
IJCOT -Special Issue– The Malla Reddy National Conference on Information System and Knowledge
Engineering (MRNC-ISKE 2013) - July 2013

ISSN: 2249-2593 http://www.ijcotjournal.org Page 87

Distributed Challenge Response Protocol for Error Localization
L.Vandana*1, Sukesh Manyam*2, P. Preeti Payal*3

Assistant Professor, Department of CSE, NNRGI, Ghatkesar, D.t: Ranga Reddy, A.P, India

Assistant Professor, Department of C.S.E, VCE, Bollikunta, D.t: Warangal, A.P, India

Associate Professor, Department of C.S.E, PPGCM, Ramanthpur, D.t: Hyderabad A.P, India

ABSTRACT

 Cloud Computing has been envisioned as the next generation architecture of IT Enterprise. In contrast to traditional

solutions, where the IT services are under proper physical, logical and personnel controls, Cloud Computing moves the application

software and databases to the large data centers, where the management of the data and services may not be fully trustworthy. This

unique attribute, however, poses many new security challenges which have not been well understood.

 In this article, we focus on cloud data storage security, which has always been an important aspect of quality of

service. To ensure the correctness of users’ data in the cloud, we propose an effective and flexible distributed scheme with two

salient features, opposing to its predecessors. By utilizing the homomorphic token with distributed verification of erasure-coded

data. This work studies the problem of ensuring the integrity of data storage in Cloud Computing. In particular, we consider the

task of allowing a third party auditor (TPA), on behalf of the cloud client, to verify the integrity of the dynamic data stored in the

cloud. The introduction of TPA eliminates the involvement of client through the auditing of whether his data stored in the cloud is

indeed intact, which can be important in achieving economies of scale for Cloud Computing.

I. INTRODUCTION

Several trends are opening up the era of Cloud Computing,

which is an Internet-based development and use of computer

technology. The ever cheaper and more powerful processors,

together with the software as a service (SaaS) computing

architecture, are transforming data centers into pools of

computing service on a huge scale. The increasing network

bandwidth and reliable yet flexible network connections make

it even possible that users can now subscribe high quality

services from data and software that reside solely on remote

data centers. Moving data into the cloud offers great

convenience to users since they don’t have to care about the

complexities of direct hardware management. The pioneer of

Cloud Computing vendors, Amazon Simple Storage Service

(S3) and Amazon Elastic Compute Cloud (EC2) [1] are both

well known examples. While these internet-based online

services do provide huge amounts of storage space and

customizable computing resources, this computing platform

Shift, however, is eliminating the responsibility of local

machines for data maintenance at the same time. As a result,

users are at the mercy of their cloud service providers for the

availability and integrity of their data. Recent downtime of

Amazon’s S3 is such an example [2]. From the perspective of

data security, which has always been an important aspect of

quality of service, Cloud Computing inevitably poses new

challenging security threats for number of reasons. Firstly,

traditional cryptographic primitives for the purpose of data

security protection cannot be directly adopted due to the users’

loss control of data under Cloud Computing. Therefore,

verification of correct data storage in the cloud must be

conducted without explicit knowledge of the whole data.

Considering various kinds of data for each user stored in the

cloud and the demand of long term continuous assurance of

their data safety, the problem of verifying correctness of data

storage in the cloud becomes even more challenging. Secondly,

IJCOT -Special Issue– The Malla Reddy National Conference on Information System and Knowledge
Engineering (MRNC-ISKE 2013) - July 2013

ISSN: 2249-2593 http://www.ijcotjournal.org Page 88

Cloud Computing is not just a third party data warehouse. The

data stored in the cloud may be frequently updated by the

users, including insertion, deletion, modification, appending,

reordering, etc. To ensure storage correctness under dynamic

data update is hence of paramount importance. However, this

dynamic feature also makes traditional integrity insurance

techniques futile and entails new solutions. Last but not the

least, the deployment of Cloud Computing is powered by data

centers running in a simultaneous, cooperated and distributed

manner. Individual user’s data is redundantly stored in multiple

physical locations to further reduce the data integrity threats.

Therefore, distributed protocols for storage correctness

assurance will be of most importance in achieving a robust and

secure cloud data storage system in the real world. However,

such important area remains to be fully explored in the

literature. Recently, the importance of ensuring the remote data

integrity has been highlighted by the following research works

[3]–[7]. These techniques, while can be useful to ensure the

storage correctness without having users possessing data,

cannot address all the security threats in cloud data storage,

since they are all focusing on single server scenario and most

of them do not consider dynamic data operations. As an

complementary approach, researchers have also proposed

distributed protocols [8]–[10] for ensuring storage correctness

across multiple servers or peers. Again, none of these

distributed schemes is aware of dynamic data operations. As a

result, their applicability in cloud data storage can be

drastically limited.

In this paper, we propose an effective and flexible distributed

scheme with explicit dynamic data support to ensure the

correctness of users’ data in the cloud. We rely on erasure

correcting code in the file distribution preparation to provide

redundancies and guarantee the data dependability. This

construction drastically reduces the communication and storage

overhead as compared to the traditional replication-based file

distribution techniques. By utilizing the homomorphic token

with distributed verification of erasure-coded data, our scheme

achieves the storage correctness insurance as well as data error

localization: whenever data corruption has been detected

during the storage correctness verification, our scheme can

almost guarantee the simultaneous localization of data errors,

i.e., the identification of the misbehaving server(s).

II.ARCHITECTURE

2.1 CLOUD MODEL

Treat a cloud for simplicity as a highly resourced, monolithic

entity, and denote each entity relying on resources as a client.

Denote the set of n clients of the entity in the cloud. In the

model of cloud computing, clients are thin. They have limited

local computation and storage, delegating as much as possible

to a cloud provider. And they are not consistently on-line. They

may deposit data in the cloud and go offline indefinitely.

Consequently, a cloud provider assumes responsibility for

processing data in the absence of its owners. Applications that

operate over the data of multiple clients respect access-control

policies. The client stores her data in the server without

keeping a local copy. Hence, it is of critical importance that the

client should be able to verify the integrity of the data stored in

the remote untrusted server. If the server modifies any part of

the client’s data, the client should be able to detect it;

furthermore, any third party verifier should also be able to

detect it. In case a third party verifier verifies the integrity of

the client’s data, the data should be kept private against the

third party verifier.

2.2 TECHNICAL PRELIMINARIES

Consider a cloud storage system in which there area client and

an untrusted server. The client stores data in the server without

keeping a local copy. Hence, it is of critical importance that the

client should be able to verify the integrity of the data stored in

the remote untrusted server. If the server modifies any part of

the client’s data, the client should be able to detect it;

furthermore, any third party verifier should also be able to

detect it. In case a third party verifier.

IJCOT -Special Issue– The Malla Reddy National Conference on Information System and Knowledge
Engineering (MRNC-ISKE 2013) - July 2013

ISSN: 2249-2593 http://www.ijcotjournal.org Page 89

III. Problem Definition

At a high-level, a verifiable computation scheme is a two-party

protocol in which a client chooses a function and then provides

an encoding of the function and inputs to the function to a

worker. The worker is expected to evaluate the function on the

input and respond with the output. The client then verifies that

the output provided by the worker is indeed the output of the

function computed on the input provided

Mostly cloud data storage service involving three different

entities, as illustrated in

Fig. 1: the cloud user, who has large amount of data files to be

stored in the cloud; the cloud server (CS), which is managed by

the cloud service provider (CSP) to provide data storage

service and has significant storage space and computation

resources; the third party auditor (TPA),who has expertise and

capabilities that cloud users do not have and is trusted to assess

the cloud storage service reliability on behalf of the user upon

request. Users rely on the CS for cloud data storage and

maintenance. Asusers no longer possess their data locally, it is

to critical importance for users to ensure that their data are

being correctly stored and maintained. To save the computation

resource as well as the online burden potentially brought by the

periodic storage correctness verification, cloud users may

resort to TPA for ensuring the storage integrity of their

outsourced data, while hoping to keep their data private from

TPA.

IV. DESIGN GOALS

To enable privacy-preserving technique for cloud data storage

under the aforementioned model, proposed protocol design

should achieve the following guarantees.

1) Public Verifiability: To allow TPA to verify the correctness

of the cloud data on demand without retrieving a copy of the

whole data or introducing additional online burden to the cloud

users. 2) Storage correctness: To ensure that there exists no

cheating cloud server that can pass the TPA’s audit without

indeed storing users’ data intact.

3) Privacy-preserving: To ensure that the TPA cannot derive

users’ data content from the information collected during the

verifying process.

4) Dynamic data operation support: To allow the clients to

perform block-level operations on the data files while

maintaining the same level of data correctness assurance. The

design should be as efficient as possible so as to ensure the

seamless integration of public verifiability and dynamic data

operation support

5) Block less verification: No challenged file blocks should be

retrieved by the verifier (e.g., TPA) during verification process

for both efficiency and security concerns.

6) Stateless verification: To eliminate the need for state

information maintenance at the verifier side between audits

throughout the long term of data storage in the cloud storage

device.

V. ENSURING CLOUD DATA STORAGE

In cloud data storage system, users store their data in the cloud

and no longer possess the data locally. Thus, the correctness

and availability of the data files being stored on the distributed

cloud servers must be guaranteed. One of the key issues is to

effectively detect any unauthorized data modification and

corruption, possibly due to server compromise and/or random

Byzantine failures. Besides, in the distributed case when such

inconsistencies are successfully detected, to find which server

the data error lies in is also of great significance, since it can be

the first step to fast recover the storage errors.

A. File Distribution Preparation

It is well known that erasure-correcting code may be used to

tolerate multiple failures in distributed storage systems. In

cloud data storage, we rely on this technique to disperse the

data file F redundantly across a set of n = m+ k distributed

servers. A (m + k, k) Reed-Solomon erasure-correcting code is

used to create k redundancy parity vectors from m data vectors

in such a way that the original m data vectors can be

reconstructed from any m out of the m + k data and parity

IJCOT -Special Issue– The Malla Reddy National Conference on Information System and Knowledge
Engineering (MRNC-ISKE 2013) - July 2013

ISSN: 2249-2593 http://www.ijcotjournal.org Page 90

vectors. By placing each of the m + k vectors on a different

server, the original data file can survive the failure of any k of

the m+k servers without any data loss, with a space overhead

of k/m. For support of efficient sequential I/O to the original

file, our file layout is systematic, i.e., the unmodified m data

file vectors together with k parity vectors is distributed across

m+ k different servers.

B. Challenge Token Precomputation

In order to achieve assurance of data storage correctness and

data error localization simultaneously, our scheme entirely

relies on the pre-computed verification tokens. The main idea

is as follows: before file distribution the user pre-computes a

certain number of short verification tokens on individual vector

G(j) (j ∈ {1, . . . , n}), each token covering a random subset of

data blocks. Later, when the user wants to make sure the

storage correctness for the data in the cloud, he challenges the

cloud servers with a set of randomly generated block indices.

Upon receiving challenge, each cloud server computes a short

“signature” over the specified blocks and returns them to the

user. The values of these signatures should match the

corresponding tokens pre-computed by the user. Meanwhile, as

all servers operate over the same subset of the indices, the

requested response values for integrity check must also be a

valid codeword determined by secret matrix P.

D. File Retrieval and Error Recovery

Since our layout of file matrix is systematic, the user can

reconstruct the original file by downloading the data vectors

from the first m servers, assuming that they return the correct

response values. Notice that our verification scheme is based

on random spot-checking, so the storage correctness assurance

is a probabilistic one. However, by choosing system parameters

(e.g., r, l, t) appropriately and conducting enough times of

verification, we can guarantee the successful file retrieval with

high probability.

IJCOT -Special Issue– The Malla Reddy National Conference on Information System and Knowledge
Engineering (MRNC-ISKE 2013) - July 2013

ISSN: 2249-2593 http://www.ijcotjournal.org Page 91

VI Backgrounds

 We summarize Yao’s protocol for two-party private

computation. For more details, we refer the interested reader to

Lindell and Pinkas’ excellent description. We assume two

parties, Alice and Bob, wish to compute a function F over their

private inputs a and b. For simplicity, we focus on polynomial-

time deterministic functions, but the generalization to

stochastic functions is straightforward.

The order of the ciphertexts is randomly permuted to hide the

structure of the circuit (i.e., we shuffle the ciphertexts, so that

the first ciphertext does not necessarily encode the output for.

In Yao’s protocol, Alice transfers all of the ciphertexts to Bob,

along with the wire values corresponding to the bit-level

representation of her input. In other words, she transfers either

k0 a if her input bit is 0 or k1 a if her input bit is 1. Since these

are randomly chosen values, Bob learns nothing about Alice’s

input. Alice and Bob then engage in an oblivious transfer so

that Bob can obtain the wire values corresponding to his inputs

(e.g., k0 b or k1 b). Bob learns exactly one value for each wire,

and Alice learns nothing about his input. Bob can then use the

wire values to recursively decrypt the gate ciphertexts, until he

arrives at the final output wire values. When he transmits these

to Alice, she can map them back to 0 or 1 values and hence

obtain the result of the function computation.

VII. CONCLUSION

In this paper, we investigated the problem of data security in

cloud data storage, which is essentially a distributed storage

system. To ensure the correctness of users’ data in cloud data

storage, we proposed an effective and flexible distributed

scheme with explicit dynamic data support, including block

update, delete, and append. We rely on erasure-correcting code

in the file distribution preparation to provide redundancy parity

vectors and guarantee the data dependability. By utilizing the

homomorphic token with distributed verification of erasure

coded data, our scheme achieves the integration of storage

correctness insurance and data error localization, i.e., whenever

data corruption has been detected during the storage

correctness verification across the distributed servers, we can

almost guarantee the simultaneous identification of the

misbehaving server(s). Through detailed security and

performance analysis, we show that our scheme is highly

efficient and resilient to Byzantine failure, malicious data

modification attack, and even server colluding attacks.

VIII REFERENCES
[1] Amazon.com, “Amazon Web Services (AWS),” Online at

http://aws. amazon.com, 2008.

[2] N. Gohring, “Amazon’s S3 down for several hours,” Online at

http://www.pcworld.com/businesscenter/article/142549/amazons s3

down for several hours.html, 2008.

[3] A. Juels and J. Burton S. Kaliski, “PORs: Proofs of Retrievability

for Large Files,” Proc. of CCS ’07, pp. 584–597, 2007.

[4] H. Shacham and B. Waters, “Compact Proofs of Retrievability,”

Proc. of Asiacrypt.

[5] K. D. Bowers, A. Juels, and A. Oprea, “Proofs of Retrievability:

Theory and Implementation,” Cryptology ePrint Archive, Report

2008/175, 2008, http://eprint.iacr.org/.

[6] G. Ateniese, R. Burns, R. Curtmola, J. Herring, L. Kissner, Z.

Peterson, and D. Song, “Provable Data Possession at Untrusted

Stores,” Proc. Of CCS ’07, pp. 598–609, 2007.

[7] G. Ateniese, R. D. Pietro, L. V. Mancini, and G. Tsudik, “Scalable

and

Efficient Provable Data Possession,” Proc. of SecureComm ’08, pp.

1– 10, 2008.

[8] T. S. J. Schwarz and E. L. Miller, “Store, Forget, and Check:

Using Algebraic Signatures to Check Remotely Administered

Storage,” Proc.of ICDCS ’06, pp. 12–12, [9] M. Lillibridge, S.

Elnikety, A. Birrell, M. Burrows, and M. Isard,

“A Cooperative Internet Backup Scheme,” Proc. of the 2003 USENIX

Annual Technical Conference (General Track), pp. 29–41,

[10] K. D. Bowers, A. Juels, and A. Oprea, “HAIL: A High-

Availability and Integrity Layer for Cloud Storage,” Cryptology ePrint

Archive, Report 2008/489, 2008, http://eprint.iacr.org/.

