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Abstract—  This  paper discuss about statistical
representation of Brain Cancer in America. Brain cancer
morbidity is high and treatment plans like chemotherapy,
surgical resection of Tumor, Hyperthermia and Radio
Surgery is key elements for the treatment of patients
suffering from Brain Cancer. Who and Disease control
prevention dataset is used to perform analysis. Incidence
Rate, Death Rate, Incidence Count and Death count in male
and female are rising; Classification of Data is based on
Brain Tumor and other Nervous. Brain Tumor is a leading
cause of death and once its diagnosed base on the stage of
cancer life expectancy is about 5 Years or so. Incidence rate
of Brain Cancer in age group and gender difference is
analyzed based on States. Spatially Analytic data is used for
the geo-visualization of Cancer. Sources of data are from
Cancer registries, World Health Organization, Health
Information Database and remote sensing data.
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I. INTRODUCTION

This research is focus on giving tools and
techniques to the field of epidemiology to study and
provide treatment to Brain Cancer patient. This would
help to control the disease and create the disease
model and act on the trends of Brain Cancer. Large
and highly complex data structure are analysed on grid
computing environment. Purpose of this research is to
provide the growth of Brain Cancer in America and
find out the similarity and differences in the regions of
Brain Cancer depending upon spatial information. Geo
Spatial information helps in predicting the spread of
disease. Mathematical model helps in analysing the
Brain cancer Characteristics. Cancer Etiology is also
represented in spatial form and pattern on Treatment
[1]. Spatial data refer to data with locational attributes.
Most commonly, locations are given in Cartesian
coordinates referenced to the earth's surface. These
coordinates may describe points, lines, areas or
volumes. This need not be the only spatial framework;
"relative spaces” may be defined in which distance is
defined in terms of some other attribute, such as socio-
demographic similarly or connectedness along
transportation networks [2][3]. There are over 600,000
people in the US living with a primary brain tumor
and over 28,000 of these cases are among children
under the age of 20.1

Metastatic brain tumors (cancer that spreads from
other parts of the body to the brain) occur at some
point in 20 to 40% of persons with cancer and are the
most common type of brain tumor.

Over 7% of all reported primary brain tumors in the
United States are among children under the age of 20.

Each year approximately 210,000 people in the United
States are diagnosed with a primary or metastatic
brain tumor. That's over 575 people a day:

e An estimated 62,930 of these cases are
primary malignant and non-malignant
tumors.

e The remaining cases are brain metastases
(cancer that spreads from other parts of the
body to the brain).

Among children under age 20, brain tumors
are:

the most common form of solid tumor

the second leading cause of cancer-related
deaths, following leukemia

the second leading cause of cancer-related
deaths among females

- £+

e Among adults, brain tumors are:

+ the second leading cause of cancer-related
deaths among males up to age 39

+ the fifth leading cause of cancer-related
deaths among women ages 20-39

There are over 120 different types of brain tumors,
making effective treatment very complicated. Because
brain tumors are located at the control center for
thought, emotion and movement, their effects on an
individual's physical and cognitive abilities can be
devastating. At present, brain tumors are treated by
surgery, radiation therapy, and chemotherapy, used
either individually or in combination. No two brain
tumors are alike. Prognosis, or expected outcome, is
dependent on several factors including the type of
tumor, location, response to treatment, an individual's
age, and overall health status.
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An estimated 35% of adults living with a primary
malignant brain or CNS tumor will live five years or
longer.

Brain tumors in children are different from those in
adults and are often treated differently. Although over
72% percent of children with brain tumors will
survive, they are often left with long-term side effects

[4].
Il. METHODOLOGY

Study of spatial autocorrelation analysis supports
the hypotheses to predict the geo location and volume
of epidemiological insights. Information pertained
from first order autocorrelation (Brain Cancer &
Nervous) gives the pattern of mortality in spatial
space.Applied spatial autocorrelation to define
correlation of a cancer dataset in variable array with
itself through Fuzzy Topological space. Measured the
characteristics at one state example California are
similar or dissimilar to nearby states example Nevada.
Measure the most probable occurrence of event at one
location with nearby inter-connected
locations.Applied the measurement using Joint Count
Statistics, Moran’s I , Geary’s ratio, General G, Local
Index of Spatial Autocorrelation and Global Index of
Spatial Autocorrelation.Spatial Autocorrelation
produced positive results with similar values Fuzzy
Cluster on the map and Negative dissimilar values
Fuzzy Cluster on the map. Fuzzy connectedness
technique is used to measure brain tumor volume; this
is also applied on brain lesion volume estimation.
Multiple Fuzzy spaces are defined to layout the
computational framework. Fuzzy compactness and
connectedness are distinct absolute property that is
used for fuzzy topology. Absolute topology is where
all subspaces Z Y =X of a space X, Z fulfills P
(property) a subspace of Y iff Z fulfills P as a
subspace of X. We consider the following anycast
field equations defined over an open bounded piece of

network and /or feature space Q C RY . They
describe the dynamics of the mean anycast of each of
p node populations.

(SN =2 ], 3 (DS, (-5, (D). -h, IdF

+17(r,1),
Vit,r)=4(r)

t>0,1<i<p,
te[-T,0]

We give an interpretation of the various parameters
and functions that appear in (1),Q is finite piece of
nodes and/or feature space and is represented as an

d
open bounded set of R™ . The vector T and T

represent points in Q. The function S:R—>(0])
is the normalized sigmoid function:
1
S(2) = 2
@) =1 )

It describes the relation between the input rate Vi of
population ! as a function of the packets potential, for

V; =V, =S[o;,(V, —h)]. We note Y the
Vs V)

example,

P- dimensional vector "The P function

#1=1...p, represent the initial conditions, see

below. We note ¢ the P~ dimensional vector
ext :

(@5 4,). The P function =1, p,

represent external factors from other network areas.

We note e the P~
IeXt,...,IeXt .
Iy p) The

J :{‘Jij}i,jzl
populations | and ), see below. The P real values

hi A=1...p, determine the threshold of activity for
each population, that is, the value of the nodes
potential corresponding to 50% of the maximal

activity. The P real positive values i =1..,p,
determine the slopes of the sigmoids at the origin.

L,i=1..0p,

dimensional vector
pxp matrix of functions

---- P represents the connectivity between

Finally the P real positive values
determine the speed at which each anycast node
potential decreases exponentially toward its real value.

We also introduce the function S:RP— Rp’
defined by
SIORISICACENY) ISR )
diagonal P> P matrix L, =diag(l,...1,). Is the

intrinsic dynamics of the population given by the
d
(—+1)

linear response of data transfer. dt is replaced

to use the alpha function response. We

d
(_+Ii)
use dt for simplicity although our analysis
adﬁ)ies to more general intrinsic dynamics. For the
sake, of generality, the propagation delays are not
assumed to be identical for all populations, hence they

z(r,r)

are described by a matrix whose element

). . .
G ) is the propagation delay between population

Jat v oand population i at I The reason for this
assumption is that it is still unclear from anycast if
propagation delays are independent of the populations.
We assume for technical reasons that 7 is continuous,
—2
reC’(Q,R™P).

that is Moreover packet data
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indicate that T is not a symmetric function i.e.,
. (r,r) =7 (r,r), N

”( ) ”( ) thus no assumption is made
about this symmetry unless otherwise stated. In order
to compute the righthand side of (1), we need to know
the node potential factor V' on interval [-T.0]. The
value of T is obtained by considering the maximal
delay:

m LA S,

z,= max_ 7, (rr) ©)
i,j(r,reQxQ) '

T=r
Hence we choose m

I11. MATHEMATICAL FRAMEWORK

A convenient functional setting for the non-delayed
packet field equations is to wuse the space

—12 p
F=L(QR") which is a Hilbert space endowed
with the usual inner product:

P
(V,U), =2 [ Vi(nu,(ndr - @
i=1
To give a meaning to (1), we defined the history space

C=C°(-z,,,0],F)

”¢” = SUPtet-, 0 ”¢(t)” F, which is the Banach
phase space associated with equation (3). Using the
V,(0) =V (t+6),0 e[-7,,0],

with

notation we write
(1) as
VO =-LVO+LSM)+17W, (g
V,=¢eC,
Where
L:C—>F,
6| ICNgr,—z(,)dr
Is the linear continuous operator satisfying

<|J o -
|||-1|| ” ”LZ(QZ'RP ")" Notice that most of the papers
on this subject assume Q infinite, hence requiring
T, = .

Proposition 1.0
satisfied.

If the following assumptions are
2 2 X
L Jel’ (@ R™),

ext 0
2. The external currentI eC (R’F)’

reC’ ((?, Rpr),Sup& T<7,.

Then for any ¢<C, there exists a unique solution

V e CY([0,%), F) "C ([, 0, F) to (3)

Notice that this result gives existence on R*’ finite-
time explosion is impossible for this delayed
differential equation. Nevertheless, a particular
solution could grow indefinitely, we now prove that
this cannot happen.

Boundedness of SolutioNs

A valid model of neural networks should only feature
bounded packet node potentials.

Theorem 1.0 All the trajectories are ultimately

bounded by the same constant R if

I =max, g IeXt(t)HF <

Proof :Let wus defined f:RxC >R as
def d 2

FEV) = (-LU O +LSV) + 1)V ©), = %%

We note I= mini:l’"-p |

fev) <V +(plef ] + DIV o)l

Thus, if

4’ Q|1J | de 2 de
V@) 22p|F+d:f R, f(t,Vt)s—Izd:f_&o

Let us show that the open route of F of center 0 and

radius R, BR’ is stable under the dynamics of

equation. We know that V(t)
f <0 on oB

is defined for all
t>0s ang that R' the boundary of
Br . We consider three cases for the initial condition
VO' If ”VOHC <R

T =sup{t| vs [0,t],V(s) € B.}.

and set
Suppose that
TeR, then V() is defined and belongs to Bz

B
the closure of ~R’ because

0B,

BR is closed, in effect to

we also have

d
a”\/”i lr=f(T,V;)<-6<0

V(T)edB

because

R* Thus we deduce that for € >0 and

V(T +e)e By which contradicts the

small enough,

definition of T. Thus | €R and Bz is stable.
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Because f<0 on oBg,V(0) B

that vt>0V(t)eB
V(O)eCB

R implies

R. Finally we consider the case

Suppose that vi>0V () ¢ Bx.

vt>0 —|[\/||

then ’ dt F < _25' thus |N (t)”F

monotonically decreasing and reaches the value of R

V(©) reaches OBg.
assumption.

This
Thus

in finite time when
contradicts our

3T >0|V(T) e B,.

Proposition 1.1 : Let S and U be measured simple

EsM

functions on X. for ' define

HE)=[sdu @O
Then ¢ isa measureon M

jx(s+t)du=jxsdy+jxtdy

Proof : If S and if SHEN
E

(2)

are disjoint members

of M whose union is
H shows that

¢(E):iaiu(/\ mE>=iai§u(A E,)
=33 au(A N E) =D 4(E)

r=1 i=1

Also, P(#) =0, o5 that @ is not identically % .

' the countable additivity of

Next, let S be as before, let Brsees B be the

Bj ={x:t(x) =ﬂj} If

the

distinct values of t,and let
Eij = A M Bj,

Jo, (s+00d = (e + f)u(Ey)

IEH sd s+ IEH tdu = ai,u(Eij ) +:Bj:U(Eij)

and

E.
Thus (2) holds with i in place of X . Since X is
the disjoint union of the sets

E. 1<i<nl<j<m
“( ' ] ), the first half of our

proposition implies that (2) holds.

Theorem 1.1: If K is a compact set in the plane

whose complement is connected, if f is a continuous
complex function on K which is holomorphic in the

if >0

interior of , and i ' then there exists a

f(z)=P(z)|<¢

polynomial P such that | for all

2eK | the interior of Kis empty, then part of the
hypothesis is vacuously satisfied, and the conclusion

holds for every feC(K) . Note that K need to be
connected.

Proof: By Tietze’s theorem, f can be extended to a
continuous function in the plane, with compact
support. We fix one such extension and denote it again

by f . For any 6>0, let o(5) be the supremum of

f(z,)- f(2)

Z2 are

. . Z,—7,|< . .
subject to the condition | 2 1| . Since f is
uniformly continous, we have

limw(5) =0 0

50

the numbers | Where 4 and

From now on, ) will

be fixed. We shall prove that there is a polynomial P
such that

|f(2)-P(2)|<10,000 o(5) (zeK) (2)

By (1), this proves the theorem. Ourl first objective is
the construction of a function CDECC(RZ)’ such that
forall Z

| (2) - D(2) < 0(5), ©)

(eo)2) < 242, @

And

(2 H%dgd =g+, ©

Where X is the set of all points in the support of ()
whose distance from the complement of K does not

o (Thus X contains no point which is “far within”

K .) We construct ® g5 the convolution of f

with a
smoothing function A. Put a(r)=0 if 1> S, put
r2
a(r) = (1— 2 (0<r<y¢), (6
And deflne
A(z) =a(|z)) ()
For all complex Z. It is clear that AEC;(RZ) . W

claim that
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”A=1, 8 Note that of =0 in G , since f is holomorphic
oy there. Now if 2¢G, then Z-¢ is in the interior of
oA =0, 9)
'L K for all 4 with |§| <o The mean value property
o4 2 for harmonic functions therefore gives, by the first
J‘J-|6A|:— —, 20) equation in (11),
5 27 .
w150 0 (@)= a(nyrdr [ f (z-re")do
0 0
The constants are so adjusted in (6) that (8) holds. _ ° _ _
(Compute the integral in polar coordinates), (9) holds 2r (Z)jo a(rjrar f(Z)JF;-!‘A 1@ (15)
simply because A has compact support. To compute
oA | i
(812\) express in polar coordinates, and note that Forall Z € G , we have now proved (3), (4), and (5)
égzO, The definition of X shows that X is compact and
aé/ —_a that X can be covered by finitely many open discs
or 7’
Now define Dy, By of radius 20, whose centers are not in
o(2) = [[ f(z-¢)Adédn = [[Az-O)f (O)dgdn (1) K. since S*~K is connected, the center of each
R? R?
Dj can be joined to °© by a polygonal path in
gince fand A have compact support, so does ®. S* —K ¢ foliows that each I contains a compact
ince
connected set Ej’ of diameter at least 20, so that
d(2)-f(z Z_E. =
(2) (2) S EJ is connected and so that KmEJ 2
= || [f(z-2) - f(@D]A(S)d&dn (12) . 2_E.
‘g with =20 There are functions gng S EJ)
b. . i
And A()=0 if |§| >4, (3) follows from (8). The and constants 1 so that the inequalities.
difference quotients of A converge boundedly to the 50
S o0
corresponding partial derivatives, since AgCC(R ) ‘Qi (§,Z)‘< S (16)
Hence the last expression in (11) may be differentiated 2
under the integral sign, and we obtain Q.(&,2)- 1 |< 4,000 (17)
T~ J ! 2
(60)(2) = [[ @A)z -) T ($)dédn ¢ Je¢]
R? z¢ E. ceb,, .
Hold for ) and ”if
=] f(z=)(0A)(S)d&dn
ﬂ Q;(¢,2)=9,(2)+(¢ ~b))g{(2) (18)
= [[11 (=)~ F@1EANS)dEdn @A) 2 be the complement of =+~ Er+ Ten
R? Q is an open set which contains K. put
The last equality depends on (9). Now (10) and (13) X, =XNDh, and
give (4). If we write (13) with e, and Y in place XJ' =(Xn DJ)_(Xlu'"U XH)’ for
of oD, we see that @ has continuous partial 2<j<n,
Define
derivatives, if we can show that OP =0 jn G,
’ R(S,2)=Q;(<,z eX,2eQ 19
where G is the set of all ZEK whose distance from (€:2) Q' €:2) (& ! ) 19)
the complement of K exceeds 9+ We shall do this by  And
showing that 1
O(2)=f(2) (z6G); (14) F(2)=— j [ (@®)OR(& . ydgdn  (20)
(z £ Q)
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Since,

F@) -2 [[e0))Q € Ddsdn (2

(18) shows that F s a finite linear combination of the

2
functions 21 and 9 Hence F&H (€2). By (20),
(4), and (5) we have

20(0)
|F(z)—<1>(z)|<7jj| R(.2)

——§|d§df7 (& Q) (22)

Observe that the inequalities (16) and (17) are valid
with R in place of nggx d 2 Qyow

zée Q‘, put §=2+pe", and estimate the

fix
integrand in (22) by (16) if p <4, by (17) if

40=p. The integral in (22) is then seen to be less
than the sum of

21 45(@+ ! jpd p=80875 (23)

0 5 p
And

2

2 % pd p =2,00075. (24)

45 p
Hence (22) yields
|F(z) —@(z)| < 6,0000(5) (z Q)
Since FeHQ) KcQ, and §*-K is

connected, Runge’s theorem shows that F can be

uniformly approximated on K by polynomials.
Hence (3) and (25) show that (2) can be satisfied. This
completes the proof.

' 2
Lemma 1.0 : Suppose fgCC(R ), the space of all
continuously differentiable functions in the plane, with
compact support. Put

1(o0 .o
o= L4l 0
2\ ox oy
Then the following “Cauchy formula” holds:

L (@)(E)
f(2)=—;g?d§df7
¢ =¢+in) @

Proof: This may be deduced from Green’s theorem.
However, here is a simple direct proof:

oyt @(r0)="f(z+re’), r>0,0
i & =2+re"

real

' the chain rule gives

1 4l 0 10
o)) ==e"| —+——|o(r,0 3
(@) =3 [ar rae}p( ) ®
The right side of (2) is therefore equal to the limit, as
& —0,
of

1 o por 8(0 I Op
—-= dadr 4
AL (Srishor

For each " >0,¢ is periodic in 0, with period 27

The integral of Opl 00 is therefore 0, and (4)

becomes

= [ do]” Lar — [ ol 00

e—0, p(&,0) > T(2)

As uniformly. This gives
)

a B
f X“ea g X kX, X,] , then

ay B _ a+p
XX =X*"" ea , and so A satisfies the

condition (*) . Conversely,

Qe X)), dXP)=>c,d X7
ap

aehA pel”

(25)ind soif A satisfies (%) , then the subspace generated

a
by the monomials X ,aea’ is an ideal. The

proposition gives a classification of the monomial
K[ XX, ]

n
correspondence with the subsets A of U

ideals in : they are in one to one

satisfying
(*) For example, the monomial ideals in k[X] are

n
exactly the ideals (X )’ nZl, and the zero ideal
(corresponding to the empty set A ). We write

“lae A
< | > for the ideal corresponding to A

a
(subspace generated by the X% aca ).

Let S be a subset of o"
X% aeS

LEMMA 1.1. . The the

ideal @ generated by is the monomial

ideal corresponding to
df
A:{,BGD "|f-ael",

Thus, a monomial is in & if and only if it is divisible

X“ a€S

some a € S}

by one of the
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*
Clearly A satisfies (*) , and

PROOF.
ac(X” e A
< 1B > . Conversely, if ﬁEA, then
n
p-ael for some €S and

B _yay p-a
X7 =X"X €a  The last statement follows

a p _ n
from the fact that X |X Q'B aell . Let

*
Acl” satisfy ( ) From the geometry of Alitis

clear that there is a finite set of elements
S={aa of A such that
Az{ﬂeD "|B—a €l]?, some « GS} (The
a's are the cormers of A ) Moreover,

df

a:<X“ |aeA>
X%, a eS_

is generated by the monomials

DEFINITION 1.0. For a nonzero ideal @ in

K[X 0o X, ]

generated by
(LT()| f ea}

, we let (LT(a» be the ideal

LEMMA 1.2 Let @ be a nonzero ideal in

k[xl""’ Xn]; then (LT(a)) is @ monomial ideal,

(LT(9y).- LT(g,))

and it equals for some

Q- 0y €8

PROOF. Since (LT (2)) can also be described as
the ideal generated by the leading monomials (rather

than the leading terms) of elements of a,

k[{X,,..,X
THEOREM 1.2. Every ideal & in [X, o]

is finitely generated; more precisely, a= (91, "" gs)

where Yoo s are any elements of & whose leading
terms generate LT (a)

PROOF. Let | €2
algorithm, we

f=a0,+..+a,0,+r,

. On applying the division
find

, where either I =0 or no monomial occurring in it

s divisible by any LC'(9) But
r=f _Zaggi €a ’ and therefore
LT(r) eLT () =(LT(9,),...,LT(9,)) , implies

a,rek[X,..X,]

that every monomial occurring in I' is divisible by
one in LT(gi).Thus r=0 and 9 e(gl’---’gs)_

DEFINITION 1.1. A  finite  subset
S:{gl’l""gS} of an ideal @ is a standard
( (Grobner) bases for a if

(LT(gl)"“' LT(gs)) - LT(a). In other words, S

is a standard basis if the leading term of every element
of &is divisible by at least one of the leading terms of

the gi .

THEOREM 1.3 The ring K[Xyi X, ]
Noetherian i.e., every ideal is finitely generated.

is

pROOF. For N=1 KIXT i, principal ideal
domain, which means that every ideal is generated by
single element. We shall prove the theorem by
induction on M . Note that the obvious map
K[X, . X L IX, 1= KX, .. X, ] is an
isomorphism — this simply says that every polynomial

f X,,..X

in N variables N can be expressed

uniquely as a polynomial in X” with coefficients in

K[X ;e X, ]

F (XX ) =30 (Xp o X, )X+t a (Xp, o X, )

Thus the next lemma will complete the proof

LEMMA 1.3. If Ais Noetherian, then so also is
AL X]

PROOF. For a polynomial
f(X)=a,X"+a X" +..+a,

I is called the degree of f , and % is its leading
coefficient. We call 0 the leading coefficient of the

polynomial 0.  Let @ be an ideal in ALXT e
leading coefficients of the polynomials in @ form an

ideal @ in A, and since A is Noetherian, & will
be finitely generated. Let Gur-ver O be elements of &

whose leading coefficients generate & | and let I be

the maximum degree of 9 . Now let fea, and

f =aX®*+...

suppose has degree S>r say

Then 2€a , and so we can write
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a= Zbiai, b eA,
a, =leading coefficient of g,

Now

f —ZbigiXHi, I, = deg(g;), has  degree
<deg(f) . By continuing in this way, we find that
f=f mod(g,,...0,,) f

With t a
polynomial of degree T <T . For each d < Jet &
be the subset of A consisting of 0 and the leading

coefficients of all polynomials in a of degree d; it is

again an ideal in A Let Yapr-- Ga,m, be

polynomials of degree d whose leading coefficients

generate % . Then the same argument as above shows

that any polynomial fd in & of degree d can be

ertten fd = fdfl mOd(gd,l""gd,md) Wlth
foa of degree <d-1 on applying this remark

repeatedly we find that
f, e (gr—l,l’ Oy am, 1---90,11---go,m0)

Hence

fi € (9 ndra1sGr1m o Gorr Gom,)
9

and so the polynomials <1’ Yo.m, generate &

One of the great successes of category theory in
computer science has been the development of a
“unified theory” of the constructions underlying

denotational semantics. In the untyped A -calculus,
any term may appear in the function position of an

application. This means that a model D of the A
calculus must have the property that given a term t
interpretation  is deD, Also, the

interpretation of a functional abstraction like AX X
is most conveniently defined as a function from

DtoD

whose

, which must then be regarded as an element

(ID—>D|—>D .
of D. Let v [ ] be the function that
picks out elements of D to represent elements of

[D - D] and ¢:D _)[D_) D] be the function
that maps elements of D to functions of D. Since

y(f) is intended to represent the function f as an
element of D, it makes sense to require that

Bw()=F g s VOV oo
Furthermore, we often want to view every element of
D as representing some function from D to D and

require that elements representing the same function
be equal — that is

y(p(d))=d
or
yog=id,

The latter condition is called extensionality. These

conditions together imply that gand y are inverses-
-- that is, D is isomorphic to the space of functions
from D to D that can be the interpretations of

D=|D D
functional abstractions: [ - ] .Let us
suppose we are working with the untyped

A—calculus | we need a solution ot the equation
D=A+|D—->D|, .
[ ] where A is  some

predetermined domain containing interpretations for
elements of C. Each element of D corresponds to

D—->D]|,
either an element of A or an element of [ ]
with a tag. This equation can be solved by finding

least fixed points of the function
F(X)= A+[X - X] from domains to domains -
-- that is, finding domains X such that

XzZA+| X > X

[ _) ]’ and such that for any domain
Y also satisfying this equation, there is an embedding
of XtoY ---a pair of maps

f
X ] v
fR
Such that
fRof =id,
foffcid,

Where fc 9 means that fapprOX|matesg in

some ordering representing their information content.
The key shift of perspective from the domain-theoretic
to the more general category-theoretic approach lies in
considering F not as a function on domains, but as a
functor on a category of domains. Instead of a least
fixed point of the function, F.

Definition 1.3: Let K be a category and F:K—>K
as a functor. A fixed point of F is a pair (A,a), where

A is a K-object and a:F(A)—>A is an
isomorphism. A prefixed point of F is a pair (Aa),
where A is a K-object and a is any arrow from F(A) to
A

Definition 1.4 : An @—ChaiN i, 3 category K is a
diagram of the following form:

A=D, _)Dl_)Dz_) .....
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Recall that a cocone 4 of an @~ Chain A
object X and a collection of K

{#4,:D, > X |i>0}

is a K-
—arrows

such that # = Hi0 fi for

HA—> X

all 120 we sometimes write as a

reminder of the arrangement of Ms components

f MIA—> X

Similarly, a colimi is a cocone with the

property that if VviA— X s also a cocone then

there exists a unique mediating arrow ki X —X

1>0,,v,=kog

such that for all . Colimits of

w—Cchains  are  sometimes referred to  as
w—colimits | pyally, an @ —chain jn K is a

diagram of the following form:
fo f1 f2

of an ®@” —chain A is 4 K-object X and a

4,:D;i=0}

collection of K-arrows { such that for

o0 e 0
ar V20 =%0u, A 0® it of an

@™ —chain A is a cone #° X A yith the

property that if V- X = Ajs also a cone, then there

exists a unique mediating arrow ki X —X such

i> A =V.
that for all 120, 0k =v, . We write L (or just

l) for the distinguish initial object of K, when it has

one, and 1= A for the unique arrow from L to

each K-object A. It is also convenient to write
fy f,

A= Dl—)DZ_) """ to denote all of A except

- | >
D° and fo. By analogy, H s { : ||_1}. For the

images of A and H under F we write
F(f) F(f) F(f2)

F(A) = F(D,)—SF(D,)—3F(D,)_s.....
o Fl) ={F()i=0}

We write F' for the i-fold iterated composition of F —
that is,

Fo(f)=f,F'(f)=F(f),F*(f)=F(F(f))
,etc. With these definitions we can state that every

monitonic function on a complete lattice has a least
fixed point:

Lemma 1.4. Let K be a category with initial object
L and let F:K—>K be a functor. Define the
w—chainA by

1>F (L) F(ILL>F (1)) F2(L>F (1)

A=l 3y FL) —» F'(L) >

i both A D g F(1):F(A) > F(D)
colimits, then (D,d) is an intial F-algebra, where
d:F(D)—>D F(u)

is the mediating arrow from

to the cocone #

Theorem 1.4 Let a DAG G given in which each node
is a random variable, and let a discrete conditional
probability distribution of each node given values of
its parents in G be specified. Then the product of these
conditional distributions yields a joint probability
distribution P of the variables, and (G,P) satisfies the
Markov condition.

Proof. Order the nodes according to an ancestral

ordering. Let X1 Xz, " be the resultant

ordering. Next define.

P(Xl’XZ""'Xn) = P(Xn | pan) P(Xn—l | Pan—l)"'
PO [ pa)P(x | pa,),

Where PA‘ is the set of parents of Xi of in G and

P(Xi | pa") is the specified conditional probability
distribution. First we show this does indeed yield a
joint probability distribution. Clearly,

0< P(Xl’ Xz""X")S]' for all values of the variables.
Therefore, to show we have a joint distribution, as the
variables range through all their possible values, is
equal to one. To that end, Specified conditional
distributions are the conditional distributions they
notationally represent in the joint distribution. Finally,
we show the Markov condition is satisfied. To do this,

we need show for 1<K <N ot

P(pa,)=0,if P(nd, | pa,)#0
and P(x |pa,) =0

then P(Xk |ndk’ pak) = P(Xk | pa‘k)i

whenever

. X, ..
K is the set of nondescendents of “ k of in

G. Since PA = ND, ,

P(Xk lndk) - P(Xk | pak) . First for a given k ,
order the nodes so that all and only nondescendents of

Where ND

we need only show

K precede Xy in the ordering. Note that this

ordering depends on K , Whereas the ordering in the
first part of the proof does not. Clearly then

ND, = {Xl,Xz,....XH}
Let
D, = {ka Xk+21""xn}
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2

follows

h
We define the m' cyclotomic field to be the field

h
Q[X]/ (@, (x) Where P () is the M

Q[x]/ (@, (x)) @, (X)
D, (x)

cyclotomic polynomial.

has degree @(m) over Q since has degree

gp(m). The roots of CDm(X) are just the primitive
h

m' roots of unity, so the complex embeddings of
Q [X] H(®,(x) are simply the @(m) maps
o :Q[x]/ (@, (x) - C,
1<k=<m,(k,m)=1 where

o (X)=&,

h

S being our fixed choice of primitive m™ root of

k .
unity. Note that 5’“ < Q(fm) for every K it follows
_ k
that Q(fm) - Q(gm)for all K relatively prime to m.

In particular, the images of the d coincide, so

Q[x]/ (®,,(x)).

is Galois over Q. This means that

we can write Q(fm) for Q[X]/(d)m (x)) without
much fear of ambiguity; we will do so from now on,

the identification being Sm X One advantage of
this is that one can easily talk about cyclotomic fields
being extensions of one another,or intersections or
compositums; all of these things take place

considering them as subfield of C. we now
investigate some basic properties of cyclotomic fields.
The first issue is whether or not they are all distinct; to
determine this, we need to know which roots of unity

lie in Qen) Note, for example, that if Mis odd,
— th

then 5‘” is a 2M" root of unity. We will show that

this is the only way in which one can obtain any non-

th
M roots of unity.

LEMMA 15 If M divides N, then Q(Sn) is

contained in Q(étn)

o —
PROOF. Since & = m"we have om € Q(6n): g4
the result is clear

LEMMA 1.6 If Mand Nare relatively prime, then

Q({:{Cm ’ gn) :Q(é:nm)
Q&) NQ(S5,)=Q

(Recall the Q(ém’cf”) is the compositum of

Q(&,) and Q(&,) )

and

PROOF. One checks easily that fmfn is a primitive
th
MN™ yo0t of unity, so that

Q&) = Q&1 S0)
[Q(&,,¢,):Q]=[Q(&,):Q][Q(S, : Q]

= (m)p(n) = p(mn);

Since [Q(ém”):Q]:(p(mn); this implies that
Q&1 &) =Qm) we rrow that QEnrEn) p

degree go(mn) over Q , SO we must have

[Q&. &) Q(E)] = ()

and

[Q&,. &) Q&)= (M)

[Q(&,):Q(&,) NQ(E)] = o(m)
And thus that Q&) NQ(S,)=Q

PROPOSITION 1.2 For any Mand N

Q& £)=Q(E )
And

Q(&n) NQ(S)=Q(Emm);

m,n m,n
here [ ]and ( )denote the least common
multiple and the greatest common divisor of M and
n, respectively.

2 f f
m=pr.....p¢ and p*....p,*
g or f,

PROOF. Write

where the Piare distinct primes. (We allow
to be zero)
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(S,s)

Py

Q(&,)=Q
and

Q(,)=Q(¢
Thus
QU £)=Q(E ) Q) )-QE, )
=Q(£,)Q(E,4)-Q(,.)QE, )
= Q& oy o QE, i)

(6,.)Q(,.)-Q

plfi )Q(gpzfz )"'Q(gpkfk )

= Q(gplmaX(el‘fl) ........ o %10 )

:Q(ég[m,n]);
An entirely similar computation shows that
Q(&n) NQ(&,) = Q(&mn)
Mutual information measures the information

transferred when X is sent and Y is received, and is
defined as

PCY,)

(Xy)' bits 0

I(Xi1yi):|092

In a noise-free channel, each Y is uniquely connected

X .
to the corresponding "' , and so they constitute an

input —output pair (%, %) for which

Py, )=land I(x,y;)=log, ——
/ P( )bItS that

is, the transferred information is equal to the self-

. . . X:
information that corresponds to the input *' In a very

noisy channel, the output Yi and input Xi would be

PCYy )=P()

completely uncorrelated, and so

and also ( Y ) that is, there is no transference
of information. In general, a given channel will
operate between these two extremes. The mutual
information is defined between the input and the
output of a given channel. An average of the
calculation of the mutual information for all input-
output pairs of a given channel is the average mutual
information:
Xi
P( y,
P(x)

1(X,Y) :ZP(Xil Yl (%,y;) :ZP(Xi’yj)IOgZ

bits per symbol . This calculation is done over the
input and output alphabets. The average mutual

information. The following expressions are useful for
modifying the mutual information expression:

P(x.13,)=PCY, P =P )P(X)
Py =X P4 IP(X)
P4 =3 PO, IP(Y,)

Then

H(X.Y) =2 P(x.Y;)

=Y P(x,y.)log,
o] L]

3P, y,)log, | ———
1] P(Xi y)

P(x,y,)log,
Z (%, y;)log {P( J

=Z{P(%)P(y,—)}logzﬁ

ZP(X)IOQZ P(x )—H(X)

1(X,Y) = H(X)-H(*()
HXG) =2, PO, y,)log, ———

P(" )
Where
is usually called the equivocation. In a sense, the
equivocation can be seen as the information lost in the
noisy channel, and is a function of the backward
conditional probability. The observation of an output

. H(X)-HX
symbol i provides X) (A) bits of

information. This difference is the mutual information
of the channel. Mutual Information: Properties Since

P4 POy, =P PG

The mutual information fits the condition

1(X,Y)=1(Y, X)
And by interchanging input and output it is also true
that

1(X,Y)=HY)-H(4)

Where

HO) = 2P, log, o
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This last entropy is usually called the noise entropy.
Thus, the information transferred through the channel
is the difference between the output entropy and the
noise entropy. Alternatively, it can be said that the
channel mutual information is the difference between
the number of bits needed for determining a given
input symbol before knowing the corresponding
output symbol, and the number of bits needed for
determining a given input symbol after knowing the
corresponding output symbol

1(X,Y) =H(X)-H ()

As the channel mutual information expression is a
difference between two quantities, it seems that this
parameter can adopt negative values. However, and is

SH(X Ty,
spite of the fact that for some i ( yJ)

larger than H(X) , this is not possible for the
average value calculated over all the outputs:

PCYy)

P(x)

can be

P(x,Y;)

ZP(XpyJ)IOgZ P(X.vy])l()gz
ij ij

Then
) = TPy, e 2 <0

Because this expression is of the form
M Q

2 PRlog,(=)<0

=) R

The above expression can be applied due to the factor

P(x)P(y;),

two

probabilities, so that it behaves as the quantity Qi :
which in this expression is a dummy variable that fits

which is the product of

Q<1

the condition Z' Q . It can be concluded that the
average mutual information is a non-negative number.
It can also be equal to zero, when the input and the
output are independent of each other. A related
entropy called the joint entropy is defined as

H(X,Y)=) P(x,y;)log, ————

ZJ VTP Y)

PO)P(Y;)

=3"P(x,y;)log,
Z,: (%, y;)log PX.Y)

+Z P(Xivyj)Ingm

Theorem 1.5: Entropies of the binary erasure channel
(BEC) The BEC is defined with an alphabet of two
inputs and three outputs, with symbol probabilities.

P(x)=«a and P(x,)=1-a,

probabilities

and transition

P(x)P(y;)

P(%):l—p and P(¥2})=0,
Y3/

and P( X1) 0

and P(ylxz)zp

and P(y3 )=1-p
2

Lemma 1.7. Given an arbitrary restricted time-
discrete, amplitude-continuous  channel  whose

restrictions are determined by sets F” and whose
density functions exhibit no dependence on the state S,

let N be a fixed positive integer, and P(x) an
arbitrary probability density function on Euclidean n-

space. p(y | X) for the
Po (Yisee Yo [ X0,0%) and F for F, . For any
real number a, let

Az{(x, y): IogM>a} @
p(y)

Then for each positive integer U | there is a code
(u,n, 4)

density

such that
A<ue+P{(X,Y)g Al+P{X ¢ F}
Where
P{X.Y)e Al =] .[pOxy)dxdy,  p(xy)=p()p(y]X)
and

P{Xe F}:L...I p(x)dx

@
Proof: A sequence X~ € F such that
P{YeA, [X=x"}>1-¢
X

where A, ={y:(x,y)eA};

. B .
Choose the decoding set to be " x” . Having
() (k-1)
chosen X rreeree X and Bl""’Bk—l, select
k
X" € F sych that

k-1

P{Y eAw-JB1X =x<‘<>}21—g;

i=1

k-1
B.=A., -l ) . B
Set ¥ x© U':l ", If the process does not
terminate in a finite number of steps, then the

M : =12,
sequences X'~ and decoding sets B,1=12..u,
form the desired code. Thus assume that the process

terminates after steps. (Conceivably t=0 ). We
will  show t2U  py  showing  that
e<te®+P{(X,Y)z Al+P{X ¢ F}

proceed as follows.

We
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Let
B={J B, (If t=0, take B=g). Then
P{(X,Y)eA}= j p(x, y)dx dy
(x,y)eA

=[p() [ p(y|x)dydx

X yeA,
=[p0) [ plylx)dydx+ j p(x)

X yeBnA,
Algorithms

Let A be a ring. Recall that an ideal a in A is a subset
such that a is subgroup of A regarded as a group under
addition;

acea,reA=rachA

The ideal generated by a subset S of A is the
intersection of all ideals A containing a ----- it is easy
to verify that this is in fact an ideal, and that it consist

r.S.
of all finite sums of the form z" with

reAs eS

. When } we shall

write (Sl’ """ ’Sm)forthe ideal it generates.
Let a and b be ideals in A. The set

{a+b|a€a’b6b} is an ideal, denoted by a+b

The ideal generated by {ab lacabe b} is
denoted by 80 . Note that a0 =a@Mb  clearly ab

ab .
consists of all finite sums Z "I with g ea and
b eb Cand if a=(a,..a,) 4 0b=0,..b)

then ab @D, ;... 8,0;) Let & be an
ideal of A. The set of cosets of in A forms a ring
Ala = ang ar>a+a js a homomorphism

$: A Ala b ¢(b)

one correspondence between the ideals of Ala gng
the ideals of A containing @ An ideal P if prime if
p;'&Aand abep=aep or be p. Thus P is

. The map is a one to

prime if and only if Alp is nonzero and has the

ab=0, b0=a=0,

property that i.e.,

Alp is an integral domain. An ideal M js maximal

if m¢|A and there does not exist an ideal N

contained strictly between M and A . Thus M is

maximal if and only if Al M has no proper nonzero
ideals, and so is a field. Note that M maximal = M

prime. The ideals of AxB are all of the form aXb,
with & and P ideals in A and B . To see this, note
that if C is an ideal in AXB and (a,b) EC, then
(a,0)=(a,b)(1,0) ec and
(0.b)=(@Db)OD €C 1pis shows that € =axb
with

={a|(a,b)ec some beb}
and

={b|(a,b)ec some aca}

Let A bea ring. An A-algebra is a ring B together

homomorphism lp:A—>B A

with a
homomorphism  of A -algebra B—>C i a
homomorphism of rings ¢:B—>C such that

¢(Ia(a)) =1c(a) forall 8€ A An A-algebra B
is said to be finitely generated ( or of finite-type over

A) if there exist elements Xy X €B such that

every element of B can be expressed as a polynomial

in the %; with coefficients in I(A) , 1.e., such that the
A[Xl,...,X ]—> B

homomorphism n sending " to

X, is surjective. A ring homomorphism A—>B js
finite, and B is finitely generated as an A-module.
Let K be a field, and let Abe a k -algebra. If 1=0
in A then the map K —> A is injective, we can

identify k with its image, i.e., we can regard k as a
subring of A If1=0ina ring R, the R is the zero ring,

R=10
ie., { } Polynomial rings. Let k be a field. A

X,
monomial in

a a
XX

" is an expression of the form

a, eN
! . The total degree of the

. a; . L
monomial is Z ', We sometimes abbreviate it by

X" a=(a,..,a,)el"
k[Xl,...,

. The elements of the
X, ]

polynomial ring are finite sums
ZC X C, .o €K, a;€l

With the obvious notions of equality, addition and
multiplication. Thus the monomials from basis for

K[Xy,.oe X, ]

KIX,,...X_ 1. . .
[ 1 "] is an integral domain, and the only
units in it are the nonzero constant polynomials. A

as a k -vector space. The ring

polynomial F(Xpa X0) is irreducible if it is
nonconstant and has only the obvious factorizations,
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ie., f=gh=g or N
k[X]

is constant. Division in

. The division algorithm allows us to divide a

nonzero polynomial into another: let f and 9 be

polynomials in k[X] with 9 #0; then there exist

q,r ek[X]

unique  polynomials such  that

F=09+T yith cither T =0 or deg I' < deg 9.
Moreover, there is an algorithm for deciding whether

fe (g) namely, find I and check whether it is zero.

Moreover, the Euclidean algorithm allows to pass

. kX

from finite set of generators for an ideal in [ ] toa
single generator by successively replacing each pair of
generators with their greatest common divisor.

(Pure) lexicographic ordering (lex). Here monomials
are ordered by lexicographic(dictionary) order. More

precisely, let a=(a,.a,) and p=(0,..b) be

two elements of - n; then & >p and X“>X”’
(lexicographic ordering) if, in the vector difference

a-fel , the left most nonzero entry is positive.
For example,
2 354. 3yv274 3y 2
XY2>Y3Z% XNY?Z'>XN’Z e that
this isn’t quite how the dictionary would order them: it

would put XXXYYZZZZ after XXXYYZ | Graded

reverse lexicographic  order (grevlex). Here
monomials are ordered by total degree, with ties
broken by reverse lexicographic ordering. Thus,

a>pf Zai >Zb| Cor zai :Zb' and in

a=p the right most nonzero entry is negative. For
example:

X4z’ > x°y°z* (total degree greater)
XY®Z? > X*YZ%,  XNZ>X*NZ?

k[Xl,...Xn] . Fix an ordering on the

monomials in K [Xl""xn]

KX, X | . . .
element f of [ ! “] in a canonical fashion,
by re-ordering its elements in decreasing order. For
example, we would write

f =4XY?Z +422 -5X°+7X?Z?

as

f=-5X°+7X°Z2 +4XY’Z +4Z° (lex)
or

f =4XY?Z +7X?Z% -5X°*+4Z% (grevlex)

Orderings on

. Then we can write an

Let za“x < k[xl""’ X”] , in decreasing order:

f=a, X®+, X%+..,

Then we define.

e The multidegree of f to be multdeg( f )=

a,.

f

e The leading coefficient of ~ to be LC( f )=

aao .

e  The leading monomial of f to be LM( f )=

X%
e The leading term of f to be LT( f ) =
a, X
— 2
For the polynomial f=4XYZ+.., the

multidegree is (1,2,1), the leading coefficient is 4, the

leading monomial is XY?*z , and the leading term is

AXY2Z . The division algorithm in k[Xl,...Xn]-
2

Fix a monomial ordering in 0o° Suppose given a

polynomial and an ordered set (91,--95) of
polynomials; the division algorithm then constructs

polynomials a8
f=a0+..+a,0,+r

and T such  that

Where either T =0 orno
monomial in I is divisible by any of

LT (G, o LT(8) giep 1. ¢ LT@)ILT(F),

divide % into f to get
LT(f)
f =ag,+h, = K[X,,.0 X,
a0, &= gy & KXa Xl
If LT(g1)|LT(h) , repeat the process until

F=a0+ 1 Giferent &) with U7 (F) oy

divisible by =1 (9)  Now divide 92 into 11, and

f=a0,+..+a,0,+n, With

not divisible by any LT(gl)"“LT(gs)

Step 2: Rewrite h=LT(n)+ r2, and repeat Step 1

with 2 for f : f=ag,+.+a0,+LT(R)+r,

so on, until

LT(r)

(different g 'S ) Monomial ideals. In general, an
ideal @ will contain a polynomial without containing
the individual terms of the polynomial; for example,

2 3
the ideal a=(Y"-X%) contains Y2—>(3but not
YZor X2,
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DEFINITION 1.5. An ideal @ is monomial if
DY, X“ea=X"ea

all & with G« # 0

PROPOSITION 1.3. Let @be a monomial ideal, and
A= {a | X% e a}

let Then A satisfies the
condition ach pel"=a+pfe ()
And @ is the K -subspace of k[xl""’ X”]

X% aeA

generated by the . Conversely, of A isa

%
subset of U " satisfying ( ) then the k-subspace @
X%|aeA
of k[xl’ X | }is a

monomial ideal.

“] generated by {

PROOF. It is clear from its definition that a
monomial ideal & s the k -subspace of
K[ X X, ]

generated by the set of monomials it contains. If
B
X% ea 4ng X ek[Xl,..., Xn] .

If a permutation is chosen uniformly and at random

from the N! possible permutations in Sn» then the

(n)

counts 1 of cycles of length ] are dependent

random variables. The joint distribution of
m _ (n)

Cr =" C") follows from Cauchy’s

formula, and is given by
P[C™ =c]= l' N(n,c) :1{2 jc; = n}l_[(l_)cj 1
n! f

= R Y

n
forC€D+.

Lemmal.7 For nonnegative integers
m, My,

E(ﬁ(cj(m)[m,ljz[ﬁujm, Jl{ijmj sn} (1.4)

Proof. This can be established directly by exploiting

[m;] !
. c.''/c.=1/(c.—m)!
cancellation of the form ! J ( J 1)

c=>2m, . : ;
when ! 1" which occurs between the ingredients
in Cauchy’s formula and the falling factorials in the

. m=)> jm . .
moments. Write ZJ 1. Then, with the first

c=(c,..c,) e’

sum indexed by + and the last sum

indexed by d=(d,....d)) el via the

d. )
correspondence ! )

e[ [1epr |- oeo -a[Te)
j=1 c j=1

17 we have

Il
o
L2
v
3
g
=R
=
——
-
—
0
Il
>
—
—-
—~
o
o [—
~
3

=3
3=

This last sum simplifies to the indicator Im<n),

n—-m>0

corresponding to the fact that if ' then

d =0 i>n— oo
) for J>n-=m, and a random permutation in

d

S“*m must have some cycle structure (dl""’ n*m)_
(n)
The moments of ) follow immediately as

ECM) = jr1{jr<n} 1.2)

We note for future reference that (1.4) can also be
written in the form

E[ﬁ(C}”))[m’]J= E[ﬁZEMJl{Zn: jm; < n},

=1 =1

@3

Z
}are independent Poisson-distribution
E(Z j) =1/j

Where the

random variables that satisfy

The marginal distribution of cycle counts provides a

formula for the joint distribution of the cycle counts
n

C C’

jrtl'1)/ve find the distribution of ! wusing a
combinatorial approach combined with the inclusion-
exclusion formula.

Lemma 1.8. For 1< J=n,
<k [n/jl-k

Pl k-1 oyl e

Proof. ~ Consider the set I of all possible cycles of

length J» formed with elements chosen from
{12,..n} Ly

. For each ael,

so that |I|=n

consider the “property” G“ of having % that is,

G“ is the set of permutations e S" such that & is
one of the cycles of 7- We then have

|G“|:(n_ DY since the elements of {1’2""’n}

not in & must be permuted among themselves. To
use the inclusion-exclusion formula we need to

calculate the term Sf' which is the sum of the
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probabilities of the I -fold intersection of properties,
summing over all sets of I distinct properties. There
are two cases to consider. If the I' properties are
indexed by I cycles having no elements in common,

then the intersection specifies how " elements are
moved by the permutation, and there are

—_ri)! i< . . . .
(n rJ)l(rJ - n) permutations in the intersection.

I ir
There are n“]/(] r) such intersections. For the
other case, some two distinct properties name some
element in common, so no permutation can have both
these properties, and the I -fold intersection is empty.
Thus

S, =(n—r))!(rj <n)

[ri]

n . 1

x———=1(rj <n)-
j'rin! jr!

Finally, the inclusion-exclusion series for the number

of permutations having exactly k properties is

(- (k+lj N

10
Which simplifies to (1.1) Returning to the original hat-
check problem, we substitute j=1 in (1.1) to obtain the
distribution of the number of fixed points of a random
k=01..,n

permutation. For

PIC =Kl = > (D)

(n

(1.2)

and the moments of
j=1.

follow from (1.2) with

. >
In particular, for nz2, the mean and
(n)

variance of ~1 are both equal to 1. The joint

(n) (n)
distribution of €7 G) for any 1<b<n
has an expression similar to (1.7); this too can be

derived by inclusion-exclusion. For any
C=(CppnGy) €Y o M= D iC,
P[(Cl(”) yeeny Cé")) =c]

b Gi

1 1 +..t+ 1

= H(—j - > Dt IbH(T) -

i\ G| i>0witn 2\ !

> ili<n-m

The joint moments of the first b counts
cm ()
ARSI O

can be obtained directly from (1.2) and

(1.3) by setting Myy =..=M, = 0

The limit distribution of cycle counts

It follows immediately from Lemma 1.2 that for each

fixed Js as n— o,
ik
P[C™ =k] >3—e ¥, k=0,12,..,
) k!
Q0
So that ! converges in distribution to a random
variable ! having a Poisson distribution with mean

- (n)
U} we use the notation e
Z;UR,1/]) to describe this.

random variables are independent.

where

Infact, the limit

Theorem 1.6 The process of cycle counts converges

in distribution to a Poisson process of U with
i-1

intensity J . That is, as N — <o,

(CM,c..) -, (Z2,2,,.) (1.1)
Z.,j=12,..

Where the prl=he are independent Poisson-

1

E(Zj) ==

distributed random variables with J
Proof. To establish the converges in distribution one

shows that for each fixed b>1, as n— oo,

P[(C™,...,.C")=c] - P[(Z,,....Z,) =C]
Error rates
The proof of Theorem says nothing about the rate of

convergence. Elementary analysis can be used to
estimate this rate when =1 Using properties of

alternating series with decreasing terms, for
k=0,..,n
1 1 1
= —~ <|P[C” =k]-P[Z, =k
k!((n—k+1)! (n—k+2)!) ‘[1 1=Plz, ]‘
1
[
ki(n—k+1)!
1.3)
It follows that
2n+1 n n)_ 2n+l -1
Dine2 ;‘P[C k]-P[Z, _k]\ D) (1.11)
Since
-1
P[Z,>n]= € @+ ! + 1 +.)< ! ,
(n+1! n+2 (n+2)(n+3) (n+1!

We see from (1.11) that the total variation distance
n) (n)
between the distribution 1) of "1 and the

distribution L(Zl) of z
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P[AC™)]

conditions (A)) and (801) where

A}(c(n))_ ﬂ ﬂ {C(") - }

I<isn f41<j<r

Establish the asymptotics of under

g G =0 16)=1=0G"°)  iow,
some g >0. We start with the expression
p[A (C)] = PHom(2) =1]
I:)I.—I-Om (Z) = n]
0
I {1—_—(1+ Eio)} (1.1)

1<i<n Iri
r+H< j<r,

P[T,,(Z) =n]
:ﬁexp{Z[log(lﬂ‘led) ‘%’d]}
{1+ oy, (n))} (1.2)

and

P[T,,(Z) =n]

- %exp{Z[log(ﬁ i~d) - ilé?d]}

{1+O(n‘1¢{1‘2’7}(n))} @.3)

(N
Where (0{1,2,7}( ) refers to the quantity derived from

' (n) -6(1-d)
Z It thus follows that PLA,(C™)]L Kn

for a constant K, depending on Z and the f and
computable explicitly from (1.1) — (1.3), if Conditions

(A) and (By,) are satisfied and if - :O(rgl)

from some g > 0, since, under these circumstances,
-1 -1
n n n n
both (/){1'2'7}( ) and ¢{1'2'7}( ) tend to zero

as M=% n particular, for polynomials and square
free polynomials, the relative error in this asymptotic

10 >1

approximation is of order n

For 0<b<n/8 gnq n=n, with 1
dry (L(C[L,b]), L(Z[L,b]))

<d,, (L((El[l, b]), L(i[l, b]))
<&, (nb),

£, (n.) =0(b/ 1)

Where under Conditions

(A).(BY) and (By,) Since, by the Conditioning
Relation,

0 0
L(C[Lb]| e, (C) =1) = L(Z[L,0]| To, (Z) =1),
It follows by direct calculation that

dyy (L(CILB]), L(Z[1, b]))
=d,, (L(T,, (C)), L(T,, (2)))
—maxz PI_TOb(Z) = r]

r]} (1.4)

{1_ P[Ty,(2)=n~
I:)I.-I-On (Z) = n]

Suppressing the argument Z from now on, we thus

obtain

d,, (L(CILb]), LZ[Lb]))
_ _ 1)1 Pl =n-r]
_Z P[Tob - I’] {1 P[TOn _ n] }+

r>0
[n/2] P[T — r]
<Y P[T,=r]+Y ——®— "
r>zn/:2 o ;): P[TOb = n]

X{i P[Ty, =sI(P[T,, =n—s]-P[T,, =

n—r]}

[n/2]

< Z P[Ty, =r]+ Z P[Ty, =r]

r>n/2
2l P n—-s]-P[T,=n-r
% Z Pl_—r()b { [Tbn ] [Tbn ]}
PD—On = n]
[n/2]
+Z PTy, =] Z P[T =s]P[T,, =n-s]/P[T,, =n]
s=[n/2]+1
-1 .
The first sum is at most 2n ETOb’the third is bound
by
<max PITy, =S/ P[T,, = 1]
10 5(1)) (n / 2 b) 3n
B n 6P,[0,1]’
3n 72 [n/2] [n/2]
QPH[O,].] 108 (n)z PI.Tob - r]z PI.Tob - s] ‘r S‘
<12¢{*10_8}(n) ETo,

- 6RO n

Hence we may take
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66105 (N)

ol 10,8}

&7/ (n,0) =2n"ET,, (Z) 1+m
6

+m8{10'5(1)} (n/Z,b) (15)
oLV

Required order under Conditions (A))'(Dl) and
(Bw), it S(0) <o ¢ not, ¢{1°‘8}(n) can be

. n
replaced by ¢{1°'11}( )in the above, which has the
required order, without the restriction on the h
implied by S(OO)<°O. Examining the Conditions

(A). (D)) and (Bu), it is perhaps surprising to find
that (By) is required instead of just (Boy): that is,

le, =0 )

that we should need lez to hold for

> . L .
some & 1. A first observation is that a similar

problem arises with the rate of decay of €1t as well.
0

For this reason, M is replaced by N1 This makes it
possible to replace condition (A) by the weaker pair
of conditions (AO) and (Dl) in the eventual

€77y (n,b)

. i -1y
' the decay rate requirement of order !

assumptions needed for to be of order

O(b/n)

is shifted from &in itself to its first difference. This is
needed to obtain the right approximation error for the
random mappings example. However, since all the
classical applications make far more stringent

enl=2

assumptions about the ' than are made in

(Bﬂ) The critical point of the proof is seen where
the  initial  estimate of the  difference

PLTy" =s]-PITy” =s+1]

Eao10) (N,

The factor

which should be small, contains a far tail
0

] *
element from M1 of the form ¢ (n)+u;(n), which

is only small if 3 >1, being otherwise of order
1-a,+6
O(n ) for any 6>0, since % >1

is in any
> . . .
case assumed. For s=n/2, this gives rise to a
-1-a+o
contribution of order O(n ) in the estimate of

the difference P[Ty, =s]—PITy, =s+1], which,
in the remainder of the proof, is translated into a

-1-a,+6
contribution of order O(tn ' )for differences of
P[Tbn = S]_ I:)[Tbn =3 +1]!

-4 +0
leading to a contribution of order bn™" for any

&--.(n,b).
6>0 jn {7'7}( ) Some improvement would
seem to be possible, defining the function 9 by

w) =1 -1 ,

g(w) tw=s} w=s+t}* (ifferences that are of the
form P[Ty, =S8]=P[Ty, =s+1] can be directly
estimated, at a cost of only a single contribution of the

the  form finally

] *
form 4 (n)+u1 (). Then, iterating the cycle, in
which one estimate of a difference in point
probabilities is improved to an estimate of smaller
order, a bound of the form

[P[T,, =s]-PIT,, =s+t] =O(nt+n ")
for any 5 >0 could perhaps be attained, leading to a
final error estimate in order O(bn™ +n**
any 0 >0 1o replace €2 (N.D)

the ideal order O(b/n) for large enough
would still be coarser for small b-

) for

" This would be of
b, but

with Pand N as in the previous section, we wish to
show that

d., (L(C[Lb]), L(Z[1,b])) —%(n +1) 71— 6|E [Ty, — ETy|

<4 (n.b),

_ Al —Bo+S
Where 5{7_8}(n,b) O(n~b[n~b+n D or
any 6 >0 ynder Conditions (A). (D) and (By),

with B . The proof uses sharper estimates. As before,
we begin with the formula

dr, (L(CILb]), L(Z[Lb]))

-gprr%—r]{l =0 }

Now we observe that
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PN, =n-r1| _K¥PM,=r1| ¥ pp,, = r]{z p[T,, =51 8=NE=0) 9)}
P — 1-— n — ob ob
; [TOb r]{ P[TOn = n] }+ ; I:)[TOn = n] /2] =0 n+l
i <N H1-6|(ETy,P[Ty, >N/ 2]+ E(Ty,1{Ty, > 1/ 2}))
X Z P[T,, =SI(P[T,, =n—s]-P[T,, =n—r])| <4-6|n°ET; (1.4)
s=[n/2]+1

<4n”ETS +(max P[T,, =s])/P[T,, =n
® (”/2<55“ [T, =5/ PLTo, =n] Combining the contributions of (1.2) —(1.3), we thus
+P[T,, >n/ 2] find tha

£ 1052 (N1 2,D) | duy (L(CILb]), L(Z[Lb)

<8n” EToi FERETIE 1.1)
olYs —(n +1)-1Z P[T,, = r]{z P[Ty, =sl(s—r)1- g)} ‘
We have rz0 =0
< b

oy PLTov =1 {7-8; (n,b)
| z " =0l :M{Qlo_s(z)}(n/2,b)+2n’1ET {10.14) (n, b)}

r=0 [0,

. = 2 — R S
{Z PlToy = S)(PIToy =n=s]=P[T,, =n -~ r]} e {“31 T YR } -
s=0 .

(22l s—r)(1-6 n
_{ P[Ty, = ]wp[‘rm = n]} ) | The quantity 8{7'8}( 'b) is seen to be of the order
s=0
claimed under Conditions (Ab)'(Dl) and (812)’

Z Z provided that S(0) <; this  supplementary
P[Ty, =r1> P[Ty, =sljs—r * (n
n PU—On =n& " S " | | condition can be removed if %0'8}( ) is replaced by
- . ¥ n n
* {8{10.14}(n’ b)+2(r v s)f1-0|n 1{K09+4¢{1o.a}(n)}¢}1°-“}( ) in the definition of €1 (:D) , has the
6 b required order without the restriction on the f implied
N ET0b5{10.14} (n,b) . S(0) <0, .
onk,[0,1] by assuming that " Finally, a direct
_ . calculation now shows that
+4[1-0|nETS { Ko + 4 ()]
3 Z P[Ty, =] {Z P[Ty, =sl(s—r)1- 9)}
(———) }, (L.2)
6nP,[0,1]

= §|1—0| E |T0b - ET0b|

The approximation in (1.2) is further simplified by

noting that Example 1.0. Consider the point
_ n
[%2:] P[T, =] ["Z/?‘:] P[T.. =] (s-nN@-9) 0=00,...,00el" £y an arbitrary vector T, the
0b o n+1 . coordinates of the point X=0O+T are equal to the
respective coordinates of the vector
1-6 rox=(x,..x" . r=0,..,x")
Zpﬂ' ](S r)( ) | AT and =~ \" o . The vector r
o0 n+1 . such as in the example is called the position vector or
2] the radius vector of the point X (Or, in greater detail:
(s—r)[1-0| ] ) s !
< z P[Ty, =11 z P[Ty, = ]7l I' is the radius-vector of X w.r.t an origin O). Points
{n/2] are frequently specified by their radius-vectors. This
<[1-6In"E(To,1{Ty, > n/2}) <2[1-6|n°ETy, (1.3presupposes the choice of O as the “standard origin”.

. . n
Let us summarize. We have considered [/ and

. interpreted its elements in two ways: as points and as
and then by observing that
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vectors. Hence we may say that we leading with the

two copies of | "+ 0 "= fpoi 0"=

pies o = {points}, = {vectors}
Operations with vectors: multiplication by a number,

addition. Operations with points and vectors: adding a

vector to a point (giving a point), subtracting two

points (giving a vector). 0" treated in this way is
called an n-dimensional affine space. (An “abstract”
affine space is a pair of sets , the set of points and the
set of vectors so that the operations as above are
defined axiomatically). Notice that vectors in an affine
space are also known as “free vectors”. Intuitively,
they are not fixed at points and “float freely” in space.

n . .
From " considered as an affine space we can

precede in two opposite directions: 0" as an

Euclidean space < [ " as an affine space = [ "as
a manifold.Going to the left means introducing some
extra structure which will make the geometry richer.
Going to the right means forgetting about part of the
affine structure; going further in this direction will
lead us to the so-called “smooth (or differentiable)
manifolds”. The theory of differential forms does not
require any extra geometry. So our natural direction is
to the right. The Euclidean structure, however, is
useful for examples and applications. So let us say a
few words about it:

Remark 1.0. Euclidean geometry. m 0"

considered as an affine space we can already do a
good deal of geometry. For example, we can consider
lines and planes, and quadric surfaces like an ellipsoid.
However, we cannot discuss such things as “lengths”,
“angles” or “areas” and “volumes”. To be able to do
so, we have to introduce some more definitions,

making 0" a Euclidean space. Namely, we define the
(Al n
length of a vector a=(,..a’) to be

la]:= /(@) +...+(@")? )
After that we can also define distances between points
as follows:

d(A B) ::\KEE\ )

One can check that the distance so defined possesses
natural properties that we expect: is it always non-
negative and equals zero only for coinciding points;
the distance from A to B is the same as that from B to
A (symmetry); also, for three points, A, B and C, we

have d(AB)<d(AC)+d(C,B) (the “triangle

inequality”). To define angles, we first introduce the
scalar product of two vectors
©)

(a,b):=a'b" +...+a"p"
Thus |a|: V(2,3) . The scalar product is also

denote by dot: ab=(ab) , and hence is often
referred to as the “dot product” . Now, for nonzero

vectors, we define the angle between them by the

equality
(a,b)
TNIT (4)
|8l bl

The angle itself is defined up to an integral

CoOSsa =

multiple of 27 For this definition to be consistent
we have to ensure that the r.h.s. of (4) does not exceed
1 by the absolute value. This follows from the
inequality
2 2
(a,b)? £|a| |b| (5)

known as the Cauchy-Bunyakovsky-Schwarz
inequality (various combinations of these three names

are applied in different books). One of the ways of
proving (5) is to consider the scalar square of the

linear combination a+th, where teR As

(@+th,a+tb)>0 is a quadratic polynomial in t
which is never negative, its discriminant must be less
or equal zero. Writing this explicitly yields (5). The
triangle inequality for distances also follows from the
inequality (5).

f(x)=x

Example 1.1. Consider the function

(the i-th coordinate). The linear function dx’ (the
differential of X' ) applied to an arbitrary vector h s

i
simply h .From these examples follows that we can

df

rewrite as

df =ﬂdx1+...+indx",
OX

1

W @
which is the standard form. Once again: the partial
derivatives in (1) are just the coefficients (depending

dx*, dx?,.

on X); ** are linear functions giving on an

hll h21---;

arbitrary  vector h its coordinates

respectively. Hence

of

Pl

df (X)(h) = Oy (y =

of
+
ox"

h", (2

Theorem 1.7.
t — x(t)

Suppose we have a parametrized

X, €l" t,

curve passing through at t=

and with the velocity vector X(t(’) -v Then

W(to) =9, f (%) =df (x,)(v) @
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Indeed, consider a small increment of the
tit, >t +At
parameter

other hand, we

(% +h) = f (xo) = df ()M + B[N

arbitrary vector h , Where p(h) =0 when h—0 .

Proof.

 Where At—=>0_0on the
have

Combining it together, for the increment of F(x()
we obtain

f(x(t, +At)— f(X,)

= df (X, )(v.At + ar(At)At)
+B(0.At+ a(At)At).[uAt + a(At)At|
= df (x,)().At + ¥ (At)At

For a certain )/(At) such that y(At)—)O when

At —0 (we used the linearity of df (%) ). By the
definition, this means that the derivative of f(x(t))

at t=% is exactly df (XO)(U) . The statement of the
theorem can be expressed by a simple formula:

HOO)_ A A
dt OX ox"

To calculate the value Of df at a point %o onagiven
vector U one can take an arbitrary curve passing

Through %o at b with U as the velocity vector at b

and calculate the usual derivative of f(x(t)) at
t:tO

Theorem 1.8. For functions f,g:U—0 ,
Uct”®,
d(f+g)=df +dg @
d(fg)=df.g+ f.dg (2

Proof. Consider an arbitrary point %o and an arbitrary

vector U stretching from it. Let a curve x(t) be such
that X(t) =% and X(t) = v
Hence

d(f +9)(x)(v) = %( f(x(1) +9(x(1))

at t=1 and

d(fg)(x,)(v) = % (f(x®)g(x(1))

at t=t Formulae (1) and (2) then immediately
follow from the corresponding formulae for the usual
derivative Now, almost without change the theory

generalizes to functions taking values in 0™ instead
of U . The only difference is that now the differential
of a map F:U—>0O" at a point X will be a linear
function taking vectors in 0" to vectors in 0"

n
(instead of O ) . For an arbitrary vector helO7,

F(x+h)=F(x)+dF(x)(h)
SO

Where ,B(h)—)O when
dF = (dF?,...,dF™)

©)

h—0 e have

and
sza—Fldler...Jra—Fndx”
OX OX
F o
ot ox | oxt
= . (4)
oF™ oF™ || dx"
oxt T ox"

In this matrix notation we have to write vectors as
vector-columns.

Theorem 1.9. For an arbitrary parametrized curve
X(t) in Dn

F:U->0O" (where Ucl n) maps the velocity

, the differential of a map

vector X(t) to the wvelocity vector of the curve
Fx(@®) ;, 0™

w — dF (x®)(X(1)) ®

Proof. By the definition of the velocity vector,

X(t + At) = X(t) + X(t).At + a(At) At (2)
Where a(At) >0 when At—0 By the
definition of the differential,

F(x+h)= F(x)+dF(x)(h)+,[>’(h)|h (3)|

Where p(h)—0 when N —> 0 \we obtain
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F(X(t + At)) = F (X + X(t).At + 2 (At)At)

h

= F(x) +dF (X)(X(t) At + o (At)At) +

B(X()At + a(At)At).

MQAPHAADA4
= F(x)+dF (X)(X(t) At + y(At) At

For some y(At) >0 when At =0 This precisely
dF (x) x(t)

means that is the velocity vector of

F(X). As every vector attached to a point can be
viewed as the velocity vector of some curve passing
through this point, this theorem gives a clear

geometric picture of dF asa linear map on vectors.

Theorem 1.10 Suppose we have
F:U-—>V and G:Vv —>W,

UcO"VclO"WcDP

two maps

where

(open domains). Let

FiXt=>Y=F(X) Then the differential of the
composite map GoF :U ->W s the composition
of the differentials of F and G

d(GoF)(x) =dG(y)odF(x) 4)

Proof. We can use the description of the

differential .Consider a curve X(t) in [ " with the

velocity vector X . Basically, we need to know to

which vector in U ® it is taken by d(GOF)  the

curve (GOF)(x(t) =G(F (x(1))

theorem, it equals the image under dG of the

. By the same

Anycast Flow vector to the curve F(X(t)) in 0™
Applying the theorem once again, we see that the

velocity vector to the curve F(x(1) is the image
under X(t)
d(GoF)(x) = dG(dF (x)) for an arbitrary vector

X .

dF  of

the  vector Hence

Corollary 1.0.  If we denote coordinates in 0" by

1 n m 1 m
(X', X") andin U by (Y, y ),and write

dF = —dx" +...+ —dx" 1
ox' ox" @
dG:a—Gldy1+...+aGn dy", (2)
oy oy
Then the chain rule can be expressed as follows:
oG oG
d(GoF):—dF1+...+—mdFm, 3
o' oy

Where dF’ are taken from (1). In other words, to get

d(GoF) we have to substitute into (2) the

i i
expression for dy’ =dF from (3). This can also be
expressed by the following matrix formula:

oG" oG \(oFt  oF
oyt oy || okt ok | dx!

d(GoF)=| .. .. .. e (4)
oG® oGP || aF™ oF™ |[ X"

o oy o o

ie., if dG and dF are expressed by matrices of

partial derivatives, then d(GoF) is expressed by the
product of these matrices. This is often written as

ot ot (o o
o Tox | | oyt oyT
oz® oz’ oz® oz°
ot ox") oyt oy"
o oy

ot X"

...... , (5)

"

oxt T ox"
Or

u m H i

oz _ az. oy | (6)
ox* 4oy ox?

m
Where it is assumed that the dependence of yel

on X€ll " is given by the map F , the dependence
G

m
of 2l ® on YEU T i given by the map ' and
the dependence of Z € 0 Pon Xell " is given by the

composition GOF .
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Definition 1.6. Consider an open domain Ucl n.

Consider also another copy of 0" , denoted for
n

distinction Y, with the standard coordinates

1 n
(y-y") . A system of coordinates in the open

domain U is given by a map Fiv-U
n n
Vel Y is an open domain of . Y, such that the
following three conditions are satisfied :
1) Fis smooth;

@ F isinvertible;

' where

(3) F™:U >V s also smooth

The coordinates of a point X €U in this system are

-1 n
the standard coordinates of Fo(x) el y

In other words,
Fi(y..y) P x=x(y"...y") @

1 n
Here the variables (Y ¥%) are the “new”
coordinates of the point X

Example 1.2.  Consider a curve in 02 specified in
polar coordinates as
x(t):r=r(t), 0 =o(t) @

We can simply use the chain rule. The map t=x()
can be considered as the composition of the maps

chain rule, we have
- dx oxdr oxde ox: oXx -
X=—=——+——-= +

Tdt ordt opdt or g

Here ' and % are scalar coefficients depending on t,

OX/ OX
al” A ¢ are

. L 2
vectors depending on point in L7 we can compare
this with the formula in the “standard” coordinates:

whence the partial derivatives

X6 xte,y

%%,

8(0_ Explicitly we have

)

Consider the vectors

OX .
— =(cos @,sin @)
or

(4)

From where it follows that these vectors make a basis

OX .
— =(=rsing, rcosy)
op

at all points except for the origin (where ' = 0). Itis

instructive to sketch a picture, drawing vectors
corresponding to a point as starting from that point.

oX ﬁy
or o are, respectively, the
r— Xx(r, )

Notice that

velocity vectors for the curves
(p=g, fixed) _, @ x(r,@) (r=r, fixed)

We can conclude that for an arbitrary curve given in
polar coordinates the velocity vector will have

components (r.¢) if as a basis we take
— ay —OX/ -
er . ar y e(p . a¢ .

X=¢ r+e, ¢ (5)

. . €,e . -
A characteristic feature of the basis ? is that it is
not “constant” but depends on point. Vectors “stuck to
points” when we consider curvilinear coordinates.

Proposition 1.3. The velocity vector has the same
appearance in all coordinate systems.
Proof. Follows directly from the chain rule and

the transformation law for the basis & .In particular,

e =OX/
the elements of the basis ox' (originally, a
formal notation) can be understood directly as the
velocity  vectors of the coordinate lines

i 1 n i
X X(X e XT) (all coordinates but X are
fixed). Since we now know how to handle velocities
in arbitrary coordinates, the best way to treat the

. n m
differential of a map F:O"—>0%s by its action
on the velocity vectors. By definition, we set

a0 X0 ) W)

Now dF(XO) is a linear map that takes vectors

n
attached to a point %, €L to vectors attached to the

point F()el”
dF :6—F1dx1+...+ 6Fn dx"
OX OX
OF'  oF!
ot x| dxt
(- | I o |y (2)
oF™ oF™ || dx"
oxt T ox"

In particular, for the differential of a function we
always have

df :ildxl+...+idx”,
OX ox"

X

©)
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i
Where X' are arbitrary coordinates. The form of the
differential does not change when we perform a
change of coordinates.

2
Example 1.3 Consider a 1-form in 0 given in the
standard coordinates:

A= —ydx+xdy In the polar coordinates we will
have X=TCOS@ y=rsing .o

dx =cosqedr—rsinpde

dy =sin ¢dr +r cos pd ¢

Substituting into A , We get

A =—rsin@(cosedr —rsin gde)

+r cos @(sin dr +r cos pd @)

=r’(sin’ p+cos’ p)dp =r’de

2
Hence A=rde is the formula for A in the polar
coordinates. In particular, we see that this is again a 1-
form, a linear combination of the differentials of
coordinates with functions as coefficients. Secondly,
in a more conceptual way, we can define a 1-formin a

domain Y as a linear function on vectors at every
point of U
o(L) = +..+ 0", @
v=) ev' & = i
If Z i“ where OX' . Recall that the

differentials of functions were defined as linear
functions on vectors (at every point), and

dx'(e;) = dx' (a—x.j:&? (2)
ox! !

every point X.

at

Theorem 1.9. For arbitrary 1-form @ and path 7,

[o
the integral 7  does not change if we change

parametrization of r provide the orientation remains

the same.
<w(x(t)),%>

Proof: Consider and

<w(x(t(t'»),%>
As
<w(x(t(t'»>.%>.d—‘.,

dt

<w(x(t(t'>»,%>

Let P be a rational prime and let K=C (é’p) We

write 4 for &
degree ¢(p)=p-1 over 0. We wish to show that

P or this section. Recall that K has

- p_
Oy =L [é’] Note that . is a root of X L and

thus is an algebraic integer; since ~ X is a ring we

U .

have that [é/]gOK We give a proof without

assuming unique factorization of ideals. We begin

with some norm and trace computations. Let ) be an
i i

integer. If Jis not divisible by P then 4 is a

th
primitive P root of unity, and thus its conjugates are
2 p-1
SR Therefore

Tre, (é/j):é/"'é/z"'---"';pil :q)p(é’)_]-:_l

i i
If P does divide ' then ¢ =1 so it has only the

Tr, () =p-1
one conjugate 1, and ke (6= B
linearity of the trace, we find that

TrK/H (1_4) =TI’K/H (1—4/2) =...
=Tre, 1-¢"M=p

We also need to compute the norm of 1-¢ . For this,
we use the factorization

XPLexP2 4 +1=D (X)
= (X=)(x= &) (x=¢");
Plugging in X =1 shows that
p=0-)1-¢)..0-¢")
Since the (l_gj) are the conjugates of (1_§)’ this
Ny, @-&)=p

y

shows that The key result for

determining the ring of integers O is the following.

LEMMA 1.9
A-8)0 N = pJl

Proof. We saw above that P is a multiple of

(1_4/) in OK’

1-24)O, Nl o p!

S0 the inclusion

is immediate. Suppose now

(1-£)O, AL

that the inclusion is strict. Since is an
and p is a maximal
ideal of U | we must have (1_§)OK D =0

1=a(l-¢)

ideal of U containing P

Thus we can write
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For some & €Oy That is, 1-¢ is a unit in O
ae0,,

COROLLARY 1.1 For any

Tr, (A-Qa) e pl

PROOF. We have

Tr (A-Qa) =0, (A-Qa) +...+ 0, (A-)a)
=0,(1-¢)oy (@) +..+ 0, (1-)o s (@)from

=(1-Qo(@)+..+(1-¢" oy, (@)

Where the i are the complex embeddings of K
(which we are really viewing as automorphisms of K )

_ i
with the usual ordering. Furthermore, 1-¢ is a

multiple of 1-¢ in OK for every 1#0. Thus
Tr (@1-¢) e(1-4)0

also a rational integer.

K Since the trace is

PROPOSITION 1.4 Let P bea prime number and

let K=O (gp) be the pth cyclotomic field. Then
Oy =01£,1=0[X]/ (@, (); e
Leps ;5—2 is an integral basis for OK.

PROOF. Let % €Ok and write

a=ay+al +..+a, " with & €7+ Then

al-¢)=a,(1-¢)+a(-¢*) +..
+ap—2 (é/ P2~ é, p—l)
By the linearity of the trace and our above calculations
we find that Ther (@(1=6)) = p3y We also have
Tre (@@-¢)epl,  a el
the algebraic integer

(a—a) " =a +a,+..+a, ",

Next consider

This is
o L=t
an algebraic integer since is. The same

a ell,

argument as above shows that and

continuing in this way we find that all of the 4 are in

)" This completes the proof.

K=l

is simply the subring of J of rational numbers with
denominator relatively prime to P . Note that this ring

a (p)

Example 1.4 Let , then the local ring

o, .. . .
(P is not the ring ~ Pof P -adic integers; to get

0 (p)

P one must complete . The usefulness of

K:P comes from the fact that it has a particularly
simple ideal structure. Let a pe any proper ideal of

anO O

(@] . . )
K.P and consider the ideal f KT We

=(an ;
a=(a OK)OKvp’ That is, that & is

anOy

claim that

generated by the elements of a jn " Itis clear
the  definition of an ideal that
an(@no,)o

K:P" To prove the other inclusion,
let & be any element of @ Then we can write

a=p17 where B0 and 7 % P In particular,
fea (since 'B/7€a and @ is an ideal), so
PO, and VEP peanO,.
1/7/60'('"’ this

a=pBlye(@n0)0,,

Since
implies that
as claimed.We can use
this fact to determine all of the ideals of OK'F" Let &

0] .
K:P and consider the

be any ideal of ideal
factorization of an0 in O write it as
anO, =p'b For some " and some ideal b,
relatively prime to P- we claim first that
0O, = Ok p- We now find that

a=(an0y)0 ,=p"bOy ,=p"Oy , Since

bO, .

n

p"oO

Thus every ideal of Oc.p has the form

M it follows immediately that

p"OK’p is

K:P for some
O, . . .
K.Pis noetherian. It is also now clear that

: .0
the unique non-zero prime ideal in ~ <P . Furthermore,
O« O,/ POy,

the inclusion Since

O, .NO, =p, .. . o
Pk K =P s map is also surjection, since

al pe0 ae0

the residue class of K:P (with K and

-1 O
pe Py is the image of B iy Pxkier which

: - Oy

makes sense since p is invertible in —K/P" Thus the
map is an isomorphism. In particular, it is now
abundantly clear that every non-zero prime ideal of

. . O ., .
K.Pis maximal. To show that XPis a
Dedekind domain, it remains to show that it is
yekK

integrally closed in K. so let be a root of a

o - Oy :
polynomial with coefficients in KiP™ write this
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g G ymry L P

polynomial as m-1 o With
a; €0y and B, €0y Set B=5BL Ly

m
Multiplying by B we find that Br is the root of a

monic polynomial with coefficients in OK' Thus
By €Oy since Bep we have
'By/'B:yEOK'p.Thus OKvpis integrally close in
K.

COROLLARY 1.2. Let K be a number field of

degree M and let @ be in Oc  then
Ny, (@Oy) :‘NK/H (0{)‘
PROOF. We assume a bit more Galois theory than

usual for this proof. Assume first that K /0 is

Galois. Let O be an element of GaI(K /0 )
c(Oy)/o(ax)=0y,,;

It is

clear that since

o(0c) =0, this
N;</ (o(2)O) = N|I</H (aOy)

product over all @ eGal(K /L),
NK/J (NK/U (a)OK) = NK/U (aOK)n

Nicr: (@) is a rational integer and
module of rank "
O /Ny (2)O
therefore

N;<u (Ng,, (@)O) =N, (@O)"
This completes the proof. In the general case, let L
be the Galois closure of K and set [L:K]=m.

shows that

Taking the

we have
Since

Oy is a freel] -

n.
Will have order Nicr: (@)

A. Spatial Analysis

Spatial Analysis of people suffering from Cancer in
North America and the trend in Geo Location. Spatial
Analysis is to measure properties and relationship with
spatial localization and the events like Brain Cancer in
America. The model processes define the distribution
of spread of cancer in space.

Taxonomy used are Events, Point Patterns to
express occurrences of Cancer patient as points in
space listed as Point Processes and give the
localization coordinates. This study developed the
modelling process for exploratory analysis to provide
graphs, maps and spatial patterns.

In Point Pattern Analysis the object of interest is the
spatial location of cancer events as the type of cancer
and the numbers associated with Mortality. Objective
is to study the spatial distribution and develop testing
hypothesis about the observed and forecast pattern.

The model uses the geostatistics techniques to
define homogeneous bahavior on the spatial
correlation data structure in geolocation.

Spatial Autocorrelation is the spatial dependency
based on computation framework, this is to measure
relationship between two random variables, but are
applying the concept on multiple variable the
distinguish Brain Tumor Types, Nervous Cancer
Types, Location and Influence Factors. Verifying
spatial dependency varies based on comparative
analysis of population sample and nearest points.

Fig 1: Delaunay Tetrahedra VVolume

Cumulative Samgle Poirt to Nearest Cel Distances

o8-
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07~
06—
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03
02~

ot ,' ; : ; ¥
— — - Poisson
- | i i

L T | i I s 4
0 20 a0 60 B0 W0 120 40 B0 B0 200

Fig. 2: F Function ( Cumulative Sample Point to
Nearest Cell Distances)

Cumulative Neasest Neighbor Distriution

Fig 3: G Function (Cumulative Nearest Neighbor
Distribution)
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x10 Cumulative Density Recovery Prafile
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Fig 4: K Function (Cumulative Density)
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Fig 10 : North America Cancer patient distribution
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Neuroepthelial y (2.9- L (8.3-
Tissue ) 3.3) s 8.7)
Pilocytic (0'87_ (0'11_
astrocytoma 0 '9) 0 '2)
Diffuse 0.0- (0'21_
astrocytoma 0 '1) 0 '2)
Anaplastic (611_ (0'66_
astrocytoma 0 '2) 0 '6)

Unique 1 1 1 0.
astrocytoma S 0.0-f 4 4° (0.0-
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Anaplastic 2 0.2)
oligodendrogliom (0.1- 0.
a 0.2) Other A1 (0.0-
Ependymoma/ana 3 2 mesenchymal (0.1-0.1) O.b)
plastic (0.2- (0.2- Hemangioblastom| 0. 2
ependymoma 0.3) 0.3) a (0.0-0.1) (0.2-0.3)
Ependymoma 0. 1 Lymphomas and 7
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Pineal 006 Craniopharyngio 2 2
parenchymal (0 S ma (0.1-0.2) (0.1-0.2)

— - Local Extensions 0.
Embryonal/primi 4 1 from Regional (0.0-
tive/medulloblast (0.6- (0.1- TS 0.0)
oma 0.8) 0.1)

. 0. Unclassified 2 (610_ T (655_
Tumor_s of Cranial 3 21 (0.0- Tumors 0.2-0.3)| Y"1 0.7-0.8) |-
and Spinal Nerves |(0.2-0.3) (21-22)| 0) 0.1) 0.6)
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Classification of Brain Cancer
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Fig. 12 Classification of Brain Cancer

not increase as compared to Lung Cancer. Next work
IV. CONCLUSIONS is to layout the framework for epidemic models

Cancer patients in America is reducing and
especially Brain Cancer percentage is in control and
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