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ABSTRACT:  

                         In this paper, we propose a new method to discover collection- adapted ranking functions based on Genetic 

Programming (GP). Our Combined Component Approach (CCA) is based on the combination of several term-weighting 

components (i.e., term frequency, collection frequency, normalization) extracted from well-known ranking functions. In contrast to 

related work, the GP terminals in our CCA are not based on simple statistical information of a document collection, but on 

meaningful, effective, and proven components. Experimental results show that our approach was able to outperform standard TF-

IDF, BM25 and another GP-based approach in two different collections. 

          We apply Genetic Programming (GP) techniques. Our experiments with the ACM Computing Classification Scheme, using 

documents from the ACM Digital Library, indicate that GP can discover similarity functions superior to those based solely on a 

single type of evidence. Effectiveness of the similarity functions discovered through simple majority voting is better than that of 

content-based as well as combination-based Support Vector Machine classifiers. Experiments also were conducted to compare the 

performance between GP techniques and other fusion techniques such as Genetic Algorithms (GA) and linear fusion. Empirical 

results show that GP was able to discover better similarity functions than GA or other fusion techniques. 

KEYWORDS: Genetic Algorithm, support vector machines, programming language.  

I.INTRODUCTION 

In recent years, automated classification of text into pre-defined 

categories has attracted considerable interest, due to the 

increasing volume of documents in digital form and the ensuing 

need to organize them. However, traditional content-based 

classifiers are known to perform poorly when documents are 

noisy (e.g., digitized through speech recognition or OCR) 

and/or contain scarce textual content (e.g., metadata records in 

digital library (DL) catalogs) [3]. DLs offer both (1) the 

opportunity to explore the complex internal structured nature of 

documents and metadata records in the classification task; and 

(2) the social networks occuring in specific communities, as 

expressed for example by citation patterns in the research 

literature. On the other hand, many DLs, which are created by 

aggregation of other sub-collections/catalogs, suffer from 

problems of quality of information. One such problem is 

incompleteness (e.g., missing information). This makes it very  

 

hard to classify documents using traditional content-based 

classifiers like SVM, or Naive Bayes. Another quality problem 

is imprecision. For example, citation-based information is often 

obtained with OCR, a process which produces a significant 

number of errors. In this work we try to overcome these 

problems by applying automatically discovered techniques for 

fusion of the available evidence. Particularly, we investigate an 

inductive learning method – Genetic Programming (GP) – for 

the discovery of better fused similarity functions to be used in 

the classifiers, and explore how this combination can be used to 

improve classification effectiveness. One motivation of this 

work is to enhance teaching and learning in the computing field, 

by improving CITIDEL [5], part of the National Science Digital 

Library (NSDL). Many of the records in CITIDEL lack 

classification information. That makes it difficult for users to 

browse, even with the support of our advanced multischeming 
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approach. It also limits the scope of advanced interfaces to 

CITIDEL, which make use of category information. Further, the 

lack of classification information reduces broader downstream 

impact that could result from use of records harvested from 

CITIDEL and similar systems, such as into NSDL or NDLTD 

(e.g., to support browsing of computing dissertations 

The growth in volume of the Web and other textual 

repositories, such as digital libraries, throughout the last decade, 

has made the information retrieval task difficult, costly, and in 

many cases, very complex for the end user. In this con- text, 

search engines became valuable tools to help users find content 

relevant to their information needs. Naturally, research on 

information retrieval models that can effectively rank search 

results according to document relevance has become a 

fundamental subject. 

Information Retrieval models have come a long way. 

Although the most popular is still undoubtedly the vector space 

model proposed by Salton, many new or complementary 

alternatives have been proposed, such as the Probabilistic 

Model. From all these models, document ranking formulas can 

be derived for document searching. Thus, many alternatives 

exist on how to compose a ranking function. Most of them have 

a common characteristic: they attempt to be very general in 

nature, i.e., they were designed to be applied in any type of 

collection. The work of Zobel and Moffat [26], for example, 

presented more than one million possibilities to compute a 

similarity function. However, after all the experiments, they 

concluded that no weighting scheme is consistently good in all 

collections. That is, a ranking function can have success in one 

domain but fail in another. Further, they comment that it would 

be prohibitive to discover the best weighting scheme simply by 

an exhaustive exploration of the similarity space. 

In this work, we discover specialized ranking 

strategies for specific collections. Our method is able to 

consider the important and unique characteristics of each 

collection so that the discovered function is more effective than 

any general solution. To accomplish this, we use Genetic 

Programming (GP), a machine learning technique inspired by 

Darwinian evolutionary processes, to discover specific ranking 

functions for each document collection. GP has been successful 

in many IR problems. GP was chosen due to its ability to find 

any arbitrary function, even when dealing with very large 

search spaces. However, differently from other GP-based 

approaches, which use only basic statistical information from 

terms and documents, our strategy uses rich, meaningful, and 

proven effective components present in well-known ranking 

formulas, such as Okapi BM25 and Pivoted TF-IDF. Our 

assumption is that by providing these human-discovered 

formula components as building blocks, the GP process can 

take advantage of all the human knowledge that has been 

applied to produce them. As a con- sequence, it will be able to 

better explore the search space. 

To validate our GP approach we performed 

experiments with the TREC-8 and WBR99 collections. Results 

indicate that the use of meaningful components in a GP-based 

frame- work leads to effective ranking functions that 

significantly outperform the baselines (standard TF-IDF, BM25 

and another GP-based approach [9]). Our Combined 

Component. Approach (CCA) ranking functions also converged 

to good results faster than the GP approach used as baseline, 

and the overtraining also was reduced. 

II. BACKGROUND 

2.1. Genetic programming 

GAs and GP belong to a set of artificial intelligence problem-

solving techniques based on the principles of biological 

inheritance and evolution. Each potential solution is called an 

individual (i.e., a chromosome) in a population. Both GA and 

GP work by iteratively applying genetic transformations, such 

as crossover and mutation, to a population of individuals to 

create more diverse and better performing individuals in 

subsequent generations. A fitness function is available to assign 

a fitness value for each individual. The main difference between 
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GA and GP relies on their internal representation---or data 

structure---of an individual. In general, GA applications 

represent each individual as a fixed-length bit string, like 

(1101110 . . .) or a fixed-length sequence of real numbers (1.2, 

2.4, 4, . . .). In GP, on the other hand, more complex data 

structures are used. Fig. 2 shows an example of a tree 

representation of a GP individual. Furthermore, the length of a 

GP data structure is not fixed, although it may be constrained 

by implementation to be within a certain size limit. Because of 

their intrinsic parallel search mechanism and powerful global 

exploration capability in a high-dimensional space, both GA 

and GP have been used to solve a wide range of hard 

optimization problems that oftentimes have no known optimum 

solutions. 

2.2. GP Components 

In order to apply GP to solve a given problem, several key 

components of a GP system need to be defined. Table 1 lists 

these essential components along with their descriptions. The 

entire combination discovery framework can be seen as an 

iterative process. Starting with a set of training images with 

known relevance judgments, GP first operates on a large 

population of random combination functions (individuals). 

These combination functions are then evaluated based on the 

relevance information from training images. If the stopping 

criteria is not met, it will go through the genetic transformation 

steps to create and evaluate the next generation population 

iteratively. GP searches for good combination functions by 

evolving a population along several generations. Population 

individuals are modified by applying genetic transformations, 

such as reproduction, mutation, and crossover. The 

reproduction operator selects the best individuals and copies 

them to the next generation. The two main variation operators 

in GP are mutation and crossover. Mutation can be defined as 

random manipulation that operates on only one individual. This 

operator selects a point in the GP tree randomly and replaces 

the existing subtree at that point with a new randomly generated 

subtree.The crossover operator combines the genetic material of 

two parents by swapping a subtree of one parent with a part of 

the other (see Fig. 3). 

 

 
III. IMPLEMENTATION 

3.1 Genetic Operations 

Usually, a GP method evolves a population of tree structures, 

also called individuals, each one representing a single solution 

to a given problem. In our experiments, the trees are arithmetic 

functions, as illustrated in Figure 1. These individuals are 

handled and modified by genetic operations like reproduction, 

crossover, mutation, evaluation and selection, in an iterative 

process that hopefully spawn better individuals (solutions to the 

proposed problem) in the subsequent generations. 

When using trees in a GP-based method, a set of terminals and 

functions should be defined. Terminals are inputs, constants or 

zero arguments2 nodes that terminate a branch of a tree, they 

are also called tree leaves. The function set is the collection of 
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operators, statements and basic or user defined functions that 

can be used by the GP process to manipulate the terminal 

values. 

The crossover operation allows genetic content exchange 

between two parents, in a process that can generate two or more 

children. In a GP method, two parent trees are selected 

according to a matching selection policy, and then, a random 

subtree is selected in each parent. The children trees result from 

the swap of the selected subtrees between the parents, as 

illustrated in Figure 2. The mutation operation has the role of 

keeping a minimum diversity level of individuals in the 

population. Every solution tree resulting from the crossover 

phase has an equal chance of suffering a mutation process. In a 

GP tree schema, a random node in the chosen tree is selected 

and the pointed subtree is replaced by a new randomly created 

subtree. Normally, the mutation rate is an evolutionary run 

parameter and should have a low probability; to avoid 

damaging good The evaluation of an individual is accomplished 

by assigning a value based on how well it deals with the 

proposed problem. In the GP environment, the individuals are 

evaluated on how well they learn to predict good answers to a 

given problem, using the set of functions and terminals 

available. This grade is also called individual or raw fitness and 

the evaluation functions are called fitness functions. The 

selection operation holds the responsibility of applying a 

criterion for choosing the individuals that should be in the next 

generation. After the evaluation process, each solution has a 

fitness value measuring how good or bad it is to the given 

problem. Using these values, it is possible to decide whether an 

individual should be in the next generation. Strategies for the 

selection process may use very simple or complex techniques, 

varying from just selecting the best n individuals to randomly 

selecting the individuals proportionally to their fitness. 

Reproduction is just the process that copies the individuals that 

will participate in the crossover and selection processes, without 

modifying them. 

3.2 Generational Evolutionary Algorithm 

In this work, the GP evolutionary process is guided by a 

generational evolutionary algorithm. This means that there are 

well-defined and distinct generation cycles. This is the basic 

idea around all evolutionary algorithms. 

The steps describing the algorithm cycle are the following: 

1. Initialize the population (with random or user provided 

individuals). 

2. Evaluate all individuals in the present population, assigning a 

numeric rating or fitness value to each one. 

3. Reproduce the best n individuals into the next generation 

population. 

4. Apply the genetic operations (reproduction, selection, 

crossover and mutation) to all individuals in the present 

population. 

5. Using a selection process, select m individuals that will 

compose the next generation with the best parents. 

6. If the termination criterion is fulfilled, then continue. 

Otherwise, replace the existing generation with new generated 

population and repeat steps 2 to 5. 

7. Present the best individual in the population as the output of 

the evolutionary process. 

3.3 GP Experimentation Evaluation 

In this work, the process of combining evidences to create a 

record similarity function using GP is separated in two phases: 

• The GP training phase, in which the characteristics of similar 

records are learned. 

• The testing phase, in which the best trees selected in the 

training set are used to identify replicas in a set of records 

different from the one used in the first phase in this work. 

The second phase, besides measuring the real effectiveness of 

the generated solutions, also serves to verify if the trees evolved 

during the training phase have not been overspecialized for the 

features present in the training data set and are not generalized 

for other data sets. 
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IV. Our Experimental Environment 

Our idea to guarantee generalization for the generated solutions 

is to use as a sample in the training phase a small but 

statistically representative part of the data available in the DL 

being examined in order to generate effective and generalizable 

similarity functions that could be used for the entire DL or for 

another DL with similar characteristics. 

V.CONCLUSION 

In this paper, we considered the problem of classification in the 

context of document collections where textual content is scarce 

and imprecise citation information exists. A framework for 

tackling this problem based on Genetic Programming has been 

proposed and tested. Our experimental results on two different 

sets of documents from each level of the ACM Computing 

Classification System have demonstrated that the GP 

framework can be used to discover better similarity functions 

that, when applied to a kNN algorithm, can produce better 

classifiers than ones using individual evidence in isolation. Our 

experiments also showed that the framework achieved results 

better than both traditional content-based and combination-

based SVM classifiers. Comparison between the GP framework 

and linear fusion as well as GA also showed that GP has the 

ability to discover better similarity functions. 
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