
IJCOT -Special Issue– The Malla Reddy National Conference on Information System and Knowledge
Engineering (MRNC-ISKE 2013) - July 2013

ISSN: 2249-2593 http://www.ijcotjournal.org Page 70

Interactive Network Applications by LEQ Service

Ch.Rachel Tabitha*1, S.Md.Ibrahim*2

M.Tech, Dept of CSE, SKDEC, Gooty, D.t: Anantapuram, A.P, India

M.Tech, Assistant Professor, Dept of CSE, SKDEC, Gooty, D.t: Anantapuram, A.P, India

ABSTRACT

The popularity of hypertext documents led to the need for specific network infrastructure elements such as HTML caches,

URL-based switches, web-server farms, and as a result created several new industries as companies rushed to fill that need. We

contend that massive distributed games will have a similar impact on the Internet and will require similar dedicated support. This

paper outlines some initial work on prototyping such support. Our approach is to combine high level game specific logic and low-

level network awareness in a single network-based computation platform that we call a booster box.

KEYWORDS: Network infrastructure, massively distributed games, network processors

1. INTRODUCTION

The amount of information exchanged in a multi-party

communication session grows with the square of the number of

participants. This means that such sessions require special

techniques if they are to scale to large communities of users.

These techniques include caching, aggregating, filtering, and

intelligent forwarding; for example, some participants may be

only interested in information from certain other participants so

they need only to receive a subset of the information transmitted

during the session.

These techniques are all to a lesser or greater degree application-

specific, meaning that in general they are implemented in

software on a server at the edge of the network. This has two

drawbacks: first, all the traffic must cross the network from the

clients to the server, resulting in unnecessary load on the

network and server; second, the server being remotely located

has at best only a very approximate view of the network state

and therefore cannot take network state into account when

applying these techniques. We propose a different approach in

which some of the server functions are executed on computation

platforms — booster boxes — which are co-located with routers

and are aware of the state of the network in their vicinity.

Booster boxes can perform application-specific functions in the

network, reducing the load on the servers. We argue that in this

way some classes of applications, for example massive multi-

player on-line games, which currently are unfeasible for large

numbers of participants, become possible. Although distributed

games are only one example of an application type that can run

on such a platform, they are particularly interesting as they can

potentially generate a sufficiently large revenue stream to make

it worthwhile for the Internet service provider (ISP) deploying

them1. How large a market there is for such games depends on

human behavior and is therefore a social rather than a technical

question. However, the gain in popularity of networked games

and the increasing ease of access to the Internet will certainly

dramatically increase the number of participants in on-line

games. We anticipate multi-user games with millions of

participants. We foresee that bandwidth to the end-user will

increase significantly, and that broadband access will become

commonplace because of technologies such as ADSL and cable

modems. Asymmetric bandwidth allocation, in which more

bandwidth is available downstream than upstream, is an ideal

match for large multi-user games, where users typically receive

more data than they produce. Additionally, we assume that

bandwidth at the server side is not a constraint.

IJCOT -Special Issue– The Malla Reddy National Conference on Information System and Knowledge
Engineering (MRNC-ISKE 2013) - July 2013

ISSN: 2249-2593 http://www.ijcotjournal.org Page 71

However, servers (or server farms) running the game

have to handle an extraordinarily large number of events per

time unit. The main limiting factor in supporting such games is

server resources such as bus I/O and processing capabilities, i.e.

CPU cycles and memory access. The paper is organized as

follows: first we describe the motivation for such an approach in

more detail, then we show how this approach can be

implemented in a booster box, next we outline the architecture of

such a booster box, and finally we describe the booster box

game support we are currently implementing as a proof of

concept.

II.RELATED WORK:

An excellent overview of the problems arising with the

development of networked multi-player computer games can be

found in. Smed et al. distinguish four major areas affected by

multi-player on-line games, which are all addressed by the

booster box, as shown below: Networking resources. The use of

network resources is reduced by processing information at an

early stage or

by distributing data across multiple servers located in different

parts of the network.

Distribution concepts: Information distribution is controlled by

filtering/re-routing the traffic at the application level.

Scalability: Delegating part of the application logic to the

boosters enables the information to be treated in a parallel

fashion across the network addressing the scalability issue.

Security: As for the security issues, booster boxes only forward

data to those recipients that actually should receive it, this is in

contrast to existing games, such as Quake, that send all

information to all participants, trusting the game logic running

on the players host to ensure that only appropriate information is

displayed. Such games are susceptible to cheating, as

“enhanced” versions of the game, e.g. permitting players to see

through walls, get written and distributed. Booster boxes run

under the control of ISPs, and therefore their software cannot be

tampered with. A concept similar to booster boxes was presented

in 1995 by Bunkhouses. He proposes an approach that consists

in placing “Message Servers” in the network. Each one these

entities are in charge of a number of clients and manages

message Communications on their behalf. In addition Message

Servers can perform specific processing on the information. This

approach reduces significantly the server load. A major

advantage of booster boxes over Message Servers is their

network awareness. Booster boxes have the capability of

building an overlay network. This BON provides functions such

as service discovery or QoS-aware forwarding. Moreover,

booster boxes can benefit from NP technology which is an

enabler for deep packet-processing at line speed. Numerous

attempts have been made to make networks more programmable.

Two types of approaches can be distinguished: those that allow

the data path to be programmed and those that restrict

programmability to the control path The former are often called

“active networks”, the latter “programmable networks

2.1 WHY COMPLEX GAMES NEED NETWORK

SUPPORT

Clients of networked games periodically emit events 2 to be

received by some subset of other clients. Figure 1 shows the two

basic models. In the client-server approach, clients send events

to a server, which then decides which other clients should

receive that possibly interpreted event. In the peer-to-peer

model, clients send events to all other clients, which then locally

determine whether the event is of interest and how to interpret it.

IJCOT -Special Issue– The Malla Reddy National Conference on Information System and Knowledge
Engineering (MRNC-ISKE 2013) - July 2013

ISSN: 2249-2593 http://www.ijcotjournal.org Page 72

2.2 Client-Server

In the client-server approach, a central server or a central server

farm processes all events from the clients. In order to have an

idea of an upper bound for how many game events a server can

handle per second, we take an HTTP server as a reference.

Although HTTP traffic and game traffic are very different, the

behavior of an HTTP server is less complex and therefore can be

used to calculate an upper bound. Game servers in general are

more complex because information sent by one client must be

correlated against that sent by others; this complexity typically

increases with the square of the number of clients. Moreover,

whereas each HTTP request sent corresponds to one HTTP

reply, in a game server a given event sent by a client may be

forwarded to many other clients. Finally, for commercial reasons

industry solutions tend to be optimized for handling HTTP

requests. Rangier bench-marked an Apache HTTP server

running on a Linux PC with a Pentium III 800 MHz processor

2Game events typically describe changes of state, such

as a figure moving in a virtual environment. and a 64 bit 33

MHz bus connected to a Gigabit Ethernet as being able to handle

approximately 2000 HTTP transactions per second, each

transaction having a size of 256 bytes. Obviously this

architecture is not representative of large server farms, such as

those used to host the Olympic games’ website, that involve

hundreds of clustered workstations and front-ended with

intelligent load balancers. However, the maximum reported load

handled by these servers

is on the same order of magnitude [7]. Whereas network

bandwidth is abundant, the bottlenecks of such systems are CPU

cycles, memory bandwidth, and server I/O. We conclude that

server farms handling loads greater than 105 HTTP requests per

second currently are infeasible with existing technology and, by

extension, so are million-person games requiring as little as a

single event per minute. Smet et al. report a required latency of

500 ms for strategy games, and 100 ms for games involving

hand-eye motor control; these are clearly inconsistent with a

system that can handle only an event per minute from each

client.

2.3 Peer-to-Peer

The peer-to-peer topology is often used in games where the

number of participants is small. The main advantages are low

latency, as messages are not relayed by a server, and robustness,

as there is no single point of failure. The main disadvantage is

the lack of scalability. If every event is sent to every client, then

each client is equivalent to a central server, with the difference

that the client does not have to forward the event any further but

only filter those events that are of interest and interpret them

appropriately. In the preceding section we concluded that even

large server farms are not capable of handling loads involving

millions of participants; the total amount of traffic sent in a peer-

to peer model grows with the square of the number of clients.

IJCOT -Special Issue– The Malla Reddy National Conference on Information System and Knowledge
Engineering (MRNC-ISKE 2013) - July 2013

ISSN: 2249-2593 http://www.ijcotjournal.org Page 73

Real-time strategy games constitute a special case in which each

player controls a large number of game entities. Distributing

state information of each entity clearly limits scalability, as

described in [6]. Therefore, the Age of Empires series takes a

different approach in which each peer runs the entire simulation

and distributes the user’s input to all other peers. Consequently,

all peers execute the same commands at the same time and thus

remain consistent. This solution significantly reduces the

number of events distributed among the peers. However,

scalability is limited by the computational power of the weakest

peer, because each peer needs to run the complete simulation.

In conclusion, neither a pure peer-to-peer nor a client server

architecture is adequate to support a million-person real-time

game. Porting some of the application’s intelligence into the

network – implementing some kind of hybrid approach – will

overcome these scalability problems.

III. ARCHITECTURE

The booster box architecture is divided into a booster layer, in

which the high-level logic resides, and a data layer, which

actually does the packet forwarding. Figure 4 gives an overview

of the booster and the data layers.

Fig 2: Data Layer Overview

3.1 Data Layer

As shown in Figure 3, booster boxes are positioned between

access and edge routers. For the bulk of traffic, booster boxes

behave like ordinary layer-2 forwarding devices, e.g. like

ethernet switches. Thus, the forwarding function in the booster

boxes’ data layer is kept very simple, because no forwarding

tables have to be maintained. Besides forwarding, the data layer

also copies or diverts selected traffic to the booster layer (see

Figure 5). The description of which traffic to copy or divert is

specific to each booster running in the booster layer. It is to be

expected that only a small fraction of the overall traffic is copied

or diverted, and that booster operations are applied to this small

fraction only.

Fig 3: Traffic Forwarding Overview

The application programming interface (API) that boosters use

to specify the traffic to copy or divert is very simple. We decided

to use the packet descriptor format of the Unix packet capture

module libpcap as the standard format for specifying which

packets to copy. Similarly, we use the Linux ip tables packet

filter format for diversion. However, the format of the

expression languages does not imply any particular

implementation for these functions. The data layer must be able

to handle packet forwarding at speeds equivalent to the port of a

residential access router, i.e. in the range of 155 Mbit/s to 1

Gbit/s. At the same time it must be able to process the copy and

divert filters, and test packet headers against them. A pure

software solution is not able to handle such line speeds, whereas

a pure hardware solution does not offer sufficient flexibility. Our

approach is to use network processors for implementing the data

layer of the booster box. Although the term network processor

(NP) covers a wide variety of processors with different

capabilities and designed for different markets — an excellent

overview can be found in [16] — the simplest way to think of a

NP is as a general purpose processor with access to many

IJCOT -Special Issue– The Malla Reddy National Conference on Information System and Knowledge
Engineering (MRNC-ISKE 2013) - July 2013

ISSN: 2249-2593 http://www.ijcotjournal.org Page 74

network-specific coprocessors, performing tasks such as

checksum generation, table look-up, and header comparison.

Arbitrary network forwarding code can be written in a high-level

language such as C (augmented with pragmas for co-processor

invocation) compiled and loaded into such a processor. The NP

therefore is a mid-point between a pure hardware and pure

software solution.

The data-layer API provides an abstraction of the actual copy

and divert mechanisms. Implementation details areshielded from

the boosters. Booster use the same primitives independently of

the underlying implementation, e.g. Linux kernel, NP, or

dedicated hardware. Note that there is no functional difference

between packet forwarding using an NP and, say, a Linux

kernel, the only difference being speed. In our initial prototype

we use both a Linux kernel and the NP, switching between them

for different applications. The main advantage of using Linux is

that built-in functions exist already, e.g. for packet diversion,

which on an NP would have to be written manually.

IV. USING THE BOOSTER BOX

In this section we motivate the general architecture with some

examples of how such a general-purpose network-computation

platform can be used to assist in scaling various applications.

Our approach has been to develop these applications in parallel

with the development of the booster box itself in order to test its

adequacy as well as to demonstrate its usefulness.

4.1 Example: Large Interactive Game Show

In this scenario questions are broadcast to a large number of

spectators using the normal television network. The spectators

can participate in the game by sending replies to the television

station’s server over the Internet. Users that answer incorrectly

are removed from the game.

A centralized approach requires the television station’s server to

handle tens of millions of replies within a short time period, i.e.

the maximum period in which a user is allowed to answer. By

using both intelligent filtering and the aggregation functions in

the booster box, the total load at the television station’s server

can be reduced exponentially. If the booster box only forwards

correct replies to the server, then the total traffic the server is

required to handle is reduced by a factor that is inversely

proportional to the probability that a user answers correctly; a

parameter that to a great extent is under the station’s control.

If the booster box combines all correct answers received within a

given time window into a single packet containing all the

corresponding user identifiers, then the total traffic the server is

required to handle is proportional to 1/na, where n is the average

number of packets combined in a time window and a is the

average number of booster boxes across which the answer is

propagated. We developed this, admittedly somewhat artificial,

application to gain experience with implementing functions on

an NP. We choose to use IBM NP4GS3 network processor.

Figure 7 shows the general architecture of the IBM NP4GS3.

The NP basically consists of line interfaces, a set of

picoprocessors (EPC), and an embedded PowerPC processor.

Packets are processed at line-speed by the pico-processors3,

which are programmed with a low-level language called

picocode. Control and management operations are implemented

in an external controller that runs either on a separate Linux PC

or on the embedded PowerPC. The controller can also be used to

execute sophisticated operations on packets that do not require to

be handled at line speed. The controller

IJCOT -Special Issue– The Malla Reddy National Conference on Information System and Knowledge
Engineering (MRNC-ISKE 2013) - July 2013

ISSN: 2249-2593 http://www.ijcotjournal.org Page 75

Fig4: General Architecture of IBM NP4GS3

Software communicates with the NP using a standard socket

based interface. Our initial thought was to implement the entire

game show application as a piece of pico-code and load it into

the NP; however the internal memory on the NP for saving state

information is limited. Consequently, the number of packets that

can be combined is restricted. We therefore decided to adopt a

hybrid approach. The NP filters packets destined to the game

server and checks for correct answers. Packets with incorrect

answers are dropped, the others are forwarded to a process

running on the external Linux PC. This process receives the

packets and combines them until either a maximum number is

reached or a timer expires. It then sends the aggregated

information to the server. The implementation in the NP consists

of roughly 20 lines of pico code, adding an additional latency of

300 ns to the packets which do not belong to the game show.

Nevertheless, these packets are handled at line speed. In

contrast, the aggregation process does not operate at line speed.

However, it fully meets the real-time requirements of the game.

V. CONCLUSION

This paper describes why we think that larger and more

complex distributed games than those currently available will

require network support to make them feasible. We have

presented early results in building a network-aware general-

purpose computation platform, called booster box, that provides

such a support through application-specific pieces of code called

boosters. Booster boxes are co-located with routers and are

based on programmable network processors in order to achieve

adequate performance. We presented several scenarios in which

booster boxes can be used to provide a scalable solution. While

the “large interactive game-show scenario” has been

implemented and tested in a prototype environment, the other

scenarios are currently being studied and developed.

VI. REFERENCES
[1] EverQuest. http://www.everquest.com, 2012.

[2] D. Alexander, M. Shaw, S. Nettles, and J. Smith. Active Bridging. In ACM

SIGCOMM 20087, Cannes, France, September 2008.

[3] AMI-C. Use Cases Release 1 SPEC 1003. Automobile Multimedia Interface

Consortium, 2011. http://www.ami-c.org.

[4] D. G. Andersen, H. Balakrishnan, M. F. Kaashoek, and R. Morris. Resilient

Overlay Networks. In Proc. 18th ACM Symposium on Operating Systems

Principles, Banff, Canada, 2001.

[5] ATM Forum. Private Network-Network Interface Specification - Version 1.0

(P-NNI 1.0). The ATM Forum: Approved Technical Specification, March 1996.

af-pnni-0055.000.

[6] P. Bettner and M. Terrano. 1500 Archers on a 28.8: Network Programming in

Age of Empires and Beyond. In The 2001 Game Developer Conference

Proceedings, San Jose, CA, Mar. 2001.

[7] J. Challenger, P. Dantzig, and A. Iyengar. A Scalable and Highly Available

System for Serving Dynamic Data at Frequently Accessed Web Sites. In

Proceedings of ACM/IEEE Supercomputing ’98 (SC98), Orlando, Florida, Nov.

1998.

[8] T. Funkhouser. Network Services for Multi-User Virutal Environments. In

IEEE Network Realities, Boston, MA, Oct. 1995.

[9] The Gnutella Protocol Specification v0.4.

http://www.clip2.com/GnutellaProtocol04.pdf.

Document Revision 1.2.

[10] V. Jacobson. How to Infer the Characteristics of Internet Paths. Presentation

to Mathematical Sciences Research Institute, Apr. 1997.

ftp://ftp.ee.lbl.gov/pathchar/msri-talk.pdf.

Ch.Rachel Tabitha M.Tech,

SRI KRISHNA DEVARAYA ENGINEERING COLLEGE,

JNTU, Ananthapuram.

S.Md.Ibrahim M.Tech,

Assistant Professor, Department of CSE, SRI KRISHNA

DEVARAYA ENGINEERING COLLEGE,

Gooty, Ananthapuram (Dt).

