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ABSTRACT 

The quality measures used in information retrieval are particularly difficult to optimize directly, since they depend on 

the model scores only through the sorted order of the documents returned for a given query. Thus, the derivatives of the cost 

with respect to the model parameters are either zero, or are undefined. In this paper, we propose a class of simple, flexible 

algorithms, called LambdaRank, which avoids these difficulties by working with implicit cost functions. We describe 

LambdaRank using neural network models, although the idea applies to any differentiable function class. We give necessary and 

sufficient conditions for the resulting implicit cost function to be convex, and we show that the general method has a simple 

mechanical interpretation. We demonstrate significantly improved accuracy, over a state-of-the-art ranking algorithm, on several 

datasets. We investigate using gradient descent methods for learning ranking functions; we propose a simple probabilistic cost 

function, and we introduce RankNet, an implementation of these ideas using a neural network to model the underlying ranking 

function. We present test results on toy data and on data from a commercial internet search engine. 
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I. INTRODUCTION 

Any system that presents results to a user, ordered by a utility 

function that the user cares about, is performing a ranking 

function. A common example is the ranking of search results, 

for example from the Web or from an intranet; this is the task 

we will consider in this paper. For this problem, the data 

consists of a set of queries, and for each query, a set of 

returned documents. In the training phase, some 

query/document pairs are labeled for relevance (\excellent 

match", \good match", etc.). Only those documents returned 

for a given query are to be ranked against each other. Thus, 

rather than consisting of a single set of objects to be ranked 

amongst each other; the data is instead partitioned by query. 

In this paper we propose a new approach to this problem. Our 

approach follows in that we train on pairs of examples to 

learn a ranking function that maps to the real (having the 

model evaluate on pairs would be prohibitively slow for 

many applications). However  cast the ranking problem as an 

ordinal regression problem; rank boundaries play a critical 

role during training, as they do for several other algorithms 

(Crammer & Singer, 2002; Harrington, 2003). For our 

application, given that item A appears higher than item B in 

the output list, the user concludes that the system ranks A 

higher than, or equal to, B; no mapping to particular rank 

values, and no rank boundaries, are needed; to cast this as an 

ordinal regression problem is to solve an unnecessarily hard 

problem, and our approach avoids this extra step. We also 

propose a natural probabilistic cost function on pairs of 

examples. Such an approach is not specific to the underlying 

learning algorithm; we chose to explore these ideas using 

neural networks, since they are exible (e.g. two layer neural 

nets can approximate any bounded continuous function, and 

since they are often faster in test phase than competing kernel 

methods (and test speed is critical for this application); 

however our cost function could equally well be applied to a 

variety of machine learning algorithms. For the neural net 
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case, we show that back propagation is easily extended to 

handle ordered pairs; we call the resulting algorithm, together 

with the probabilistic cost function we describe below, 

RankNet. We present results on toy data and on data gathered 

from a commercial internet search engine. For the latter, the 

data takes the form of 17,004 queries, and for each query, up 

to 1000 returned documents, namely the top documents 

returned by another, simple ranker. Thus each query 

generates up to 1000 feature vectors. In many inference tasks, 

the cost function1 used to assess the final quality of the 

system is not the one used during training. For example for 

classification tasks, an error rate for a binary SVM classifier 

might be reported, although the cost function used to train the 

SVM only very loosely models the number of errors on the 

training set, and similarly neural net training uses smooth 

costs, such as MSE or cross entropy. Thus often in machine 

learning tasks, there are actually two cost functions: the 

desired cost, and the one used in the optimization process. 

For brevity we will call the former the ‘target’ cost, and the 

latter the ‘optimization’ cost. The optimization cost plays two 

roles: it is chosen to make the optimization task tractable 

(smooth, convex etc.), and it should approximate the desired 

cost well. This mismatch between target and optimization 

costs is not limited to classification tasks, and is particularly 

acute for information retrieval. For example, [10] list nine 

target quality measures that are commonly used in 

information retrieval, all of which depend only on the sorted 

order of the documents2 and their labeled relevance. The 

target costs are usually averaged over a large number of 

queries to arrive at a single cost that can be used to assess the 

algorithm. These target costs present severe challenges to 

machine learning: they are either flat (have zero gradient with 

respect to the model scores), or are discontinuous, 

everywhere. It is very likely that a significant mismatch 

between the target and optimizations costs will have a 

substantial adverse impact on the accuracy of the algorithm. 

2. RELATED WORK 

RankProp is also a neural net ranking model. RankProp 

alternates between two phases: an MSE regression on the 

current target values, and an adjustment of the target values 

themselves to reect the current ranking given by the net. The 

end result is a mapping of the data to a large number of 

targets which reect the desired ranking, which performs better 

than just regressing to the original, scaled rank values. Rank 

prop has the advantage that it is trained on individual patterns 

rather than pairs; however it is not known under what 

conditions it converges, and it does not give a probabilistic 

model.  cast the problem of learning to rank as ordinal 

regression, that is, learning the mapping of an input vector to 

a member of an ordered set of numerical ranks. They model 

ranks as intervals on the real line, and consider loss functions 

that depend on pairs of examples and their target ranks. The 

positions of the rank boundaries play a critical role in the 

final ranking function. (Crammer & Singer, 2002) cast the 

problem in similar form and propose a ranker based on the 

perceptron ('PRank'), which maps a feature vector x 2 Rd to 

the real with a learned w 2 Rd such that the output of the 

mapping function is just w _ x. PRank also learns the values 

of N increasing thresholds1 br = 1; _ _ _ ;N and declares the 

rank of x to be minrfw _ x � br < 0g. PRank learns using one 

example at a time, which is held as an advantage over pair-

based methods (e.g. (Freund et al., 2003)), since the latter 

must learn using O(m2) pairs rather than m examples. 

However this is not the case in our application; the number of 

pairs is much smaller than m2, since documents are only 

compared to other documents retrieved for the same query, 

and since many feature vectors have the same assigned rank. 

We find that for our task the memory usage is strongly 

dominated by the feature vectors themselves. Although the 

linear version is an online algorithm2, PRank has been 

compared to batch ranking algorithms, and a quadratic kernel 

version was found to outperform all such algorithms 
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described in (Herbrich et al., 2000). (Harrington, 2003) has 

proposed a simple but very effective extension of PRank, 

which approximates finding the Bayes point by averaging 

over PRank models. Therefore in this paper we will compare 

RankNet with PRank, kernel PRank, large margin PRank, 

and RankProp. Provide a very general framework for ranking 

using directed graphs, where an arc from A to B means that A 

is to be ranked higher than B (which here and below we write 

as A B B). This approach can represent arbitrary ranking 

functions, in particular, ones that are inconsistent - for 

example A B B, B B C, C B A. We adopt this more general 

view, and note that for ranking algorithms that train on pairs, 

all such sets of relations can be captured by specifying a set 

of training pairs, which amounts to specifying the arcs in the 

graph. In addition, we introduce a probabilistic model, so that 

each training pair fA;Bg has associated posterior P(A B B). 

This is an important feature of our approach, since ranking 

algorithms often model preferences, and the ascription of 

preferences is a much more subjective process than the 

ascription of, say, classes. (Target probabilities could be 

measured, for example, by measuring multiple human 

preferences for each pair.) Finally, we use cost functions that 

are functions of the difference of the system's outputs for 

each member of a pair of examples, which encapsulates the 

observation that for any given pair, an arbitrary offset can be 

added to the outputs without changing the final ranking; 

again, the goal is to avoid unnecessary learning. 

RankBoost (Freund et al., 2003) is another ranking 

algorithm that is trained on pairs, and which is closer in spirit 

to our work since it attempts to solve the preference learning 

problem directly, rather than solving an ordinal regression 

problem. In (Freund et al., 2003), results are given using 

decision stumps as the weak learners. The cost is a function 

of the margin over reweighted examples. Since boosting can 

be viewed as gradient descent (Mason et al., 2000), the 

question naturally arises as to how combining RankBoost 

with our pair-wise differentiable cost function would 

compare. Due to space constraints we will describe this work 

elsewhere. 

The ranking task is the task of finding a sort on a set, 

and as such is related to the task of learning structured 

outputs. Our approach is very different, however, from recent 

work on structured outputs, such as the large margin methods 

of. There, structures are also mapped to the reals (through 

choice of a suitable inner product), but the best output is 

found by estimating the argmax over all possible outputs. The 

ranking problem also maps outputs (documents) to the real, 

but solves a much simpler problem in that the number of 

documents to be sorted is tractable. Our focus is on a very 

different aspect of the problem, namely, finding ways to 

directly optimize the cost that the user ultimately cares about. 

As in, we handle cost functions that are multivariate, in the 

sense 

 that the number of documents returned for a given query can 

itself vary, but the key challenge we address in this paper is 

how to work with costs that are everywhere either flat or non-

differentiable. However, we emphasize that the method also 

handles the case of multivariate costs that cannot be 

represented as a sum of terms, each depending on the output 

for a single feature vector and its label. 

We call such functions irreducible (such costs are also 

considered by [7]). Most cost functions used in machine 

learning are instead reducible (for example, MSE, cross 

entropy, log likelihood, and the costs commonly used in 

kernel methods). The ranking problem itself has attracted 

increasing attention recently (see for example [4, 2, 8]), and 

in this paper we will use the RankNet algorithm of [2] as a 

baseline, since it is both easy to implement and performs well 

on large retrieval tasks. 

III. Lambda Rank 

One approach to working with a Nonsmooth target 

cost function would be to search for an optimization function 
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which is a good approximation to the target cost, but which is 

also smooth. However, the sort required by information 

retrieval cost functions makes this problematic. Even if the 

target cost depends on only the top few ranked positions after 

sorting, the sort itself depends on all documents returned for 

the query, and that set can be very large; and since the target 

costs depend on only the rank order and the labels, the target 

cost functions are either flat or discontinuous in the scores of 

all the returned documents. We therefore consider a different 

approach. We illustrate the idea with an example which also 

demonstrates the perils introduced by a target / optimization 

cost mismatch. 

Let the target cost be WTA and let the chosen optimization 

cost be a smooth approximation to pair wise error. Suppose 

that a ranking algorithm A is being trained, and that at some 

iteration, for a query for which there are only two relevant 

documents D1 and D2, A gives D1 rank one and D2 rank n. 

Then on this query, A has WTA cost zero, but a pair wise 

error cost of n � 2. If the parameters of A are adjusted so that 

D1 has rank two, and D2 rank three, then the WTA error is 

now maximized, but the number of pair wise errors has been 

reduced by n � 4. Now suppose that at  the next iteration, D1 

is at rank two, and D2 at rank n _ 1. The change in D1’s score 

that is required to move it to top position is clearly less 

(possibly much less) than the change in D2’s score required= 

to move it to top position. Roughly speaking, we would 

prefer A to spend a little capacity moving D1 up by one 

position, than have it spend a lot of capacity moving D2 up 

by n � 1 positions. 

3.1 A Boosting Algorithm for the Ranking Task 

In this section, we describe an approach to the ranking 

problem based on a machine learning method called boosting, 

in particular, Freund and Schapiro’s (1997) AdaBoost 

algorithm and its successor developed by Schapiro and 

Singer (1999). Boosting is a method of producing highly 

accurate prediction rules by combining many “weak” rules 

which may be only moderately accurate. In the current 

setting, we use boosting to produce a function H : X !R whose 

induced ordering of X will approximate the relative orderings 

encoded by the feedback function F. 

3.2 The Rank Boost Algorithm 

We call our boosting algorithm Rank Boost, and its 

pseudo code is shown in Figure 1. Like all boosting 

algorithms, RankBoost operates in rounds. We assume access 

to a separate procedure called the weak learner that, on each 

round, is called to produce a weak ranking. RankBoost 

maintains a distribution Dt over X _X that is passed on round 

t to the weak learner. Intuitively, RankBoost chooses Dt to 

emphasize different parts of the training data. A high weight 

assigned to a pair of instances indicates a great importance 

that the weak learner order that pair correctly. 

 
Weak rankings have the form ht : X !R. We think of these as 

providing ranking information in the same manner as ranking 

features and the final ranking. The weak learner we used in 

our experiments is based on the given ranking features. 

The boosting algorithm uses the weak rankings to 

update the distribution as shown in Figure 1. Suppose that x0; 
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x1 is a crucial pair so that we want x1 to be ranked higher 

than x0 (in all other cases, Dt will be zero). Assuming for the 

moment that the parameter at > 0 (as it usually will be), this 

rule decreases the weight Dt (x0; x1) if ht gives a correct 

ranking (ht (x1) > ht (x0)) and increases the weight otherwise. 

Thus, Dt will tend to concentrate on the pairs whose relative 

ranking is hardest to determine. The actual setting of at will 

be discussed shortly. 

The final ranking H is a weighted sum of the weak rankings. 

In the following theorem we prove a bound on the ranking 

loss of H. This theorem also provides guidance in choosing at 

and in designing the weak learner as we discuss below. on the 

training data. As in standard classification problems, the loss 

on a separate test set can also be theoretically bounded given 

appropriate assumptions using uniform-convergence theory.  

 

3.3 Learning to Rank using Gradient Descent 

RankProp is also a neural net ranking model. 

RankProp alternates between two phases: an MSE regression 

on the current target values, and an adjustment of the target 

values themselves to reect the current ranking given by the 

net. The end result is a mapping of the data to a large number 

of targets which reect the desired ranking, which performs 

better than just regressing to the original, scaled rank values. 

Rank prop has the advantage that it is trained on individual 

patterns rather than pairs; however it is not known under 

what conditions it converges, and it does not give a 

probabilistic model. (Herbrich et al., 2000) cast the problem 

of learning to rank as ordinal regression, that is, learning the 

mapping of an input vector to a member of an ordered set of 

numerical ranks. They model ranks as intervals on the real 

line, and consider loss functions that depend on pairs of 

examples and their target ranks. The positions of the rank 

boundaries play a critical role in the final ranking function. 

IV.Learning to Rank with Nonsmooth Cost Functions 

The ranking task is the task of finding a sort on a set, and as 

such is related to the task of learning structured outputs. Our 

approach is very different, however, from recent work on 

structured outputs, such as the large margin methods of 

There, structures are also mapped to the reals (through choice 

of a suitable inner product), but the best output is found by 

estimating the argmax over all possible outputs. The ranking 

problem also maps outputs (documents) to the reals, but 

solves a much simpler problem in that the number of 

documents to be sorted is tractable. Our focus is on a very 

different aspect of the problem, namely, finding ways to 

directly optimize the cost that the user ultimately cares about. 

As in , we handle cost functions that are multivariate, in the 

sense that the number of documents returned for a given 

query can itself vary, but the key challenge we address in this 

paper is how to work with costs that are everywhere either 

flat or non-differentiable. However, we emphasize that the 

method also handles the case of multivariate costs that cannot 

be represented as a sum of terms, each depending on the 

output for a single feature vector and its label. 

V.Domain Adaptation with Structural Correspondence 

Learning 

Domain adaptation is an important and well studied area in 

natural language processing. Here we outline a few recent 

advances. Roark and Bacchiani (2003) use a Dirichlet prior 

on the multinomial parameters of a generative parsing model 

to combine a large amount of training data from a source 

corpus (WSJ), and small amount of training data from a 

target corpus (Brown). Aside from Florian et al. (2004), 

several authors have also given techniques for adapting 

classification to new domains. Chelan and Acero first train a 

classifier on the source data. Then they use maximum a 

posteriori estimation of the weights of a maximum entropy 

target domain classifier. The prior is Gaussian with mean 

equal to the weights of the source domain classifier. Daum´e 



IJCOT -Special Issue– The Malla Reddy National Conference on Information System and Knowledge 
Engineering (MRNC-ISKE 2013) - July 2013 

 

ISSN: 2249-2593                        http://www.ijcotjournal.org                                 Page 69 

III and Marcu (2006) use an empirical Bayes model to 

estimate a latent variable model grouping instances into 

domain-specific or common across both domains. 

They also jointly estimate the parameters of the common 

classification model and the domain specific classification 

models. Our work focuses on finding a common 

representation for features from different domains, not 

instances. We believe this is an important distinction, since 

the same instance can contain some features which are 

common across domains and some which are domain 

specific. 

VI Conclusions 

We have demonstrated a simple and effective method for 

learning non-smooth target costs. LambdaRank is a general 

approach: in particular, it can be used to implement RankNet 

training, and it furnishes a significant training speedup there. 

We studied LambdaRank in the context of the NDCG target 

cost for neural network models, but the same ideas apply to 

any non-smooth target cost, and to any differentiable function 

class. It would be interesting to investigate using the same 

method starting with other classifiers such as boosted trees. 
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