of Ant Colony and Particle Swarm 

Optimization Techniques” V.Selvi Dr.R.Umarani, International 
Journal of Computer Applications (0975 – 8887) Volume 5– 

No.4, August 2010 

[11] “A comparative analysis of methods of defense against buffer 
overflow attacks”. I. simon. 

http://www.mcs.csuhayward.edu/˜simon/security/boflo.html, 

January 2001. 

[12] “Take Two Aspirin, and Patch That System – Now”, J. 

McCarthy, SecurityWatch, August 31, 2001. 
[13] “A Robust Kernel- Based Solution to Control-Hijacking Buffer 

Overflow Attacks” Li-Han Chen, Fu-Hau Hsu, Cheng-Hsien 

Huang, Chih- Wen Ou,Chia-Jun Lin And Szu-Chi Liu Journal 
Of Information Science And Engineering 27, 869-890 (2011). 

 

 


