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ABSTRACT:  

Some recent studies have shown that cooperative cache can improve the system performance in wireless P2P 

networks such as ad hoc networks and mesh networks. However, all these studies are at a very high level, leaving many design 

and implementation issues unanswered. In this paper, we present our design and implementation of cooperative cache in 

wireless P2P networks, and propose solutions to find the best place to cache the data. We propose a novel asymmetric 

cooperative cache approach where the data requests are transmitted to the cache layer on every node, but the data replies are 

only transmitted to the cache layer at the intermediate nodes that need to cache the data. This solution not only reduces the 

overhead of copying data between the user space and the kernel space, it also allows data pipelines to reduce the end-to-end 

delay. We also study the effects of different MAC layers, such as 802.11-based ad hoc networks and multi-interface-

multichannel-based mesh networks, on the performance of cooperative cache. Incentive mechanism tells how to encourage 

nodes in a peer-to-peer system to contribute their resources. A peer avoids contributing resources to the p2p system because of 

the factors like: cost of bandwidth, security reason as it has to open several ports in order to allow others to take out its 

resources and slowing down of self downloading process. In this paper we present a comparative study on some incentive 

models after going through several research papers in the line. A few models are implemented to show the simulation results. 

Finally conclusion is made by identifying the best incentive mechanism for p2p system and improvements are suggested based 

on the findings. 
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I. INTRODUCTION 

The peer-to-peer system is increasingly popular amongst 

internet users due to its nature of resource sharing ability, in 

which every peer node is contributing its resources to the 

network as well as consumes resources contributed by other 

peers. At the same time attacks on p2p networks also 

increased which become the threats to the existence of p2p 

system. The most common attacks are: free-riding and white-

washing. Free-riders are peers in P2P network which do not 

contribute any resources but consume resources freely from 

the network. White-washers are free riders which frequently 

leave the system and re-appear with a different identity to 

get-rid-of penalties imposed by the network. In addition to 

these, some more attacks are: Sybil-attack and malicious 

behavior of peers. In Sybil attack [8], when an attacker 

entered into a system it creates a large number of identities in 

order to gain influence over the p2p system. The malicious 

behavior of peers says that a few number of peers may 

grouped together to cheat the system by increasing each 

others’ points or grades within their small group. The 

existing incentive mechanisms can be classified into three 

categories such as schemes based on inherent generosity, 

monetary-based and reciprocity [1, 5]. In schemes based on 

inherent generosity every user decides whether to contribute 

or free-ride based on how its generosity compares to the 

current contribution cost in the system. If the social 
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generosity is below a threshold level, then numbers of free-

riders are more and the system collapses. But if it exceeds the 

threshold limit, the contribution level increases with 

diminishing returns. For example warm-glow model which 

was based on inherent generosity, but it was not successful 

because it fails to explain the observed behavior of peer. 

Another example is the modeling framework that has been 

devised by M. Feldman et al. that studies the phenomenon of 

free-riding in P2P systems while taking user generosity into 

account. WIRELESS P2P networks, such as ad hoc network, 

mesh networks, and sensor networks, have received 

considerable attention due to their potential applications in 

civilian and military environments. For example, in a 

battlefield, a wireless P2P network may consist of several 

commanding officers and a group of soldiers. Each officer 

has a relatively powerful data center, and the soldiers need to 

access the data centers to get various data such as the detailed 

geographic information, enemy information, and new 

commands. The neighboring soldiers tend to have similar 

missions and thus share common interests. If one soldier has 

accessed a data item from the data center, it is quite possible 

that nearby soldiers access the same data some time later. It 

will save a large amount of battery power, bandwidth, and 

time if later accesses to the same data are served by the 

nearby soldier who has the data instead of the far away data 

center. As another example, people in the same residential 

area may access the Internet through a wireless P2P network, 

e.g., the Roofnet. After one node downloads a MP3 audio or 

video file, other people can get the file from this node instead 

of the far away Web server. Through these examples, we can 

see that if nodes are able to collaborate with each other, 

bandwidth and power can be saved, and delay can be 

reduced. Actually, cooperative caching which allows the 

sharing and coordination of cached data among multiple 

nodes, has been applied to improve the system performance 

in wireless P2P networks. However, these techniques [ are 

only evaluated by simulations and studied at a very high 

level, leaving many design and implementation issues 

unanswered. There have been several implementations of 

wireless ad hoc routing protocols. In , Royer and Perkins 

suggested modifications to the existing kernel code to 

implement AODV. By extending ARP, Desilva and Das [7] 

presented another kernel implementation of AODV. 

Dynamic Source Routing (DSR) has been implemented by 

the Monarch project in FreeBSD. This implementation was 

entirely in kernel and made extensive modifications in the 

kernel IP stack. In [2], Barr et al. addressed issues on system-

level support for ad hoc routing protocols. In, the authors 

explored several system issues regarding the design and 

implementation of routing protocols for ad hoc networks. 

They found that the current operating system was insufficient 

for supporting on-demand or reactive routing protocols, and 

presented a generic API to augment the current routing 

architecture. However, none of them has looked into 

cooperative caching in wireless P2P networks. Although 

cooperative cache has been implemented by many 

researchers [6], [9], these implementations are in the Web 

environment, and all these implementations are at the system 

level. As a result, none of them deals with the multiple hop 

routing problem and cannot address the on-demand nature of 

the ad hoc routing protocols. To realize the benefit of 

cooperative cache, intermediate nodes along the routing path 

need to check every passing-by packet to see if the cached 

data match the data request. This certainly cannot be satisfied 

by the existing ad hoc routing protocols. In this paper, we 

present our design and implementation of cooperative cache 

in wireless P2P networks. Through real implementations, we 

identify important design issues and propose an asymmetric 

approach to reduce the overhead of copying data between the 

user space and the kernel space, and hence to reduce the data 

processing delay. Another major contribution of this paper is 

to identify and address the effects of data pipeline and MAC 

layer interference on the performance of caching. Although 

some researchers have addressed the effects of MAC layer 
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interference on the performance of TCP [10] and network 

capacity, this is the first work to study this problem in the 

context of cache management. We study the effects of 

different MAC layers, such as 802.11-based ad hoc networks 

and multi-interface-multichannel-based mesh networks, on 

the performance of caching. We also propose solutions for 

our asymmetric approach to identify the best nodes to cache 

the data. The proposed algorithm well considers the caching 

overhead and adapts the cache node selection strategy to 

maximize the caching benefit on different MAC layers. Our 

results show that the asymmetric approach outperforms the 

symmetric approach in traditional 802.11- based ad hoc 

networks by removing most of the processing overhead. In 

mesh networks, the asymmetric approach can significantly 

reduce the data access delay compared to the symmetric 

approach due to data pipelines. 

II.RELATED WORKS 

Caching is a key technique for improving data 

retrieval rate in both wired and wireless networks. The two 

basic types of cache sharing are push approach and pull 

approach. In push based cache sharing, a node broadcasts the 

caching update to all its neighbor nodes, on receiving a new 

data item. This updated information resides in the 

neighboring nodes for future use. Push based scheme 

improves the data availability at the cost of communication 

overhead. The disadvantage of the scheme is that an 

advertisement may become useless if no demand for the 

cached items occur in the vicinity. One more problem with 

the push based approach is that the caching information may 

not be used if the node moves out from the zone or due to 

cache replacement. These drawbacks are overcome with the 

pull based scheme. In case of pull based approach, a node 

broadcasts a request packet to all its neighbors, when it wants 

to access a new data item. If a neighbor has the requested 

data item it sends the data back to the requester node. The 

main disadvantage here is that, if the requested data item is 

not cached by any node in the neighborhood then the request 

originator must wait for the time out interval to expire before 

it resends the request to the data centre. This leads to access 

latency. Another drawback here is, if 

more than one node have cached the requested data item then 

multiple copies will return to the requester which in turn will 

result in extra communication overhead. Duane Wessels and 

Kim Claffy, introduced the standardized and widely used 

Internet cache protocol(ICP). As a message-based protocol, 

ICP supports communication between caching proxies using 

a simple query-response dialog. Cache Digests [10] are a 

response to the problems of latency and congestion. Cache 

Digests support peering between cache servers without a 

request-response exchange taking place. A summary of the 

contents of the server (the Digest) is fetched by other servers 

which peer with it. 

III. PROPOSED SYSTEM EVOLUTION 

3.1 DESIGN AND IMPLEMENTATION OF 

COOPERATIVE CACHING 

In this section, we first present the basic ideas of the three 

cooperative caching schemes proposed in: Cache Path, Cache 

Data, and Hybrid Cache. Then, we discuss some design 

issues and present our design and implementation of 

cooperative cache in wireless P2P networks. 

3.2 Cooperative Caching Schemes 

Fig. 1 illustrates the Cache Path concept. Suppose node N1 

requests a data item di from N0. When N3 forwards di to 

N1;N3 knows that N1 has a copy of the data. Later, if N2 

requests di;N3 knows that the data source N0 is three hops 

away whereas N1 is only one hop away. Thus, N3 forwards 

the request to N1 instead of N4. Many routing algorithms 

(such as AODV [20] and DSR [12]) provide the hop count 

information between the source and destination. Caching the 

data path for each data item reduces bandwidth and power 

consumption because nodes can obtain the data using fewer 

hops. However, mapping data items and caching nodes 

increase routing overhead, and the following techniques are 
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used to improve Cache Path’s performance. In Cache Path, a 

node need not record the path information of all passing data. 

Rather, it only records the data path when it is closer to the 

caching node than the data source. 

 

For example, when N0 forwards di to the destination node 

N1 along the path N5 _ N4 _ N3;N4 and N5 won’t cache di 

path information because they are closer to the data source 

than the caching node N1. In general, a node caches the data 

path only when the caching node is very close. The closeness 

can be defined as a function of the node’s distance to the data 

source, its distance to the caching node, route stability, and 

the data update rate. Intuitively, if the network is relatively 

stable, the data update rate is low, and its distance to the 

caching node is much shorter than its distance to the data 

source, then the routing node should cache the data path. In 

Cache Data, the intermediate node caches the data instead of 

the path when it finds that the data item is frequently 

accessed. For example, in Fig. 1, if both N6 and N7 request 

di through N5;N5 may think that di is popular and cache it 

locally. N5 can then serve N4’s future requests directly. 

Because the Cache Data approach needs extra space to save 

the data, it should be used prudently. Suppose N3 forwards 

several requests for di to N0. The nodes along the path 

N3;N4, and N5 may want to cache di as a frequently 

accessed item. However, they will waste a large amount of 

cache space if they all cache di. To avoid this, Cache Data 

enforces another rule: A node does not cache the data if all 

requests for the data are from the same node. 

In this example, all the requests N5 received are from N4, 

and these requests in turn come from N3. With the new rule, 

N4 and N5 won’t cache di. If N3 receives requests from 

different nodes, for example, N1 and N2, it caches the data. 

Certainly, if N5 later receives requests for di from N6 and 

N7, it can also cache the data. 

3.3 Design Issues on Implementing 

Cooperative Cache In this paper, we focus on design and 

implementation of the Cache Data scheme discussed in the 

above section. To realize the benefit of cooperative cache, 

intermediate nodes along the routing path need to check 

every passing-by packet to see if the cached data match the 

data request. This certainly cannot be satisfied by the existing 

ad hoc routing protocols. Next, we look at two design 

options. 

3.3.1 Integrated Design 

In this option, the cooperative cache functions are integrated 

into the network layer so that the intermediate node can 

check each passing-by packet to see if the requested data can 

be served. Although this design sounds straightforward, 

several major drawbacks make it impossible in real 

implementation. The network layer is usually implemented in 

kernel, and hence, the integrated design implies a kernel 

implementation of cooperative cache. However, it is well 

known that kernel implementation is difficult to customize 

and then it is difficult for handling different application 

requirements. Second, kernel implementation will 

significantly increase the memory demand due to the use of 

Cache Data. Finally, there is no de facto routing protocol for 

wireless P2P networks currently. Implementing cooperative 

cache at the network layer requires these cache and routing 

modules to be tightly coupled, and the routing module has to 

be modified to add caching functionality. However, to 

integrate cooperative cache with different routing protocols 

will involve tremendous amount of work. 

3.3.2 Layered Design 

The above discussions suggest that a feasible design should 

have a dedicated cooperative cache layer resided in the user 

space; i.e., cooperative cache is designed as a middleware 

lying right below the application layer and on top of the 

network layer (including the transport layer). There are two 
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options for the layered design. One naïve solution uses cross-

layer information, where the application passes data request 

(search key) to the routing layer, which can be used to match 

the local cached data. However, this solution not only 

violates the layered design, but also adds significant 

complexity to the routing protocol which now needs to 

maintain a local cache table. Further, if an intermediate node 

needs to cache the data based on the cooperative cache 

protocol, it has to deal with fragmentation issues since some 

fragments of the data may not go through this node. Thus, 

this naive solution does not work in practice. Another 

solution is to strictly follow the layered approach, where the 

cooperative cache layer is on top of the network layer 

(TCP/IP). Fig. 2 shows the message flow (dashed line) in the 

layered design. In the figure, N5 sends a request to N0. 

Based on the routing protocol, N5 knows that the next hop is 

N4 and sends the request to N4 encapsulating the original 

request message. After N4 receives the request, it passes the 

message to the cache layer, which can check if the request 

can be served locally. This process continues until the 

request is served or reaches N0. After N0 receives the 

request, it forwards the data item back to N5 hop by hop, 

which is the reverse of the data request, as shown in Fig. 2b. 

Note that the data has to go up to the cache layer in case 

some intermediate nodes need to cache the data. Although 

this solution can solve the problems of the naïve solution, it 

has significant overhead. For example, to avoid caching 

corrupted data, reliable protocols such as TCP are needed. 

However, this will significantly increase the overhead, since 

the data packets have to move to the TCP layer at each hop. 

Note that the data packets only need to go to the routing layer 

if cooperative cache is not used. Further, this solution has a 

very high context switching overhead. At each intermediate 

node, the packets have to be copied from the kernel to the 

user space for cache operations, and then re-injected back to 

kernel to be routed to the next hop. The pipeline effect. 

Another problem of the layered design is the lack of data 

pipeline. Normally, the transport layer can fragment a large 

data item into many small data packets, which are sent one 

by one to the next hop. If there are multi-hop between the 

sender and the receiver, these small packets can be pipelined 

and the end-to-end delay can be reduced. 

 
In cooperative cache, the caching granularity is at the data 

item level. Although a large data item is still fragmented by 

the transport layer, there is no pipeline due to the layered 

design. This is because the cache layer is on top of the 

transport layer, which will reassemble the fragmented 

packets. Since all packets have to go up to the cache layer 

hop by hop, the network runs like “stop and wait” instead of 

“sliding window.” This will significantly increase the endto- 

end delay, especially for data with large size. 

IV. CONCLUSION 

We presented our design and implementation of cooperative 

cache in wireless P2P networks, and proposed solutions to 

find the best place to cache the data. In our asymmetric 

approach, data request packets are transmitted to the cache 

layeron every node; however, the data reply packets are only 

transmitted to the cache layer on the intermediate nodes 

which need to cache the data. This solution not only reduces 

the overhead of copying data between the user space and the 

kernel space, but also allows data pipeline to reduce the end-
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to-end delay. We have developed a prototype to demonstrate 

the advantage of the asymmetric approach. 

Since our prototype is at a small scale, we evaluate our 

design for a large-scale network through simulations. Our 

simulation results show that the asymmetric approach 

outperforms the symmetric approach in traditional 802.11-

based ad hoc networks by removing most of the processing 

overhead. In mesh networks, the asymmetric approach can 

significantly reduce the data access delay compared to the 

symmetric approach due to data pipelines. 

To the best of our knowledge, this is the first work on 

implementing cooperative cache in wireless P2P networks, 

and the first work on identifying and addressing the effects of 

data pipeline and MAC layer interference on cache 

management. We believe many of these findings will be 

valuable for making design choices. 
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