
IJCOT -Special Issue– The Malla Reddy National Conference on Information System and Knowledge
Engineering (MRNC-ISKE 2013) - July 2013

ISSN: 2249-2593 http://www.ijcotjournal.org Page 64

Target Domains Data Extraction Using Margin Technology

K.Madhusudan Reddy*1, S.Md.Ibrahim*2

M.Tech, Dept of CSE, SKDEC, Gooty, D.t: Anantapuram, A.P, India

M.Tech, Assistant Professor, Dept of CSE, SKDEC, Gooty, D.t: Anantapuram, A.P, India

ABSTRACT

The quality measures used in information retrieval are particularly difficult to optimize directly, since they depend on

the model scores only through the sorted order of the documents returned for a given query. Thus, the derivatives of the cost

with respect to the model parameters are either zero, or are undefined. In this paper, we propose a class of simple, flexible

algorithms, called LambdaRank, which avoids these difficulties by working with implicit cost functions. We describe

LambdaRank using neural network models, although the idea applies to any differentiable function class. We give necessary and

sufficient conditions for the resulting implicit cost function to be convex, and we show that the general method has a simple

mechanical interpretation. We demonstrate significantly improved accuracy, over a state-of-the-art ranking algorithm, on several

datasets. We investigate using gradient descent methods for learning ranking functions; we propose a simple probabilistic cost

function, and we introduce RankNet, an implementation of these ideas using a neural network to model the underlying ranking

function. We present test results on toy data and on data from a commercial internet search engine.

KEYWORDS: Rank Net, Bounded Continuous Function, Learning Functions.

I. INTRODUCTION

Any system that presents results to a user, ordered by a utility

function that the user cares about, is performing a ranking

function. A common example is the ranking of search results,

for example from the Web or from an intranet; this is the task

we will consider in this paper. For this problem, the data

consists of a set of queries, and for each query, a set of

returned documents. In the training phase, some

query/document pairs are labeled for relevance (\excellent

match", \good match", etc.). Only those documents returned

for a given query are to be ranked against each other. Thus,

rather than consisting of a single set of objects to be ranked

amongst each other; the data is instead partitioned by query.

In this paper we propose a new approach to this problem. Our

approach follows in that we train on pairs of examples to

learn a ranking function that maps to the real (having the

model evaluate on pairs would be prohibitively slow for

many applications). However cast the ranking problem as an

ordinal regression problem; rank boundaries play a critical

role during training, as they do for several other algorithms

(Crammer & Singer, 2002; Harrington, 2003). For our

application, given that item A appears higher than item B in

the output list, the user concludes that the system ranks A

higher than, or equal to, B; no mapping to particular rank

values, and no rank boundaries, are needed; to cast this as an

ordinal regression problem is to solve an unnecessarily hard

problem, and our approach avoids this extra step. We also

propose a natural probabilistic cost function on pairs of

examples. Such an approach is not specific to the underlying

learning algorithm; we chose to explore these ideas using

neural networks, since they are exible (e.g. two layer neural

nets can approximate any bounded continuous function, and

since they are often faster in test phase than competing kernel

methods (and test speed is critical for this application);

however our cost function could equally well be applied to a

variety of machine learning algorithms. For the neural net

IJCOT -Special Issue– The Malla Reddy National Conference on Information System and Knowledge
Engineering (MRNC-ISKE 2013) - July 2013

ISSN: 2249-2593 http://www.ijcotjournal.org Page 65

case, we show that back propagation is easily extended to

handle ordered pairs; we call the resulting algorithm, together

with the probabilistic cost function we describe below,

RankNet. We present results on toy data and on data gathered

from a commercial internet search engine. For the latter, the

data takes the form of 17,004 queries, and for each query, up

to 1000 returned documents, namely the top documents

returned by another, simple ranker. Thus each query

generates up to 1000 feature vectors. In many inference tasks,

the cost function1 used to assess the final quality of the

system is not the one used during training. For example for

classification tasks, an error rate for a binary SVM classifier

might be reported, although the cost function used to train the

SVM only very loosely models the number of errors on the

training set, and similarly neural net training uses smooth

costs, such as MSE or cross entropy. Thus often in machine

learning tasks, there are actually two cost functions: the

desired cost, and the one used in the optimization process.

For brevity we will call the former the ‘target’ cost, and the

latter the ‘optimization’ cost. The optimization cost plays two

roles: it is chosen to make the optimization task tractable

(smooth, convex etc.), and it should approximate the desired

cost well. This mismatch between target and optimization

costs is not limited to classification tasks, and is particularly

acute for information retrieval. For example, [10] list nine

target quality measures that are commonly used in

information retrieval, all of which depend only on the sorted

order of the documents2 and their labeled relevance. The

target costs are usually averaged over a large number of

queries to arrive at a single cost that can be used to assess the

algorithm. These target costs present severe challenges to

machine learning: they are either flat (have zero gradient with

respect to the model scores), or are discontinuous,

everywhere. It is very likely that a significant mismatch

between the target and optimizations costs will have a

substantial adverse impact on the accuracy of the algorithm.

2. RELATED WORK

RankProp is also a neural net ranking model. RankProp

alternates between two phases: an MSE regression on the

current target values, and an adjustment of the target values

themselves to reect the current ranking given by the net. The

end result is a mapping of the data to a large number of

targets which reect the desired ranking, which performs better

than just regressing to the original, scaled rank values. Rank

prop has the advantage that it is trained on individual patterns

rather than pairs; however it is not known under what

conditions it converges, and it does not give a probabilistic

model. cast the problem of learning to rank as ordinal

regression, that is, learning the mapping of an input vector to

a member of an ordered set of numerical ranks. They model

ranks as intervals on the real line, and consider loss functions

that depend on pairs of examples and their target ranks. The

positions of the rank boundaries play a critical role in the

final ranking function. (Crammer & Singer, 2002) cast the

problem in similar form and propose a ranker based on the

perceptron ('PRank'), which maps a feature vector x 2 Rd to

the real with a learned w 2 Rd such that the output of the

mapping function is just w _ x. PRank also learns the values

of N increasing thresholds1 br = 1; _ _ _ ;N and declares the

rank of x to be minrfw _ x � br < 0g. PRank learns using one

example at a time, which is held as an advantage over pair-

based methods (e.g. (Freund et al., 2003)), since the latter

must learn using O(m2) pairs rather than m examples.

However this is not the case in our application; the number of

pairs is much smaller than m2, since documents are only

compared to other documents retrieved for the same query,

and since many feature vectors have the same assigned rank.

We find that for our task the memory usage is strongly

dominated by the feature vectors themselves. Although the

linear version is an online algorithm2, PRank has been

compared to batch ranking algorithms, and a quadratic kernel

version was found to outperform all such algorithms

IJCOT -Special Issue– The Malla Reddy National Conference on Information System and Knowledge
Engineering (MRNC-ISKE 2013) - July 2013

ISSN: 2249-2593 http://www.ijcotjournal.org Page 66

described in (Herbrich et al., 2000). (Harrington, 2003) has

proposed a simple but very effective extension of PRank,

which approximates finding the Bayes point by averaging

over PRank models. Therefore in this paper we will compare

RankNet with PRank, kernel PRank, large margin PRank,

and RankProp. Provide a very general framework for ranking

using directed graphs, where an arc from A to B means that A

is to be ranked higher than B (which here and below we write

as A B B). This approach can represent arbitrary ranking

functions, in particular, ones that are inconsistent - for

example A B B, B B C, C B A. We adopt this more general

view, and note that for ranking algorithms that train on pairs,

all such sets of relations can be captured by specifying a set

of training pairs, which amounts to specifying the arcs in the

graph. In addition, we introduce a probabilistic model, so that

each training pair fA;Bg has associated posterior P(A B B).

This is an important feature of our approach, since ranking

algorithms often model preferences, and the ascription of

preferences is a much more subjective process than the

ascription of, say, classes. (Target probabilities could be

measured, for example, by measuring multiple human

preferences for each pair.) Finally, we use cost functions that

are functions of the difference of the system's outputs for

each member of a pair of examples, which encapsulates the

observation that for any given pair, an arbitrary offset can be

added to the outputs without changing the final ranking;

again, the goal is to avoid unnecessary learning.

RankBoost (Freund et al., 2003) is another ranking

algorithm that is trained on pairs, and which is closer in spirit

to our work since it attempts to solve the preference learning

problem directly, rather than solving an ordinal regression

problem. In (Freund et al., 2003), results are given using

decision stumps as the weak learners. The cost is a function

of the margin over reweighted examples. Since boosting can

be viewed as gradient descent (Mason et al., 2000), the

question naturally arises as to how combining RankBoost

with our pair-wise differentiable cost function would

compare. Due to space constraints we will describe this work

elsewhere.

The ranking task is the task of finding a sort on a set,

and as such is related to the task of learning structured

outputs. Our approach is very different, however, from recent

work on structured outputs, such as the large margin methods

of. There, structures are also mapped to the reals (through

choice of a suitable inner product), but the best output is

found by estimating the argmax over all possible outputs. The

ranking problem also maps outputs (documents) to the real,

but solves a much simpler problem in that the number of

documents to be sorted is tractable. Our focus is on a very

different aspect of the problem, namely, finding ways to

directly optimize the cost that the user ultimately cares about.

As in, we handle cost functions that are multivariate, in the

sense

 that the number of documents returned for a given query can

itself vary, but the key challenge we address in this paper is

how to work with costs that are everywhere either flat or non-

differentiable. However, we emphasize that the method also

handles the case of multivariate costs that cannot be

represented as a sum of terms, each depending on the output

for a single feature vector and its label.

We call such functions irreducible (such costs are also

considered by [7]). Most cost functions used in machine

learning are instead reducible (for example, MSE, cross

entropy, log likelihood, and the costs commonly used in

kernel methods). The ranking problem itself has attracted

increasing attention recently (see for example [4, 2, 8]), and

in this paper we will use the RankNet algorithm of [2] as a

baseline, since it is both easy to implement and performs well

on large retrieval tasks.

III. Lambda Rank

One approach to working with a Nonsmooth target

cost function would be to search for an optimization function

IJCOT -Special Issue– The Malla Reddy National Conference on Information System and Knowledge
Engineering (MRNC-ISKE 2013) - July 2013

ISSN: 2249-2593 http://www.ijcotjournal.org Page 67

which is a good approximation to the target cost, but which is

also smooth. However, the sort required by information

retrieval cost functions makes this problematic. Even if the

target cost depends on only the top few ranked positions after

sorting, the sort itself depends on all documents returned for

the query, and that set can be very large; and since the target

costs depend on only the rank order and the labels, the target

cost functions are either flat or discontinuous in the scores of

all the returned documents. We therefore consider a different

approach. We illustrate the idea with an example which also

demonstrates the perils introduced by a target / optimization

cost mismatch.

Let the target cost be WTA and let the chosen optimization

cost be a smooth approximation to pair wise error. Suppose

that a ranking algorithm A is being trained, and that at some

iteration, for a query for which there are only two relevant

documents D1 and D2, A gives D1 rank one and D2 rank n.

Then on this query, A has WTA cost zero, but a pair wise

error cost of n � 2. If the parameters of A are adjusted so that

D1 has rank two, and D2 rank three, then the WTA error is

now maximized, but the number of pair wise errors has been

reduced by n � 4. Now suppose that at the next iteration, D1

is at rank two, and D2 at rank n _ 1. The change in D1’s score

that is required to move it to top position is clearly less

(possibly much less) than the change in D2’s score required=

to move it to top position. Roughly speaking, we would

prefer A to spend a little capacity moving D1 up by one

position, than have it spend a lot of capacity moving D2 up

by n � 1 positions.

3.1 A Boosting Algorithm for the Ranking Task

In this section, we describe an approach to the ranking

problem based on a machine learning method called boosting,

in particular, Freund and Schapiro’s (1997) AdaBoost

algorithm and its successor developed by Schapiro and

Singer (1999). Boosting is a method of producing highly

accurate prediction rules by combining many “weak” rules

which may be only moderately accurate. In the current

setting, we use boosting to produce a function H : X !R whose

induced ordering of X will approximate the relative orderings

encoded by the feedback function F.

3.2 The Rank Boost Algorithm

We call our boosting algorithm Rank Boost, and its

pseudo code is shown in Figure 1. Like all boosting

algorithms, RankBoost operates in rounds. We assume access

to a separate procedure called the weak learner that, on each

round, is called to produce a weak ranking. RankBoost

maintains a distribution Dt over X _X that is passed on round

t to the weak learner. Intuitively, RankBoost chooses Dt to

emphasize different parts of the training data. A high weight

assigned to a pair of instances indicates a great importance

that the weak learner order that pair correctly.

Weak rankings have the form ht : X !R. We think of these as

providing ranking information in the same manner as ranking

features and the final ranking. The weak learner we used in

our experiments is based on the given ranking features.

The boosting algorithm uses the weak rankings to

update the distribution as shown in Figure 1. Suppose that x0;

IJCOT -Special Issue– The Malla Reddy National Conference on Information System and Knowledge
Engineering (MRNC-ISKE 2013) - July 2013

ISSN: 2249-2593 http://www.ijcotjournal.org Page 68

x1 is a crucial pair so that we want x1 to be ranked higher

than x0 (in all other cases, Dt will be zero). Assuming for the

moment that the parameter at > 0 (as it usually will be), this

rule decreases the weight Dt (x0; x1) if ht gives a correct

ranking (ht (x1) > ht (x0)) and increases the weight otherwise.

Thus, Dt will tend to concentrate on the pairs whose relative

ranking is hardest to determine. The actual setting of at will

be discussed shortly.

The final ranking H is a weighted sum of the weak rankings.

In the following theorem we prove a bound on the ranking

loss of H. This theorem also provides guidance in choosing at

and in designing the weak learner as we discuss below. on the

training data. As in standard classification problems, the loss

on a separate test set can also be theoretically bounded given

appropriate assumptions using uniform-convergence theory.

3.3 Learning to Rank using Gradient Descent

RankProp is also a neural net ranking model.

RankProp alternates between two phases: an MSE regression

on the current target values, and an adjustment of the target

values themselves to reect the current ranking given by the

net. The end result is a mapping of the data to a large number

of targets which reect the desired ranking, which performs

better than just regressing to the original, scaled rank values.

Rank prop has the advantage that it is trained on individual

patterns rather than pairs; however it is not known under

what conditions it converges, and it does not give a

probabilistic model. (Herbrich et al., 2000) cast the problem

of learning to rank as ordinal regression, that is, learning the

mapping of an input vector to a member of an ordered set of

numerical ranks. They model ranks as intervals on the real

line, and consider loss functions that depend on pairs of

examples and their target ranks. The positions of the rank

boundaries play a critical role in the final ranking function.

IV.Learning to Rank with Nonsmooth Cost Functions

The ranking task is the task of finding a sort on a set, and as

such is related to the task of learning structured outputs. Our

approach is very different, however, from recent work on

structured outputs, such as the large margin methods of

There, structures are also mapped to the reals (through choice

of a suitable inner product), but the best output is found by

estimating the argmax over all possible outputs. The ranking

problem also maps outputs (documents) to the reals, but

solves a much simpler problem in that the number of

documents to be sorted is tractable. Our focus is on a very

different aspect of the problem, namely, finding ways to

directly optimize the cost that the user ultimately cares about.

As in , we handle cost functions that are multivariate, in the

sense that the number of documents returned for a given

query can itself vary, but the key challenge we address in this

paper is how to work with costs that are everywhere either

flat or non-differentiable. However, we emphasize that the

method also handles the case of multivariate costs that cannot

be represented as a sum of terms, each depending on the

output for a single feature vector and its label.

V.Domain Adaptation with Structural Correspondence

Learning

Domain adaptation is an important and well studied area in

natural language processing. Here we outline a few recent

advances. Roark and Bacchiani (2003) use a Dirichlet prior

on the multinomial parameters of a generative parsing model

to combine a large amount of training data from a source

corpus (WSJ), and small amount of training data from a

target corpus (Brown). Aside from Florian et al. (2004),

several authors have also given techniques for adapting

classification to new domains. Chelan and Acero first train a

classifier on the source data. Then they use maximum a

posteriori estimation of the weights of a maximum entropy

target domain classifier. The prior is Gaussian with mean

equal to the weights of the source domain classifier. Daum´e

IJCOT -Special Issue– The Malla Reddy National Conference on Information System and Knowledge
Engineering (MRNC-ISKE 2013) - July 2013

ISSN: 2249-2593 http://www.ijcotjournal.org Page 69

III and Marcu (2006) use an empirical Bayes model to

estimate a latent variable model grouping instances into

domain-specific or common across both domains.

They also jointly estimate the parameters of the common

classification model and the domain specific classification

models. Our work focuses on finding a common

representation for features from different domains, not

instances. We believe this is an important distinction, since

the same instance can contain some features which are

common across domains and some which are domain

specific.

VI Conclusions

We have demonstrated a simple and effective method for

learning non-smooth target costs. LambdaRank is a general

approach: in particular, it can be used to implement RankNet

training, and it furnishes a significant training speedup there.

We studied LambdaRank in the context of the NDCG target

cost for neural network models, but the same ideas apply to

any non-smooth target cost, and to any differentiable function

class. It would be interesting to investigate using the same

method starting with other classifiers such as boosted trees.

VII. References
[1] C. Buckley and E. Voorhees. Evaluating evaluation measure stability. In
SIGIR, pages 33–40, 2000.
[2] C.J.C. Burges, T. Shaked, E. Renshaw, A. Lazier, M. Deeds, N.
Hamilton, and G. Hullender. Learning to Rank using Gradient Descent. In
ICML 22, Bonn, Germany, 2005.
[3] C. Cortes and M. Mohri. Confidence Intervals for the Area Under the
ROC Curve. In NIPS 18. MIT Press, 2005.
[4] Y. Freund, R. Iyer, R.E. Schapire, and Y. Singer. An efficient boosting
algorithm for combining preferences. Journal of Machine Learning Research,
4:933–969, 2003.
[5] J. Friedman, T. Hastie, and R. Tibshirani. Additive logistic regression: A
statistical view of boosting. The Annals of Statistics, 28(2):337–374, 2000.
[6] K. Jarvelin and J. Kekalainen. IR evaluation methods for retrieving
highly relevant documents. In SIGIR
23. ACM, 2000.
[7] T. Joachims. A support vector method for multivariate performance
measures. In ICML 22, 2005.

[8] I. Matveeva, C. Burges, T. Burkard, A. Lauscius, and L. Wong. High
accuracy retrieval with multiple nested rankers. In SIGIR, 2006.
[9] I. Newton. Philosophiae Naturalis Principia Mathematica. The Royal
Society, 1687.
[10] S. Robertson and H. Zaragoza. On rank-based effectiveness measures
and optimisation. Technical Report MSR-TR-2006-61, Microsoft Research,
2006.
[11] M. Spivak. Calculus on Manifolds. Addison-Wesley, 1965.
[12] B. Taskar, V. Chatalbashev, D. Koller, and C. Guestrin. Learning
structured prediciton models: A large margin approach. In ICML 22, Bonn,
Germany, 2005.
[13] I. Tsochantaridis, T. Hofmann, T. Joachims, and Y. Altun. Support
vector machine learning for interdependent and structured output spaces. In
ICML 24, 2004.
[14] E.M. Voorhees. Overview of the TREC 2001/2002 Question Answering
Track. In TREC, 2001,2002.
[15] L. Yan, R. Dodlier, M.C. Mozer, and R. Wolniewicz. Optimizing
Classifier Performance via an Approximation to the Wilcoxon-Mann-
Whitney Statistic. In ICML 20, 2003.

K.Madhusudan Reddy.M.Tech,

SRI KRISHNA DEVARAYA ENGINEERING COLLEGE,

JNTU Ananthapuram.

 S.Md.Ibrahim M.Tech,

Assistant Professor, Department of CSE, SRI KRISHNA DEVARAYA

ENGINEERING COLLEGE,

Gooty, Ananthapuram (Dt).

