
IJCOT -Special Issue– The Malla Reddy National Conference on Information System and Knowledge
Engineering (MRNC-ISKE 2013) - July 2013

ISSN: 2249-2593 http://www.ijcotjournal.org Page 46

TUNING FOR DISTRIBUTED DATABASE USING EVOLUTIONARY APPROACH

G.Nagaleela*1, K.Sreekala*2

M.Tech, Dept of CSE, SKDEC, Gooty, D.t: Anantapuram, A.P, India

M.Tech, Assistant Professor, Dept of CSE, SKDEC, Gooty, D.t: Anantapuram, A.P, India

ABSTRACT:

 In this paper, we propose a new method to discover collection- adapted ranking functions based on Genetic

Programming (GP). Our Combined Component Approach (CCA) is based on the combination of several term-weighting

components (i.e., term frequency, collection frequency, normalization) extracted from well-known ranking functions. In contrast to

related work, the GP terminals in our CCA are not based on simple statistical information of a document collection, but on

meaningful, effective, and proven components. Experimental results show that our approach was able to outperform standard TF-

IDF, BM25 and another GP-based approach in two different collections.

 We apply Genetic Programming (GP) techniques. Our experiments with the ACM Computing Classification Scheme, using

documents from the ACM Digital Library, indicate that GP can discover similarity functions superior to those based solely on a

single type of evidence. Effectiveness of the similarity functions discovered through simple majority voting is better than that of

content-based as well as combination-based Support Vector Machine classifiers. Experiments also were conducted to compare the

performance between GP techniques and other fusion techniques such as Genetic Algorithms (GA) and linear fusion. Empirical

results show that GP was able to discover better similarity functions than GA or other fusion techniques.

KEYWORDS: Genetic Algorithm, support vector machines, programming language.

I.INTRODUCTION

In recent years, automated classification of text into pre-defined

categories has attracted considerable interest, due to the

increasing volume of documents in digital form and the ensuing

need to organize them. However, traditional content-based

classifiers are known to perform poorly when documents are

noisy (e.g., digitized through speech recognition or OCR)

and/or contain scarce textual content (e.g., metadata records in

digital library (DL) catalogs) [3]. DLs offer both (1) the

opportunity to explore the complex internal structured nature of

documents and metadata records in the classification task; and

(2) the social networks occuring in specific communities, as

expressed for example by citation patterns in the research

literature. On the other hand, many DLs, which are created by

aggregation of other sub-collections/catalogs, suffer from

problems of quality of information. One such problem is

incompleteness (e.g., missing information). This makes it very

hard to classify documents using traditional content-based

classifiers like SVM, or Naive Bayes. Another quality problem

is imprecision. For example, citation-based information is often

obtained with OCR, a process which produces a significant

number of errors. In this work we try to overcome these

problems by applying automatically discovered techniques for

fusion of the available evidence. Particularly, we investigate an

inductive learning method – Genetic Programming (GP) – for

the discovery of better fused similarity functions to be used in

the classifiers, and explore how this combination can be used to

improve classification effectiveness. One motivation of this

work is to enhance teaching and learning in the computing field,

by improving CITIDEL [5], part of the National Science Digital

Library (NSDL). Many of the records in CITIDEL lack

classification information. That makes it difficult for users to

browse, even with the support of our advanced multischeming

IJCOT -Special Issue– The Malla Reddy National Conference on Information System and Knowledge
Engineering (MRNC-ISKE 2013) - July 2013

ISSN: 2249-2593 http://www.ijcotjournal.org Page 47

approach. It also limits the scope of advanced interfaces to

CITIDEL, which make use of category information. Further, the

lack of classification information reduces broader downstream

impact that could result from use of records harvested from

CITIDEL and similar systems, such as into NSDL or NDLTD

(e.g., to support browsing of computing dissertations

The growth in volume of the Web and other textual

repositories, such as digital libraries, throughout the last decade,

has made the information retrieval task difficult, costly, and in

many cases, very complex for the end user. In this con- text,

search engines became valuable tools to help users find content

relevant to their information needs. Naturally, research on

information retrieval models that can effectively rank search

results according to document relevance has become a

fundamental subject.

Information Retrieval models have come a long way.

Although the most popular is still undoubtedly the vector space

model proposed by Salton, many new or complementary

alternatives have been proposed, such as the Probabilistic

Model. From all these models, document ranking formulas can

be derived for document searching. Thus, many alternatives

exist on how to compose a ranking function. Most of them have

a common characteristic: they attempt to be very general in

nature, i.e., they were designed to be applied in any type of

collection. The work of Zobel and Moffat [26], for example,

presented more than one million possibilities to compute a

similarity function. However, after all the experiments, they

concluded that no weighting scheme is consistently good in all

collections. That is, a ranking function can have success in one

domain but fail in another. Further, they comment that it would

be prohibitive to discover the best weighting scheme simply by

an exhaustive exploration of the similarity space.

In this work, we discover specialized ranking

strategies for specific collections. Our method is able to

consider the important and unique characteristics of each

collection so that the discovered function is more effective than

any general solution. To accomplish this, we use Genetic

Programming (GP), a machine learning technique inspired by

Darwinian evolutionary processes, to discover specific ranking

functions for each document collection. GP has been successful

in many IR problems. GP was chosen due to its ability to find

any arbitrary function, even when dealing with very large

search spaces. However, differently from other GP-based

approaches, which use only basic statistical information from

terms and documents, our strategy uses rich, meaningful, and

proven effective components present in well-known ranking

formulas, such as Okapi BM25 and Pivoted TF-IDF. Our

assumption is that by providing these human-discovered

formula components as building blocks, the GP process can

take advantage of all the human knowledge that has been

applied to produce them. As a con- sequence, it will be able to

better explore the search space.

To validate our GP approach we performed

experiments with the TREC-8 and WBR99 collections. Results

indicate that the use of meaningful components in a GP-based

frame- work leads to effective ranking functions that

significantly outperform the baselines (standard TF-IDF, BM25

and another GP-based approach [9]). Our Combined

Component. Approach (CCA) ranking functions also converged

to good results faster than the GP approach used as baseline,

and the overtraining also was reduced.

II. BACKGROUND

2.1. Genetic programming

GAs and GP belong to a set of artificial intelligence problem-

solving techniques based on the principles of biological

inheritance and evolution. Each potential solution is called an

individual (i.e., a chromosome) in a population. Both GA and

GP work by iteratively applying genetic transformations, such

as crossover and mutation, to a population of individuals to

create more diverse and better performing individuals in

subsequent generations. A fitness function is available to assign

a fitness value for each individual. The main difference between

IJCOT -Special Issue– The Malla Reddy National Conference on Information System and Knowledge
Engineering (MRNC-ISKE 2013) - July 2013

ISSN: 2249-2593 http://www.ijcotjournal.org Page 48

GA and GP relies on their internal representation---or data

structure---of an individual. In general, GA applications

represent each individual as a fixed-length bit string, like

(1101110 . . .) or a fixed-length sequence of real numbers (1.2,

2.4, 4, . . .). In GP, on the other hand, more complex data

structures are used. Fig. 2 shows an example of a tree

representation of a GP individual. Furthermore, the length of a

GP data structure is not fixed, although it may be constrained

by implementation to be within a certain size limit. Because of

their intrinsic parallel search mechanism and powerful global

exploration capability in a high-dimensional space, both GA

and GP have been used to solve a wide range of hard

optimization problems that oftentimes have no known optimum

solutions.

2.2. GP Components

In order to apply GP to solve a given problem, several key

components of a GP system need to be defined. Table 1 lists

these essential components along with their descriptions. The

entire combination discovery framework can be seen as an

iterative process. Starting with a set of training images with

known relevance judgments, GP first operates on a large

population of random combination functions (individuals).

These combination functions are then evaluated based on the

relevance information from training images. If the stopping

criteria is not met, it will go through the genetic transformation

steps to create and evaluate the next generation population

iteratively. GP searches for good combination functions by

evolving a population along several generations. Population

individuals are modified by applying genetic transformations,

such as reproduction, mutation, and crossover. The

reproduction operator selects the best individuals and copies

them to the next generation. The two main variation operators

in GP are mutation and crossover. Mutation can be defined as

random manipulation that operates on only one individual. This

operator selects a point in the GP tree randomly and replaces

the existing subtree at that point with a new randomly generated

subtree.The crossover operator combines the genetic material of

two parents by swapping a subtree of one parent with a part of

the other (see Fig. 3).

III. IMPLEMENTATION

3.1 Genetic Operations

Usually, a GP method evolves a population of tree structures,

also called individuals, each one representing a single solution

to a given problem. In our experiments, the trees are arithmetic

functions, as illustrated in Figure 1. These individuals are

handled and modified by genetic operations like reproduction,

crossover, mutation, evaluation and selection, in an iterative

process that hopefully spawn better individuals (solutions to the

proposed problem) in the subsequent generations.

When using trees in a GP-based method, a set of terminals and

functions should be defined. Terminals are inputs, constants or

zero arguments2 nodes that terminate a branch of a tree, they

are also called tree leaves. The function set is the collection of

IJCOT -Special Issue– The Malla Reddy National Conference on Information System and Knowledge
Engineering (MRNC-ISKE 2013) - July 2013

ISSN: 2249-2593 http://www.ijcotjournal.org Page 49

operators, statements and basic or user defined functions that

can be used by the GP process to manipulate the terminal

values.

The crossover operation allows genetic content exchange

between two parents, in a process that can generate two or more

children. In a GP method, two parent trees are selected

according to a matching selection policy, and then, a random

subtree is selected in each parent. The children trees result from

the swap of the selected subtrees between the parents, as

illustrated in Figure 2. The mutation operation has the role of

keeping a minimum diversity level of individuals in the

population. Every solution tree resulting from the crossover

phase has an equal chance of suffering a mutation process. In a

GP tree schema, a random node in the chosen tree is selected

and the pointed subtree is replaced by a new randomly created

subtree. Normally, the mutation rate is an evolutionary run

parameter and should have a low probability; to avoid

damaging good The evaluation of an individual is accomplished

by assigning a value based on how well it deals with the

proposed problem. In the GP environment, the individuals are

evaluated on how well they learn to predict good answers to a

given problem, using the set of functions and terminals

available. This grade is also called individual or raw fitness and

the evaluation functions are called fitness functions. The

selection operation holds the responsibility of applying a

criterion for choosing the individuals that should be in the next

generation. After the evaluation process, each solution has a

fitness value measuring how good or bad it is to the given

problem. Using these values, it is possible to decide whether an

individual should be in the next generation. Strategies for the

selection process may use very simple or complex techniques,

varying from just selecting the best n individuals to randomly

selecting the individuals proportionally to their fitness.

Reproduction is just the process that copies the individuals that

will participate in the crossover and selection processes, without

modifying them.

3.2 Generational Evolutionary Algorithm

In this work, the GP evolutionary process is guided by a

generational evolutionary algorithm. This means that there are

well-defined and distinct generation cycles. This is the basic

idea around all evolutionary algorithms.

The steps describing the algorithm cycle are the following:

1. Initialize the population (with random or user provided

individuals).

2. Evaluate all individuals in the present population, assigning a

numeric rating or fitness value to each one.

3. Reproduce the best n individuals into the next generation

population.

4. Apply the genetic operations (reproduction, selection,

crossover and mutation) to all individuals in the present

population.

5. Using a selection process, select m individuals that will

compose the next generation with the best parents.

6. If the termination criterion is fulfilled, then continue.

Otherwise, replace the existing generation with new generated

population and repeat steps 2 to 5.

7. Present the best individual in the population as the output of

the evolutionary process.

3.3 GP Experimentation Evaluation

In this work, the process of combining evidences to create a

record similarity function using GP is separated in two phases:

• The GP training phase, in which the characteristics of similar

records are learned.

• The testing phase, in which the best trees selected in the

training set are used to identify replicas in a set of records

different from the one used in the first phase in this work.

The second phase, besides measuring the real effectiveness of

the generated solutions, also serves to verify if the trees evolved

during the training phase have not been overspecialized for the

features present in the training data set and are not generalized

for other data sets.

IJCOT -Special Issue– The Malla Reddy National Conference on Information System and Knowledge
Engineering (MRNC-ISKE 2013) - July 2013

ISSN: 2249-2593 http://www.ijcotjournal.org Page 50

IV. Our Experimental Environment

Our idea to guarantee generalization for the generated solutions

is to use as a sample in the training phase a small but

statistically representative part of the data available in the DL

being examined in order to generate effective and generalizable

similarity functions that could be used for the entire DL or for

another DL with similar characteristics.

V.CONCLUSION

In this paper, we considered the problem of classification in the

context of document collections where textual content is scarce

and imprecise citation information exists. A framework for

tackling this problem based on Genetic Programming has been

proposed and tested. Our experimental results on two different

sets of documents from each level of the ACM Computing

Classification System have demonstrated that the GP

framework can be used to discover better similarity functions

that, when applied to a kNN algorithm, can produce better

classifiers than ones using individual evidence in isolation. Our

experiments also showed that the framework achieved results

better than both traditional content-based and combination-

based SVM classifiers. Comparison between the GP framework

and linear fusion as well as GA also showed that GP has the

ability to discover better similarity functions.

VI.REFERENCES
[1] R. Amsler. Application of citation-based automatic classification. Technical

report, The University of Texas at Austin, Linguistics Research Center, Austin,

TX, 2012.

[2] P. Calado, M. Cristo, E. S. de Moura, N. Ziviani, B. A. Ribeiro-Neto, and

M. A. Gon¸calves. Combining link-based and content-based methods for Web

document classification. In Proc. of CIKM-03, pages 394–401, New Orleans,

US, 2013.

[3] S. Chakrabarti, B. Dom, and P. Indyk. Enhanced hypertext categorization

using hyperlinks. In Proc. of SIGMOD, pages 307–318, Seattle, 2008.

[4] S. M. Cheang, K. H. Lee, and K. S. Leung. Data classification using genetic

parallel programming. In GECCO-03, volume 2724 of LNCS, pages 1918–

1919, Chicago, 2003.

[5] CITIDEL. Computing and Information Technology Interactive Digital

Educational Library, www.citidel.org, 2004. [6] C. Clack, J. Farringdon, P.

Lidwell, and T. Yu. Autonomous document classification for business. In

AGENTS-97, pages 201–208, 1997.

[7] D. Cohn and T. Hofmann. The missing link - a probabilistic model of

document content and hypertext connectivity. In NIPS 13, pages 430–436. MIT

Press, 2001.

[8] J. Dean and M. R. Henzinger. Finding related pages in the World Wide

Web. Computer Networks, 31(11–16):1467–1479, 1999. Also in Proceedings of

the 8th International World Wide Web Conference.

[9] M. D. del Castillo and J. I. Serrano. A multistrategy approach for digital text

categorization from imbalanced documents.SIGKDD, 6(1):70–79, 2004.

[10] J. Eggermont, J. N. Kok, and W. A. Kosters. Genetic programming for data

classification: Refining the search space. In Proc. of BNAIC-03, pages 123–130,

Nijmegen, 2003.

[11] W. Fan, E. A. Fox, P. Pathak, and H. Wu. The effects of fitness functions

on genetic programming-based ranking discovery for web search. JASIST,

55(7):628–636, 2004.

[12] W. Fan, M. D. Gordon, and P. Pathak. Discovery of context-specific

ranking functions for effective information retrieval using genetic

programming. TKDE-04, 16(4):523–527, 2004.

[13] W. Fan, M. D. Gordon, P. Pathak, W. Xi, and E. A. Fox. Ranking function

optimization for effective web search by genetic programming: An empirical

study. In Proc. Of HICSS-04, pages 105–112, Hawaii, 2004.

[14] M. Fisher and R. Everson. When are links useful? Experiments in text

classification. In Proc. of ECIR-03, pages 41–56, 2003.

[15] J. Furnkranz. Exploiting structural information for text classification on the

WWW. In IDA-99, pages 487–498, 1999.

[16] E. J. Glover, K. Tsioutsiouliklis, S. Lawrence, D. M. Pennock, and G. W.

Flake. Using Web structure for classifying and describing Web pages. In Proc.

of WWW-02, 2002.

IJCOT -Special Issue– The Malla Reddy National Conference on Information System and Knowledge
Engineering (MRNC-ISKE 2013) - July 2013

ISSN: 2249-2593 http://www.ijcotjournal.org Page 51

[17] M. Gordon. Probabilistic and genetic algorithms for document retrieval.

CACM, 31(10):1208–1218, 1988.

[18] J. H. Holland. Adaption in Natural and Artificial Systems. MIT Press,

Cambridge, MA, 1992.

[19] T. Joachims. Text categorization with support vector machines: learning

with many relevant features. In Proc. of ECML-98, pages 137–142, Chemnitz,

Germany, 1998.

[20] T. Joachims, N. Cristianini, and J. Shawe-Taylor. Composite kernels for

hypertext categorisation. In Proc. of ICML-01, pages 250–257, Williams

College, US, 2001.

AUTHOR’S PROFILES:

G.Nagaleela,

M.Tech (CSE),

SRI KRISHNA DEVARAYA ENGINEERING COLLEGE,

JNTU Ananthapuram.

 K.Sreekala M.Tech,

Assistant Professor, SRI KRISHNA DEVARAYA

ENGINEERING COLLEGE,

JNTU Ananthapuram.

