
IJCOT -Special Issue– The Malla Reddy National Conference on Information System and Knowledge
Engineering (MRNC-ISKE 2013)- July 2013

ISSN: 2249-2593 http://www.ijcotjournal.org Page 58

Selfish Replica Allocation in Mobile Ad-hoc Network
T.Naga Vyshnavi*1, D.Veerabhadra Babu*2

M.Tech, Dept of CSE, SKDEC, Gooty, D.t: Anantapuram, A.P, India

M.C.A, M.Tech, (Ph.D), Associate Professor, Dept of CSE, SKDEC, Gooty, D.t: Anantapuram, A.P, India

ABSTRACT:

Some recent studies have shown that cooperative cache can improve the system performance in wireless P2P

networks such as ad hoc networks and mesh networks. However, all these studies are at a very high level, leaving many design

and implementation issues unanswered. In this paper, we present our design and implementation of cooperative cache in

wireless P2P networks, and propose solutions to find the best place to cache the data. We propose a novel asymmetric

cooperative cache approach where the data requests are transmitted to the cache layer on every node, but the data replies are

only transmitted to the cache layer at the intermediate nodes that need to cache the data. This solution not only reduces the

overhead of copying data between the user space and the kernel space, it also allows data pipelines to reduce the end-to-end

delay. We also study the effects of different MAC layers, such as 802.11-based ad hoc networks and multi-interface-

multichannel-based mesh networks, on the performance of cooperative cache. Incentive mechanism tells how to encourage

nodes in a peer-to-peer system to contribute their resources. A peer avoids contributing resources to the p2p system because of

the factors like: cost of bandwidth, security reason as it has to open several ports in order to allow others to take out its

resources and slowing down of self downloading process. In this paper we present a comparative study on some incentive

models after going through several research papers in the line. A few models are implemented to show the simulation results.

Finally conclusion is made by identifying the best incentive mechanism for p2p system and improvements are suggested based

on the findings.

KEYWORDS

P2P, Incentive mechanism, Free-rider, White-washing, Wireless networks, P2P networks, cooperative cache.

I. INTRODUCTION

The peer-to-peer system is increasingly popular amongst

internet users due to its nature of resource sharing ability, in

which every peer node is contributing its resources to the

network as well as consumes resources contributed by other

peers. At the same time attacks on p2p networks also

increased which become the threats to the existence of p2p

system. The most common attacks are: free-riding and white-

washing. Free-riders are peers in P2P network which do not

contribute any resources but consume resources freely from

the network. White-washers are free riders which frequently

leave the system and re-appear with a different identity to

get-rid-of penalties imposed by the network. In addition to

these, some more attacks are: Sybil-attack and malicious

behavior of peers. In Sybil attack [8], when an attacker

entered into a system it creates a large number of identities in

order to gain influence over the p2p system. The malicious

behavior of peers says that a few number of peers may

grouped together to cheat the system by increasing each

others’ points or grades within their small group. The

existing incentive mechanisms can be classified into three

categories such as schemes based on inherent generosity,

monetary-based and reciprocity [1, 5]. In schemes based on

inherent generosity every user decides whether to contribute

or free-ride based on how its generosity compares to the

current contribution cost in the system. If the social

IJCOT -Special Issue– The Malla Reddy National Conference on Information System and Knowledge
Engineering (MRNC-ISKE 2013)- July 2013

ISSN: 2249-2593 http://www.ijcotjournal.org Page 59

generosity is below a threshold level, then numbers of free-

riders are more and the system collapses. But if it exceeds the

threshold limit, the contribution level increases with

diminishing returns. For example warm-glow model which

was based on inherent generosity, but it was not successful

because it fails to explain the observed behavior of peer.

Another example is the modeling framework that has been

devised by M. Feldman et al. that studies the phenomenon of

free-riding in P2P systems while taking user generosity into

account. WIRELESS P2P networks, such as ad hoc network,

mesh networks, and sensor networks, have received

considerable attention due to their potential applications in

civilian and military environments. For example, in a

battlefield, a wireless P2P network may consist of several

commanding officers and a group of soldiers. Each officer

has a relatively powerful data center, and the soldiers need to

access the data centers to get various data such as the detailed

geographic information, enemy information, and new

commands. The neighboring soldiers tend to have similar

missions and thus share common interests. If one soldier has

accessed a data item from the data center, it is quite possible

that nearby soldiers access the same data some time later. It

will save a large amount of battery power, bandwidth, and

time if later accesses to the same data are served by the

nearby soldier who has the data instead of the far away data

center. As another example, people in the same residential

area may access the Internet through a wireless P2P network,

e.g., the Roofnet. After one node downloads a MP3 audio or

video file, other people can get the file from this node instead

of the far away Web server. Through these examples, we can

see that if nodes are able to collaborate with each other,

bandwidth and power can be saved, and delay can be

reduced. Actually, cooperative caching which allows the

sharing and coordination of cached data among multiple

nodes, has been applied to improve the system performance

in wireless P2P networks. However, these techniques [are

only evaluated by simulations and studied at a very high

level, leaving many design and implementation issues

unanswered. There have been several implementations of

wireless ad hoc routing protocols. In , Royer and Perkins

suggested modifications to the existing kernel code to

implement AODV. By extending ARP, Desilva and Das [7]

presented another kernel implementation of AODV.

Dynamic Source Routing (DSR) has been implemented by

the Monarch project in FreeBSD. This implementation was

entirely in kernel and made extensive modifications in the

kernel IP stack. In [2], Barr et al. addressed issues on system-

level support for ad hoc routing protocols. In, the authors

explored several system issues regarding the design and

implementation of routing protocols for ad hoc networks.

They found that the current operating system was insufficient

for supporting on-demand or reactive routing protocols, and

presented a generic API to augment the current routing

architecture. However, none of them has looked into

cooperative caching in wireless P2P networks. Although

cooperative cache has been implemented by many

researchers [6], [9], these implementations are in the Web

environment, and all these implementations are at the system

level. As a result, none of them deals with the multiple hop

routing problem and cannot address the on-demand nature of

the ad hoc routing protocols. To realize the benefit of

cooperative cache, intermediate nodes along the routing path

need to check every passing-by packet to see if the cached

data match the data request. This certainly cannot be satisfied

by the existing ad hoc routing protocols. In this paper, we

present our design and implementation of cooperative cache

in wireless P2P networks. Through real implementations, we

identify important design issues and propose an asymmetric

approach to reduce the overhead of copying data between the

user space and the kernel space, and hence to reduce the data

processing delay. Another major contribution of this paper is

to identify and address the effects of data pipeline and MAC

layer interference on the performance of caching. Although

some researchers have addressed the effects of MAC layer

IJCOT -Special Issue– The Malla Reddy National Conference on Information System and Knowledge
Engineering (MRNC-ISKE 2013)- July 2013

ISSN: 2249-2593 http://www.ijcotjournal.org Page 60

interference on the performance of TCP [10] and network

capacity, this is the first work to study this problem in the

context of cache management. We study the effects of

different MAC layers, such as 802.11-based ad hoc networks

and multi-interface-multichannel-based mesh networks, on

the performance of caching. We also propose solutions for

our asymmetric approach to identify the best nodes to cache

the data. The proposed algorithm well considers the caching

overhead and adapts the cache node selection strategy to

maximize the caching benefit on different MAC layers. Our

results show that the asymmetric approach outperforms the

symmetric approach in traditional 802.11- based ad hoc

networks by removing most of the processing overhead. In

mesh networks, the asymmetric approach can significantly

reduce the data access delay compared to the symmetric

approach due to data pipelines.

II.RELATED WORKS

Caching is a key technique for improving data

retrieval rate in both wired and wireless networks. The two

basic types of cache sharing are push approach and pull

approach. In push based cache sharing, a node broadcasts the

caching update to all its neighbor nodes, on receiving a new

data item. This updated information resides in the

neighboring nodes for future use. Push based scheme

improves the data availability at the cost of communication

overhead. The disadvantage of the scheme is that an

advertisement may become useless if no demand for the

cached items occur in the vicinity. One more problem with

the push based approach is that the caching information may

not be used if the node moves out from the zone or due to

cache replacement. These drawbacks are overcome with the

pull based scheme. In case of pull based approach, a node

broadcasts a request packet to all its neighbors, when it wants

to access a new data item. If a neighbor has the requested

data item it sends the data back to the requester node. The

main disadvantage here is that, if the requested data item is

not cached by any node in the neighborhood then the request

originator must wait for the time out interval to expire before

it resends the request to the data centre. This leads to access

latency. Another drawback here is, if

more than one node have cached the requested data item then

multiple copies will return to the requester which in turn will

result in extra communication overhead. Duane Wessels and

Kim Claffy, introduced the standardized and widely used

Internet cache protocol(ICP). As a message-based protocol,

ICP supports communication between caching proxies using

a simple query-response dialog. Cache Digests [10] are a

response to the problems of latency and congestion. Cache

Digests support peering between cache servers without a

request-response exchange taking place. A summary of the

contents of the server (the Digest) is fetched by other servers

which peer with it.

III. PROPOSED SYSTEM EVOLUTION

3.1 DESIGN AND IMPLEMENTATION OF

COOPERATIVE CACHING

In this section, we first present the basic ideas of the three

cooperative caching schemes proposed in: Cache Path, Cache

Data, and Hybrid Cache. Then, we discuss some design

issues and present our design and implementation of

cooperative cache in wireless P2P networks.

3.2 Cooperative Caching Schemes

Fig. 1 illustrates the Cache Path concept. Suppose node N1

requests a data item di from N0. When N3 forwards di to

N1;N3 knows that N1 has a copy of the data. Later, if N2

requests di;N3 knows that the data source N0 is three hops

away whereas N1 is only one hop away. Thus, N3 forwards

the request to N1 instead of N4. Many routing algorithms

(such as AODV [20] and DSR [12]) provide the hop count

information between the source and destination. Caching the

data path for each data item reduces bandwidth and power

consumption because nodes can obtain the data using fewer

hops. However, mapping data items and caching nodes

increase routing overhead, and the following techniques are

IJCOT -Special Issue– The Malla Reddy National Conference on Information System and Knowledge
Engineering (MRNC-ISKE 2013)- July 2013

ISSN: 2249-2593 http://www.ijcotjournal.org Page 61

used to improve Cache Path’s performance. In Cache Path, a

node need not record the path information of all passing data.

Rather, it only records the data path when it is closer to the

caching node than the data source.

For example, when N0 forwards di to the destination node

N1 along the path N5 _ N4 _ N3;N4 and N5 won’t cache di

path information because they are closer to the data source

than the caching node N1. In general, a node caches the data

path only when the caching node is very close. The closeness

can be defined as a function of the node’s distance to the data

source, its distance to the caching node, route stability, and

the data update rate. Intuitively, if the network is relatively

stable, the data update rate is low, and its distance to the

caching node is much shorter than its distance to the data

source, then the routing node should cache the data path. In

Cache Data, the intermediate node caches the data instead of

the path when it finds that the data item is frequently

accessed. For example, in Fig. 1, if both N6 and N7 request

di through N5;N5 may think that di is popular and cache it

locally. N5 can then serve N4’s future requests directly.

Because the Cache Data approach needs extra space to save

the data, it should be used prudently. Suppose N3 forwards

several requests for di to N0. The nodes along the path

N3;N4, and N5 may want to cache di as a frequently

accessed item. However, they will waste a large amount of

cache space if they all cache di. To avoid this, Cache Data

enforces another rule: A node does not cache the data if all

requests for the data are from the same node.

In this example, all the requests N5 received are from N4,

and these requests in turn come from N3. With the new rule,

N4 and N5 won’t cache di. If N3 receives requests from

different nodes, for example, N1 and N2, it caches the data.

Certainly, if N5 later receives requests for di from N6 and

N7, it can also cache the data.

3.3 Design Issues on Implementing

Cooperative Cache In this paper, we focus on design and

implementation of the Cache Data scheme discussed in the

above section. To realize the benefit of cooperative cache,

intermediate nodes along the routing path need to check

every passing-by packet to see if the cached data match the

data request. This certainly cannot be satisfied by the existing

ad hoc routing protocols. Next, we look at two design

options.

3.3.1 Integrated Design

In this option, the cooperative cache functions are integrated

into the network layer so that the intermediate node can

check each passing-by packet to see if the requested data can

be served. Although this design sounds straightforward,

several major drawbacks make it impossible in real

implementation. The network layer is usually implemented in

kernel, and hence, the integrated design implies a kernel

implementation of cooperative cache. However, it is well

known that kernel implementation is difficult to customize

and then it is difficult for handling different application

requirements. Second, kernel implementation will

significantly increase the memory demand due to the use of

Cache Data. Finally, there is no de facto routing protocol for

wireless P2P networks currently. Implementing cooperative

cache at the network layer requires these cache and routing

modules to be tightly coupled, and the routing module has to

be modified to add caching functionality. However, to

integrate cooperative cache with different routing protocols

will involve tremendous amount of work.

3.3.2 Layered Design

The above discussions suggest that a feasible design should

have a dedicated cooperative cache layer resided in the user

space; i.e., cooperative cache is designed as a middleware

lying right below the application layer and on top of the

network layer (including the transport layer). There are two

IJCOT -Special Issue– The Malla Reddy National Conference on Information System and Knowledge
Engineering (MRNC-ISKE 2013)- July 2013

ISSN: 2249-2593 http://www.ijcotjournal.org Page 62

options for the layered design. One naïve solution uses cross-

layer information, where the application passes data request

(search key) to the routing layer, which can be used to match

the local cached data. However, this solution not only

violates the layered design, but also adds significant

complexity to the routing protocol which now needs to

maintain a local cache table. Further, if an intermediate node

needs to cache the data based on the cooperative cache

protocol, it has to deal with fragmentation issues since some

fragments of the data may not go through this node. Thus,

this naive solution does not work in practice. Another

solution is to strictly follow the layered approach, where the

cooperative cache layer is on top of the network layer

(TCP/IP). Fig. 2 shows the message flow (dashed line) in the

layered design. In the figure, N5 sends a request to N0.

Based on the routing protocol, N5 knows that the next hop is

N4 and sends the request to N4 encapsulating the original

request message. After N4 receives the request, it passes the

message to the cache layer, which can check if the request

can be served locally. This process continues until the

request is served or reaches N0. After N0 receives the

request, it forwards the data item back to N5 hop by hop,

which is the reverse of the data request, as shown in Fig. 2b.

Note that the data has to go up to the cache layer in case

some intermediate nodes need to cache the data. Although

this solution can solve the problems of the naïve solution, it

has significant overhead. For example, to avoid caching

corrupted data, reliable protocols such as TCP are needed.

However, this will significantly increase the overhead, since

the data packets have to move to the TCP layer at each hop.

Note that the data packets only need to go to the routing layer

if cooperative cache is not used. Further, this solution has a

very high context switching overhead. At each intermediate

node, the packets have to be copied from the kernel to the

user space for cache operations, and then re-injected back to

kernel to be routed to the next hop. The pipeline effect.

Another problem of the layered design is the lack of data

pipeline. Normally, the transport layer can fragment a large

data item into many small data packets, which are sent one

by one to the next hop. If there are multi-hop between the

sender and the receiver, these small packets can be pipelined

and the end-to-end delay can be reduced.

In cooperative cache, the caching granularity is at the data

item level. Although a large data item is still fragmented by

the transport layer, there is no pipeline due to the layered

design. This is because the cache layer is on top of the

transport layer, which will reassemble the fragmented

packets. Since all packets have to go up to the cache layer

hop by hop, the network runs like “stop and wait” instead of

“sliding window.” This will significantly increase the endto-

end delay, especially for data with large size.

IV. CONCLUSION

We presented our design and implementation of cooperative

cache in wireless P2P networks, and proposed solutions to

find the best place to cache the data. In our asymmetric

approach, data request packets are transmitted to the cache

layeron every node; however, the data reply packets are only

transmitted to the cache layer on the intermediate nodes

which need to cache the data. This solution not only reduces

the overhead of copying data between the user space and the

kernel space, but also allows data pipeline to reduce the end-

IJCOT -Special Issue– The Malla Reddy National Conference on Information System and Knowledge
Engineering (MRNC-ISKE 2013)- July 2013

ISSN: 2249-2593 http://www.ijcotjournal.org Page 63

to-end delay. We have developed a prototype to demonstrate

the advantage of the asymmetric approach.

Since our prototype is at a small scale, we evaluate our

design for a large-scale network through simulations. Our

simulation results show that the asymmetric approach

outperforms the symmetric approach in traditional 802.11-

based ad hoc networks by removing most of the processing

overhead. In mesh networks, the asymmetric approach can

significantly reduce the data access delay compared to the

symmetric approach due to data pipelines.

To the best of our knowledge, this is the first work on

implementing cooperative cache in wireless P2P networks,

and the first work on identifying and addressing the effects of

data pipeline and MAC layer interference on cache

management. We believe many of these findings will be

valuable for making design choices.

V. REFERENCES
[1] R. Agu¨ ero and J.P. Campo, “Adding Multiple Interface Support in NS-

2,” Jan. 2007.

[2] B. Barr, J. Bicket, D. Dantas, B. Du, T. Kim, B. Zhou, and E. Sirer, “On

the Need for System-Level Suppport for Ad Hoc and Sensor Networks,”

ACM Operating System Rev., vol. 36, no. 2, pp. 1-5, Apr. 2002.

[3] J. Bicket, D. Aguayo, S. Biswas, and R. Morris, “Architecture and

Evaluation of an Unplanned 802.11b Mesh Network,” Proc. ACM

MobiCom, 2005.

[4] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker, “Web Caching

and Zipf-like Distributions: Evidence and Implications,” Proc. IEEE

INFOCOM, 1999.

[5] G. Cao, L. Yin, and C. Das, “Cooperative Cache-Based Data Access in

Ad Hoc Networks,” Computer, vol. 37, no. 2, pp. 32-39, Feb. 2004.

[6] M. Cieslak, D. Foster, G. Tiwana, and R. Wilson, “Web Cache

Coordination Protocol v2.0,” IETF Internet Draft, 2000.

[7] S. Desilva and S. Das, “Experimental Evaluation of a Wireless Ad Hoc

Network,” Proc. Ninth Int’l Conf. Computer Comm. And Networks, 2000.

[8] H. Eriksson, “MBONE: The Multicast Backbone,” Comm. ACM, vol.

37, no. 8, pp. 54-60, 1994.

[9] L. Fan, P. Cao, J. Almeida, and A. Broder, “Summary Cache: A Scalable

Wide Area Web CAche Sharing Protocol,” Proc. ACM SIGCOMM, pp.

254-265, 1998.

[10] Z. Fu, P. Zerfos, H. Luo, S. Lu, L. Zhang, and M. Gerla, “The Impact of

Multihop Wireless Channel on TCP Throughput and Loss,” Proc. IEEE

INFOCOM, 2003.

T.Naga Vyshnavi M.Tech, SRI KRISHNA DEVARAYA ENGINEERING

COLLEGE,

JNTU, Ananthapuram.

D.Veerabhadra Babu M.C.A, M.Tech (Ph.D),

Associate Professor, Department of CSE, SRI KRISHNA DEVARAYA

ENGINEERING COLLEGE,

Gooty, Ananthapuram (Dt).

