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Abstract-The generation of fractals and study of the 

dynamics of transcendental function is one of emerging and 

interesting field of research nowadays. We introduce in this 

paper the complex dynamics of inverse tangent function for 

2n  and applied Ishikawa iteration to generate new 

Relative Superior Mandelbrot sets and Relative Superior 

Julia sets. Our results are entirely different from those 

existing in the literature of transcendental function. 
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I. INTRODUCTION 

Fractals are the mathematical fireworks thriving 

on the new horizons of research in modern analysis 

and computers. Fractal Theory is an exciting branch of 

Mathematical Sciences, whose mere existence have 

worried the founders of modern analysis and 

soinrecent more sympathetic light has been she don’t 

heseentities. They can be age metrical representation 

of ubiquitous natural objects like clouds, rivers, and 

forests. These all are fractals in nature and can be 

modeled on a computer using a recursive algorithm of 

computer graphics. They unexpectedly a r i s e  in the 

dynamics of simple dynamical s y s t e m s .  Yet, the 

usefulness of fractals as a bonafidegeo metrical 

object has not been fully exploited: algorithmically 

tools to compute fractals n eed  to be developed; on 

the contrary real analysis and analytical geometry 

provide an efficient way to deal with smooth curves 

and manifolds. The structures like network of veins 

and shape of mountains are such cases that are 

hopeless for classical geometry to model them. 

According to Pickover, the mathematics behind the 

fractals begantotakeshapeinthe17thcenturywhen the 

mathematician and philosopher Leibniz pondered 

recursive self-similarity, although hemade the mistake 

of thinking that only the straight line was self-similarin 

this sense. In his writings, Leibniz used the term 

“fractional exponents”, but lamented that “Geometry” 

did not yet know of them.Indeed, according to various 

historical accounts, after that point few mathematicians 

tackled the issues and the work of those who did 

remained obscured largely because of resistance to 

such unfamiliar emerging concepts, which were some 

time referred to as “mathematical monsters”. 

Thus, it was not until two centuries had passed 

that in 1872 Karl Weierstrass presented the first 

definition of a function with agraph that would to day 

be considered fractal, having the non-in tuitiveproperty 

of being everywhere continuous but differentiable. Not 

long after that, in 1883, George Cantor, who attended 

lectures by Weierstrass, published examples of 

subsets of their al line known as Cantor sets, this had 

unusual properties and are now recognized as 

fractals.Alsointhelastpartofthatcentury,FelixKleinandH

enriPoincaréintroduceda category of fractals that is 

known as “self-inverse fractals”.  One of the next 

milest onescamein 1904, when Helge Von Koch, 

extending ideas of Poinc aré and dissatisfied with  

Weierstrass's abstract and analytic definition, gavea 

more geometric definition including hand drawnimages 

of a similar function, which is now called the Koch 

curve. 

 The study of transcendental function has 

emerged out as discrete dynamical systems in 

numerical and complex analysis. It forms a rich 

dynamics for well-known Julia sets and Mandelbrot 

sets [8].  On the other hand, the dynamics of iterated 

polynomials are one of the greatest pioneering works 

of Doaudy and Hubbard [10]. Given a polynomial of 

degree 2n the most important set is the Julia set J 

consisting of the points z C which have no 

neighborhood in family of iterates, forms a normal 

family. Especially for the polynomials, one can start 

with the set of points I which converge to infinity 

under iteration (escaping points) and its complement 

/K C I is known as filled in Julia sets and it 

consists of points with bounded orbits. In other words, 

the Julia set cJ of the function cQ where

2

cQ z c  is either totally disconnected or 

connected. Its counterpart, Mandelbrot set for a family 

cQ is defined as                     

{ : 0 }c cM c C orbit of under iteration by Q is bounded 

For | | 2c  , orbit of 0 escapes to so only | | 2c   
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is considered. For any n, ( )| (0) | 2n

cQ  , then the 

orbit of 0 tends to infinity[8]. 

The dynamics of cosine and sine function as 

revealed in the past literature states that the points that 

converge to   under iteration are organized in the form 

of rays. It is well known that the set of escaping points is 

an open neighborhood of , which can be parameterized 

by dynamic rays. As the tangent function is comprised of 

sine and cosine function, thus it will undertake most of 

the properties of both the functions. For the entire 

transcendental functions, the point  is an essential 

singularity (rather than super attracting point). 

Ereneko[11] studied that for every entire transcendental 

functions, the set of escaping points is always non-empty. 

His query was answered in an affirmative way by R. L. 

Devaney[5,6 &7], for the special case of Exponential 

function, where every escaping point can be connected to

 , along with unique curve running entirely through the 

escaping points. 

 This paper studies the dynamical behavior of 

inverse tangent function also defined as arc tangent 

function. Fixed points are determined using Relative 

Superior Ishikawa iterates to develop an entirely new 

class of fractal images for this transcendental function. 

Escape criteria of polynomials are used to generate 

Relative Superior Mandelbrot Sets and Relative Superior 

Julia Sets. Our results are quite different from existing 

results in literature as we determined the connectivity of 

the Julia Sets using Ishikawa iterates. 

II. PRELIMINARIES 

The  process  of generating  fractal  images from 

arc tan( )nz z c   is similar  to  the  one 

employed  for the self-squared  function[17].  Briefly, 

this process consists of iterating this function up to N 

times. Starting from a value 0z  we obtain 

1, 2, 3, 4,...z z z z by applying the transformation

arc tan( )nz z c  . 

 

Definition2.1:  Ishikawa Iteration [13]: Let X be a 

subset of real or complex numbers and :f X X  

for 0x X , we have the sequences{ }nx and { }ny  in 

X in the following manner: 

( ) (1 )n n n n ny s f x s x     

1 ( ) (1 )n n n n nx s f y s x   
 

where 0 1ns  , 0 1ns  and  ns & ns are 

both convergent to non zero number. 

 

Definition 2.2[4, 18]: The sequences nx and  ny

constructed above is called Ishikawa sequences of 

iterations or Relative Superior sequences of iterates. 

We denote it by 0( , , , )n nRSO x s s t . Notice that 

0( , , , )n nRSO x s s t  with ns =1 is 0( , , )nSO x s t  i.e. 

Mann’s orbit and if we place 1n ns s   then 

0( , , , )n nRSO x s s t  reduces to
0( , )O x t . 

           We remark that Ishikawa orbit 

0( , , , )n nRSO x s s t with 1/ 2ns   is relative 

superior orbit. 

Now we define Mandelbrot sets for function with 

respect to Ishikawa iterates. We call them as Relative 

Superior Mandelbrot sets. 

Definition 2.3[4, 18]: Relative Superior Mandelbrot 

set RSM for the function of the form ( ) n

cQ z z c  , 

where n = 1, 2, 3, 4… is defined as the collection of 

c C for which the orbit of 0 is bounded i.e.

{ : (0) : 0,1,2...}k

cRSM c C Q k   is bounded. 

 In functional dynamics, we have existence of 

two different types of points. Points that leave the 

interval after a finite number are in stable set of 

infinity. Points that never leave the interval after any 

number of iterations have bounded orbits. So, an orbit 

is bounded if there exists a positive real number, such 

that the modulus of every point in the orbit is less 

than this number. 

             The collection of points that are bounded, i.e. 

there exists M, such that | ( ) |nQ z M , for all n, is 

called as a prisoner set while the collection of points 

that are in the stable set of infinity is called the  

escape set. Hence, the boundary of the prisoner set is 

simultaneously the boundary of escape set and that is 

Julia set for Q. 

 

Definition 2.4[4, 18]]:  The set of points RSK whose 

orbits are bounded under relative superior iteration of 

the function Q (z) is called Relative Superior Julia 

sets. Relative Superior Julia set of Q is boundary of 

Julia set RSK 

III. GENERATING THE FRACTALS 

 We have used in this paper escape time criteria of 

Relative Superior Ishikawa iterates for function

sin( )nz arc z c  . 

 Escape Criterion for Quadratics: Suppose that

| | max{| |,2 / ,2 / }z c s s , then | | (1 ) | |n

nz z   

and | |nz  as n .So, | | | |z c & | | 2 /z s
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as well as | | 2 /z s  shows the escape criteria for 

quadratics. 

Escape Criterion for Cubics:  Suppose 
1/2 1/2| | max{| |, (| | 2 / ) ,(| | 2 / ) }z b a s a s    then | |nz    

as n . This gives an escape criterion for cubic 

polynomials 

General Escape Criterion: Consider 
1/ 1/| | max{| |, (2 / ) ,(2 / ) }n nz c s s then | |nz  as n

is the escape criterion. (Escape Criterion derived in 

[4,18]). 

 Note that the initial value 0z  should be 

infinity, since infinity is the critical point of

tan( )nz z c   . However instead of starting with 

0z = infinity, it is simpler to start with 1z  = c , which 

yields the same result. (A critical point of 

z F(z) c   is a point where ( ) 0F z  ).  

 

IV. GEOMETRY OF RELATIVE SUPERIOR 

MANDELBROT SETS AND RELATIVE SUPERIOR 

JULIA SETS: 
 

 The fractals generated from the equation 

arc tan( )nz z c   possesses symmetry along the 

real axis 

Relative Superior Mandelbrot Sets: 

 In case of quadratic polynomial, the central body is 

maintaining symmetry along the real axis. 

Secondary lobes are very small initially for s = 1, 

s =1. As the value of the set changes to s =0.6, s

=0.3, the central body gets more unified. As the 

value of s is still more minimized along with s , the 

central body is merged into one with none of the 

secondary lobe. 

 

 In case of Cubic polynomial, the central body is 

showing bifurcation into two equal parts, each part 

containing secondary lobes. The symmetry of this 

body is maintained along both axes. For s =0.6, s
=0.3, the central body  

becomes more distorted on each side. 

 

 In case of Biquadratic polynomial, the central body 

is divided into three parts, of which one part 

possesses a major secondary bulb. The body is 

maintaining symmetry along the real axis.  For s

=0.6 s =0.3, the major secondary lobes disappears. 

Relative Superior Julia Sets: 

 Relative Superior Julia Sets for the 

transcendental arc tangent function maintainsits 

symmetry along real axis, for quadratic 

polynomial, having (n+1) wings. 

 

 The Relative Superior Julia Sets for Cubic 

function are symmetrical aboutboth the axes i.e. 

along real and imaginary axes as well as 

possessesreflectional and rotational symmetry. 

 

 The Relative Superior Julia Sets for Biquadractic 

function is having symmetry along the real axis 

having (n+1) wings 

 

V. GENERATION OF RELATIVE SUPERIOR 

MANDELBROT SETS 
 

A. Mandelbrot Sets of Quadratic function: 

Fig1:Relative Superior Mandelbrot Setfor 

s=s'=1 

 
Fig2:Relative Superior Mandelbrot Setfor 

s=0.6, s'=0.3 

 
Fig 3:Relative Superior Mandelbrot Setfor s=0.9, 

s'=0.1 

 
B. Mandelbrot Sets of Cubic function:  

Fig1:Relative Superior Mandelbrot Setfor 

s=s'=1 
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Fig2: Relative Superior Mandelbrot Setfor 

s=0.6, s'=0.3 

 
Fig 3:Relative Superior Mandelbrot Setfor 

s=0.9, s'=0.1 

 
C. Mandelbrot Sets of Biquadratic function:   

Fig1:Relative Superior Mandelbrot Setfor  

s=s'=1   

 

Fig2: Relative Superior Mandelbrot Setfor 

s=0.6, s'=0.3 

 
Fig 3: Relative Superior Mandelbrot Set for 

s=0.9, s'=0.1 

 
 

VI. GENERATION OF RELATIVE SUPERIOR JULIA    

SETS 

A. Julia sets of Quadratic function: 

Fig1:Relative Superior Julia Setfor s=0.6, s'=0.3, 

c=-0.61455061980+0.00900541716i 

 
B. Julia Sets of Cubic function:  

Fig1:Relative Superior Julia Setfor s=0.9, s'=0.1,  

c=-0.03352184239-0.03135431148i 

 
C. Julia Sets of Biquadratic function: 

Fig1:Relative Superior Julia Setfor s=0.6, s'=0.3, 
c=-0.1782658268-0.02440243357i

 
VII. FIXED POINTS: 

 

A. Fixedpointsofquadraticpolynomial 

 

Table 1: Orbit of F(z) at s=0.6 and s'=0.3 for  

(z0= =-0.61455061980+0.00900541716i) 

Number of 

iteration i 

 

|F(z)| 

Number of 

iteration i 

 

|F(z)| 

1. 0.6146 8. 0.4169 

2. 0.3143 9. 0.4168 
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3. 0.3667 10. 0.4169 

4. 0.4072 11. 0.4169 

5. 0.4185 12. 0.4169 

6. 0.4186 13. 0.4169 

7. 0.4174 14. 0.4169 

 

Here we observed that the value converges to a fixed 

point after 10 iterations. 

Figure1.  Orbit of F(z) at at s=0.6 and s'=0.3 for  

(z0= =-0.61455061980+0.00900541716i) 

 
B. Fixedpointsofcubicpolynomial 

 

Table 1 Orbit of F(z) at s=0.9 and s'=0.1 for 

(z0=-0.03352184239-0.03135431148i) 

Number of 

iteration i 

 

|F(z)| 

Number of 

iteration i 

 

|F(z)| 

1. 0.0459 6. 0.424 

2. 0.4469 7. 0.4237 

3. 0.4161 8. 0.4238 

4. 0.4261 9. 0.4238 

5. 0.423 10. 0.4238 

 

Here we observed that the value converges to a fixed 

point after 08iterations 

Figure  1.  Orbit of F(z) at s=0.9 and s'=0.1 for 

(z0=-0.03352184239-0.03135431148i) 

 

 

C. FixedpointsofBiquadraticpolynomial 

 

Table 1: Orbit of F(z) at s=0.6 and s'=0.3 for 

 (z0=-0.1782658268-0.02440243357i) 

Number of 

iteration i 

 

|F(z)| 

Number of 

iteration i 

 

|F(z)| 

1. 0.1799 8. 0.4818 

2. 0.2991 9. 0.4814 

3. 0.4218 10. 0.4813 

4. 0.4698 11. 0.4812 

5. 0.4826 12. 0.4812 

6. 0.4837 13. 0.4812 

7. 0.4826 14. 0.4812 

Here we observed that the value converges to a fixed 

point after 11 iterations 

Figure  1.  Orbit of F(z) at s=0.6 and s'=0.3 for 

 (z0=-0.1782658268-0.02440243357i) 

 

 

VIII. CONCLUSION 

 

In this paper we studied the inverse tangent 

function which is one of the members of 

transcendental family. Relative Superior 

Mandelbrot sets possess (n-1)wings, whereas Julia 

sets possesses (n+1) wing. For even powers, 

Relative Superior Mandelbrot sets show symmetry 

only along the real axis while on the other hand, 

for odd terms, body maintains its symmetry along 

both axes. The results thus obtained are 

innovative. Our study is unique in sense that we 

have used escape time criteria for transcendental 

function to generate fractals using Relative 

Superior Ishikawa iterates, otherwise results 

according to past literature would have shown 

Julia sets to be disconnected. 
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