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Abstract— Neural network is traditionally used to refer 

to a network or circuit of Gene in the research 

traditionally. Despite a high number of techniques 

specifically dedicated to networks problems as well as 

many successful applications, we are in the initiation 

process to massively integrate the aspects and 

experiences in the different core subjects such as 

medicine, computer science, engineering and 

mathematics. Currently, a large number of gene 

identification tools are based on computational 

intelligence approaches. Here, we have revealed the 

existing conventional as well as computational 

methods to classify genes and various gene predictors 

are compared. My paper includes some drawbacks of 

the presently available methods and also, the feasible 

instructions for future directions are discussed. 
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I. INTRODUCTION 

In the field of Neural Networks [1], gene 

identification from large DNA sequence is known to 

be a significantly tragedy. The exact number of genes 

encoded by the human genome is still unknown [2, 3]. 

Hence, genome annotation is a necessity and a multi-

step process in itself. The steps involved in genome 

annotation can be grouped into three categories: 

nucleotide level (gene prediction or identification), 

protein-level (structure determination of proteins), and 

process-level annotation (mechanism of biochemical 

reactions). Among these three categories, nucleotide- 

level annotation is the most significant, because it 

primarily deals with gene annotation, a fundamental 

step in molecular biology [4]. Therefore, partitioning 

them into promoters, genes, intergenic region, 

regulatory elements, etc. for interpreting long 

unidentified genomic sequence are required to be 

modified from the conventional techniques became 

essential [5]. Consequently, the mathematical 

approach in the segment of molecular biology and 

genomics is gaining a lot of attention and is an 

interesting research area for many scientists [3, 6, 7]. 

The methods for gene-finding which are being used 

now a day are more precise and reliable as well than 

the earlier tactics. The advances in gene finding 

through dynamic programming, decision trees and 

Hidden Markov Model (HMM), are also studied [7]. 

The available gene prediction programs and methods 

are also reported and summarized [8-10]. The existing 

methods for gene prediction are also studied and 

compared [10, 11]. A comprehensive review of 

prediction methods for functional sites, protein coding 

genes, tRNA etc. is also reported [12]. A summary of 

a few techniques based on computational gene 

identification tools is also reported [13]. Catherine 

provided a review of the existing approaches of gene 

identification in eukaryotic organisms, their 

advantages as well as the limitations [14-16]. The 

gene identifier Combiner integrates multiple gene 

prediction programs and a large number of evidences 

are available in a typical annotation pipeline including 

substance from proteins, ESTs, cDNAs and splice site 

predictions [18]. Other approaches consisting of 

multiple evidence types can be found in the Eu-Gene 

[19] and GAZE [20] systems 

In this paper, various conventional approaches of 

gene identification, via Bayesian Networks are 

explained along with the review of some of the 

computational intelligence techniques. In most of the 

previous reviews on this topic, the drawbacks of the 

classical methods are not described. We have 

highlighted the recent developments in gene 

identification tools, especially those based on 

computational intelligence techniques like Neural 

Networks and Decisions tree. 

II. OVERVIEW OF THE GENERAL GENE PREDICTION 

TECHNIQUES 

The general techniques for gene prediction can be 

differentiate into identifying the evidence for gene and 

integrating the various evidences of genes for 

predicting the gene structure as shown in Fig. (1) [14]. 

 
Figure 1: Gene Prediction using Conventional Techniques 
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A. Evidence Discovery 

  Here, we are considering the problem of obtained the 

genes coding for a protein sequence with eukaryotes 

only. The problem to finding genes in prokaryotes 

presents several types of difficulties (there are no 

introns and the intergenic regions are small, but genes 

will often overlap each other and the translation starts 

are difficult to predict correctly). Dynamically, a 

eukaryotic gene may be defined as being setup  to a 

transcribed region and of regions that is allocate the 

gene expression, that as the promoter region which 

controls both the site and the expansion of 

transcription and is mostly found in the 5’ part of the 

gene. The currently existent gene prediction software 

looks only for transcribed region of genes, which is 

called `the gene'. Signal sensors and content sensors 

are two fundamental types of information those are 

presently locate genes in genomic sequence 

III. AN OVERVIEW OF GENE TECHNIQUES 

In this section, brief overviews of some endorsed 

gene identification techniques are discussed without 

going deeply into their mathematical parts and 

algorithm. 

A. Bayesian Networks 

A Bayesian network [20] is a graphical model that 

encodes probabilistic relationships among variables of 

interest. When we used in conjunction with the 

statistical techniques, the graphical model have 

different advantages for data analysis. 

 1) Since, the model encodes dependencies 

upon all variables, it easily handles situations where 

some data entries are missing. 

 2) A Bayesian network may be used to learn 

causal relationships, and hence, it can be used to gain 

understanding about a problem domain and to predict 

the consequences of intervention. 

 3) Since the model has both causal and 

probabilistic semantics, it is an ideal representation for 

combining prior knowledge (which often comes in 

causal form) and data. 

 4) A simple, graphical notation for 

conditional independence assertions and hence for 

compact specification of full joint distributions 

• Syntax: 

– a set of nodes, one per variable 

– a directed, acyclic graph (link ≈ 

"directly influences") 

– a conditional distribution for each 

and every node given its parents: 

                              P (Xi | Parents (Xi)) 

 

 

 

 

 

 
 

Figure 2: Bayesian Network 

 

A Bayesian network for a set of variables V = 

{V1, . . . , Vn} consists of: 

 1) A network structure S that encodes a set of 

conditional independence assertions about variables in 

V and 2) A set P of local probability distributions 

associated with each variable. Put together, those 

components define the joint probability distribution 

for V. The network structure S is directed acyclic 

graph. The nodes which S are in one-to-one 

correspondence with the variables V. Vi argue both 

the variable and its corresponding node, and P argue 

the parents of node Vi in S as well as the variables 

corresponding to these parents. The lack of possible 

arcs in S encodes conditional independencies. In 

specific, it given structure S, the joint probability 

distribution for V is given 

                              

By p(V) = Πni  =1p(Vi |Pai). 

 

The local probability distributions P are the 

distributions corresponding to the rule the product of 

the previous equation. Accordingly, the pair (S;P) 

encodes the joint distribution p(V). Methods of 

learning probabilities in a Bayesian network, and 

techniques for learning by incomplete data, are studied 

in detail in [21]. A Bayesian network framework for 

combining gene predictions from multiple systems is 

given in [22], where the approach adopted is that of 

combining the advice of multiple experts. 

 

B. Artificial Neural Networks 

Artificial neural networks is computer algorithms 

based loosely on modelling the neuronal structure of 

natural organisms [23]. 
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Figure 3: Major branch of Artificial Neural Network. 

 

They are stimulus-response transfer functions that 

accept some input and yield some output. They are 

generally used to learn an input–output mapping over 

a set of examples. In general, if they given sufficient 

complexity, there exists an ANN that can map every 

input pattern to its appropriate output pattern, as long 

as the input output mapping is not one-to-many. 

ANNs are, therefore, well suited for use as detectors 

and classifiers. Multi layer perceptrons, also 

sometimes described as feed forward networks, are the 

most common architecture used in supervised learning 

applications .Each computational node sums N 

weighted inputs, subtracts a threshold value, and 

passes the result through a logistic (sigmoid) function. 

Single perceptrons form decision regions separated by 

a hyper plane. If the different data classes being input 

are linearly separable, a hyper plane can be positioned 

between the classes by adjusting the weights and bias 

terms. If the input data are not linearly separable, a 

least mean square (LMS) solution is typically 

generated to minimize the mean square error (MSE) 

between the calculated output of the network and the 

actual desired output. An earlier attempt at computer-

aided gene recognition, such as the well-known 

GRAIL software, used an ANN to combine a number 

of coding indicators calculated within a fixed 

sequence window [24]. Fickett and Tung [25] noted 

that at the core of most gene recognition algorithm are 

one or more coding measures: functions that calculate, 

for several window of the sequence, a number or 

vector intended to measure the “codingness” of the 

sequence. Common examples of those measures 

include codon usage, base composition vector, etc. An 

exon-recognition method includes both a coding 

measure and a method of deciding between “coding” 

or “non coding” regions for each vector. Such an 

approach to evolve ANNs capable of identifying 

coding and non coding regions is available in [26]. 

The classification process using evolved ANNs 

proceeded as follows. A classification of DNA was 

interrogated using a window of 99 nucleotides. The 

ANN was used to classify the nucleotide in the center 

of the window as either coding or non coding. For this 

analysis, the neural network architecture was fixed 

and consisted of nine input nodes (corresponding to 

nine features), 14 hidden nodes, and one output node. 

The output decision was normalized from −1 (non 

coding) to +1 (coding) for each position in the 

sequence. If the output value was less than −0.5 (or 

+0.5), it was classified as coding (or, non coding). In 

evolved ANN, genetic algorithms (GAs) have been 

used for determining the appropriate network 

architecture. “Offspring” ANN architectures are 

created from the parent networks through random 

alteration. The number of layers, nodes, and the values 

for the associated parameters (e.g., weights and biases 

of a MLP, weights, biases, means, and standard 

deviations of a radial basis function network) are 

encoded in the chromosomes, and their appropriate 

values are evolved using GAs. The architecture is 

fixed to nine input nodes, 14 hidden nodes, and one 

output node, while the interconnections weights and 

the biases are evolved using GAs. The coding 

indicators of the system, used has the set of input 

features, are Frame bias matrix, Fickett feature, coding 

sextuple word preferences, word preferences are frame 

1, word preferences in frame 2, word preferences in 

frame 3, maximum word preferences in frames, 

sextuple word commonality, and repetitive sextuple 

word [26]. A flowchart of the entire gene 

identification procedure is given in Fig. 5. In the post 

processing step, spikes in the output vector is first 

removed by replacing the value of a central nucleotide 

to the minimum over its own value and those of its left 

and right neighbors (theMin3 processing step). In the 

exon-identification step, a set of continuous coding 

nucleotides was predicted as a putative exon, and its 

start to end positions were noted. Across each such 

exon, a window of 50 nucleotides was considered, and 

statistical measures for intron filtering (based on the 

frequency of occurrence of nucleotides at the 

intron/exon boundaries) was used to adjust the 

location of the putative exon to a more appropriate 

location within the window. Finally, the domain 

knowledge that a majority of exons in human DNA 

was more than 15 nucleotides long was used to reject 

all predicted exons of length less than 15. ANNs 

combined with a rule-based system has been used for 

splice site prediction in human Arabidopsis thaliana 

by using a joint prediction scheme where the 

prediction of transition regions between introns and 

exons regulates a cut off level for local splice site 

assignment [27]. This is followed by a rule-based 

refinement that uses splice site assurance values, 

prediction scores, coding context, and distances 

between potential splice sites. This has been further 

improved by the incorporation of information 

regarding the branch point consensus sequence found 

by a noncircular approach using HMM [28]. The 

application of a time-delay-architecture-based feed 

forward neural network for analysis of the Drosophilia 

melano gaster genome has been presented in [29]. It 

was tested on the Adh region of 2.9 Mbases of the 

Drosophila genome, where it was found to provide a 

recognition rate of 75% with a false positive rate of 

1/547 bases. Recently, a neural-network based multi 
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classifier system has been proposed for gene 

identification in E. coli by locating the promoters of 

the genes [30]. A set of 324 known E.coli promoters 

and 429 known non promoters was coded using four 

different coding techniques, and four different neural 

classifiers were trained on each set. The final 

classification was an aggregate of the individual 

classifications obtained using a variant of the 

logarithmic opinion pool method. Some other 

applications of neural networks for gene finding are 

also discussed in [31]. An attempt to employ ANNs to 

predict the regions that overlap with the first exon of a 

gene or lies in its close proximity was reported in [32] 

and [33]. Dragon gene start finder (DGSF) [32], [33] 

combines three systems to achieve this goal. First, it 

uses a promoter finder system to estimate the 

transcription start site (TSS). Another system 

estimates the presence of CpG islands (which are 

stretches of DNA containing a significantly high 

frequency of CG sequence, often located around the 

promoters of genes that perform general cell functions) 

on the DNA strand. Several signals are extracted from 

its predicted TSS and CpG islands. The data are then 

normalized and transformed using principal 

component analysis. Thereafter, a four-layer neural 

network is used to make predictions whether the 

combination of the CpG island and the predicted 

transcription start site indicates the presence of gene 

starts. 

 

C. Decision Trees 

A decision tree is a decision supporting tool which 

uses a graph or decision model and their possible 

consequences, resource cost and utility including 

chance event outcomes. Decision trees are helpful to 

identify a strategy most likely to reach an objective 

and commonly used in operation research, especially 

in decision analysis [106]. They accurately 

differentiate between coding and non-coding DNA for 

sequences ranging from 54 to 162 base pairs in length 

[107].An advantage of decision trees over techniques 

such as linear discriminent analysis is that they 

perform more functions of feature selection 

automatically, the user can enter a large number of 

features, including irrelevant data, and the decision 

tree algorithm will use only a subset in building the 

tree. In that observation, the task of distinguishing 

between subsequences that are either entirely 

encoding or entirely non-coding was addressed. An 

integrated system MORGAN [42] is a tool to identify 

genes in the vertebrate DNA sequences that include its 

decision tree routine and algorithms for splice site 

identification and its performance on a standard 

database. It uses an OC1 decision tree system made 

for separating coding and non-coding DNA. 

Depending on a separate scoring function, the optimal 

segmentation takes a subsequence and indicates 

whether an exon is present in the given sequence or 

not. In MORGAN, the scoring functions are the 

collection of decision trees which are combined to 

give the estimate of a probability.  Internal nodes of a 

decision tree are property values that are tested for 

each sub sequence passed to the tree which can be 

various coding measures (e.g., hexamer frequency) or 

signal strengths. MORGAN correctly identifies 58% 

of the coding exons, i.e. both the beginning and the 

end of the coding regions in a DNA sequence. 

Another well-known gene finder, Glimmer M [35] 

developed specifically for eukaryotes, uses decision 

trees hybridized with Interpolated Markov Model 

(IMM) and dynamic programming. This system is 

based on bacterial gene finder Glimmer. It selects the 

best combination from all the possible exons using 

dynamic programming to consider for inclusion in a 

gene model. The best gene model is a combination of 

the strength of the splice sites and the scores of the 

exons produced by IMM. A scoring function is built 

on the basis of decision trees to estimate the 

probability that a DNA subsequence is coding or not. 

The types of subsequences, which are estimated, are: 

introns, initial exons, internal exons, final exons and 

single exons. The average value of the probabilities 

obtained with the decision trees is calculated and used 

to produce a smoothed estimate of the probability that 

the given subsequence is of a particular type. When 

the IMM score over all coding sequences exceeds a 

preset value (threshold), only then the gene model is 

accepted. 

 

D. Support Vector Machine 

Support Vector Machines (SVMs) are the set of 

related supervised learning methods used for 

classification and regression [36]. They belong to a 

family of generalized linear classifiers. In other terms, 

Support Vector Machine (SVM) is a classification and 

regression prediction tool that uses machine learning 

theory to maximize the predictive accuracy while 

automatically avoiding over-fit to the data. SVMs can 

be defined as the systems which use hypothesis space 

of linear functions in a high dimensional feature space, 

trained among learning algorithm from optimization 

theory that implements a learning bias derived from 

statistical learning theory. SVM became famous when, 

using pixel maps as input; it gave accuracy 

comparable to sophisticated neural networks with 

elaborated features in a handwriting recognition task 

[34]. It is also being used for many applications, like 

as hand writing analysis, face analysis and so forth, 

especially for pattern classification and regression 

based applications. The SVMs have been developed 

by Vapnik [36] and gained popularity due to many 

promising features such as better empirical 

performance.  
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Figure 4: Support Vector Machine 

 

The formulation uses the Constitutional Risk 

Minimization (SRM) principle, which has been shown 

to be superior [37] to traditional Empirical Risk 

Minimization (ERM) principle, used by conventional 

neural networks. SRM minimizes an upper bound 

upon the expected risk, where as ERM minimizes the 

error on the training data. It is difference which equips 

SVM with a greater ability to postulate, which is the 

goal in statistical learning. SVMs were developed to 

solve the classification problem, but promptly they 

have been extended to solve regression problems [38]. 

Learning with structural risk minimization is the 

central idea behind SVMs, and this is seductively 

accomplished by obtaining the separating hyper plane 

between the binary labeled data sets (± 1) that 

separates the labeled data sets with a maximum 

possible margin [39]. SVM has been found to be 

successful when used for pattern classification 

problems. Applying the Support Vector access to a 

particular practical problem involves resolving a 

number of questions based on the problem definition 

and the design involved with it. One of the major 

challenges is that of choosing an appropriate kernel 

for the given application [37]. Fig. (4) shows support 

vector machine with hyper plane and margin. There 

are standard choices such as a Gaussian or polynomial 

kernel that are the default options, but if these prove 

ineffectual or if the inputs are discrete structures more 

elaborate kernels will be needed. By essentially 

defining a feature space, the kernel contributes the 

description language used by the machine for examing 

the data. Once the choice of kernel and optimization 

criterion has been made the key components of the 

system are in place. The major strengths of SVM are 

the training is relatively easy. No local optimal, 

similar in neural networks. It scales relatively known 

to high dimensional data and the trade-off between 

classifier complexity and error may be controlled 

explicitly. The weakness excludes the need for a good 

kernel function [40] 

 

III. CONCLUSION 

There are several methods to identify the gene in 

Neural Network but still it is a very difficult task and 

need improvement in finding the gene prediction for 

large genomes. In last few decades, various strategies 

of gene identification based on HMM and dynamic 

programming are developed. As gene identification 

leads to a structural annotation of the genomes that is 

then used for experimentation, the worth addition to 

the identifications are going to be given for every 

expected gene. Given the difficulty of the problem, 

machine intelligence based strategies have also been 

applied in recent times because of their hardiness and 

skill to handle clanging and incomplete/uncertain 

knowledge. FGENES/FGENESH (species specific 

gene prediction tool estimation programs) uses Viterbi 

algorithmic program to go looking for optimum path. 

GRAIL and GRAIL 2 uses neural network for gene 

prediction, GRAIL 2 being the advancement on grail. 

GeneMark uses one homogeneous model for protein 

coding DNA and homogeneous Markov Model for 

non-coding DNA finding strategies. But, it has been 

found that only 2 chronicles book of human 

desoxyribonucleic acid is coding and also the rest is 

non-coding. Recently, the promoter is considered as 

showing in the intergenic region (immediately 

upstream of the gene), and not overlapping with it, 

therefore simplifying the fact. There is a demand of 

the databases that aren't redundant contain reliable and 

relevant annotations, and supply all necessary links to 

more knowledge. Though there exist various problems 

in gene finding, the comparative genome approach 

seems to be a really promising not only in the field of 

gene prediction however also for the identification of 

regulatory sequences and the decoding of junk DNAs. 

GenomeScan use integrated approaches in database 

similarities whereas MORGAN uses decision trees 

and dynamic programming. GenScan and UNVEIL 

use Hidden Markov Model for the aim. Genie use 

GHMM and SPLICEVIEW and SplicePredictor uses 

signal sensor methods. AAT use integrated approach 

in knowledge similarities while DAGGER Gene 

recognition is based on DAG shortest path. An equal 

number of coding and non-coding nucleotides are 

contained in the training sets used for varied gene. 
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