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Abstract— This paper discuss about statistical 

representation of Brain Cancer in America.  Brain cancer 

morbidity is high and treatment plans like chemotherapy, 

surgical resection of Tumor, Hyperthermia and Radio 

Surgery is key elements for the treatment of patients 

suffering from Brain Cancer. Who and Disease control 

prevention dataset is used to perform analysis. Incidence 

Rate, Death Rate, Incidence Count and Death count in male 

and female are rising; Classification of Data is based on 

Brain Tumor and other Nervous.  Brain Tumor is a leading 

cause of death and once its diagnosed base on the stage of 

cancer life expectancy is about 5 Years or so. Incidence rate 

of Brain Cancer in age group and gender difference is 

analyzed based on States. Spatially Analytic data is used for 

the geo-visualization of Cancer. Sources of data are from 

Cancer registries, World Health Organization, Health 

Information Database and remote sensing data. 
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I. INTRODUCTION 

This research is focus on giving tools and 

techniques to the field of epidemiology to study and 

provide treatment to Brain Cancer patient. This would 

help to control the disease and create the disease 

model and act on the trends of Brain Cancer. Large 

and highly complex data structure are analysed on grid 

computing environment. Purpose of this research is to 

provide the growth of Brain Cancer in America and 

find out the similarity and differences in the regions of 

Brain Cancer depending upon spatial information. Geo 

Spatial information helps in predicting the spread of 

disease. Mathematical model helps in analysing the 

Brain cancer Characteristics. Cancer Etiology is also 

represented in spatial form and pattern on Treatment 

[1]. Spatial data refer to data with locational attributes. 

Most commonly, locations are given in Cartesian 

coordinates referenced to the earth's surface. These 

coordinates may describe points, lines, areas or 

volumes. This need not be the only spatial framework; 

"relative spaces" may be defined in which distance is 

defined in terms of some other attribute, such as socio-

demographic similarly or connectedness along 

transportation networks [2][3]. There are over 600,000 

people in the US living with a primary brain tumor 

and over 28,000 of these cases are among children 

under the age of 20.1 

Metastatic brain tumors (cancer that spreads from 

other parts of the body to the brain) occur at some 

point in 20 to 40% of persons with cancer and are the 

most common type of brain tumor. 

 

Over 7% of all reported primary brain tumors in the 

United States are among children under the age of 20. 

 

Each year approximately 210,000 people in the United 

States are diagnosed with a primary or metastatic 

brain tumor. That's over 575 people a day: 

 An estimated 62,930 of these cases are 

primary malignant  and non-malignant 

tumors. 

 The remaining cases are brain metastases 

(cancer that  spreads from other parts of the 

body to the brain). 

 Among children under age 20, brain tumors 

are: 

 the most common form of solid tumor  

 the second leading cause of cancer-related 

deaths, following leukemia 

 the second leading cause of cancer-related 

deaths among females 

 

 Among adults, brain tumors are: 

 

 the second leading cause of cancer-related 

deaths among males up to age 39 

 the fifth leading cause of cancer-related 

deaths among women ages 20-39 

 

There are over 120 different types of brain tumors, 

making effective treatment very complicated. Because 

brain tumors are located at the control center for 

thought, emotion and movement, their effects on an 

individual's physical and cognitive abilities can be 

devastating. At present, brain tumors are treated by 

surgery, radiation therapy, and chemotherapy, used 

either individually or in combination. No two brain 

tumors are alike. Prognosis, or expected outcome, is 

dependent on several factors including the type of 

tumor, location, response to treatment, an individual's 

age, and overall health status. 
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An estimated 35% of adults living with a primary 

malignant brain or CNS tumor will live five years or 

longer. 

 

Brain tumors in children are different from those in 

adults and are often treated differently. Although over 

72% percent of children with brain tumors will 

survive, they are often left with long-term side effects 

[4]. 

II. METHODOLOGY 

Study of spatial autocorrelation analysis supports 

the hypotheses to predict the geo location and volume 

of epidemiological insights. Information pertained 

from first order autocorrelation (Brain Cancer & 

Nervous) gives the pattern of mortality in spatial 

space.Applied spatial autocorrelation to define 

correlation of a cancer dataset in variable array with 

itself through Fuzzy Topological space. Measured the 

characteristics at one state example California are 

similar or dissimilar to nearby states example Nevada. 

Measure the most probable occurrence of event at one 

location with nearby inter-connected 

locations.Applied the measurement using Joint Count 

Statistics, Moran’s I , Geary’s ratio, General G, Local 

Index of Spatial Autocorrelation and Global Index of 

Spatial Autocorrelation.Spatial Autocorrelation 

produced positive results with similar values Fuzzy 

Cluster on the map and Negative dissimilar  values 

Fuzzy Cluster on the map. Fuzzy connectedness 

technique is used to measure brain tumor volume; this 

is also applied on brain lesion volume estimation. 

Multiple Fuzzy spaces are defined to layout the 

computational framework. Fuzzy compactness and 

connectedness are distinct absolute property that is 

used for fuzzy topology. Absolute topology is where 

all subspaces Z Y X of a space X, Z fulfills P 

(property)  a subspace of Y iff Z fulfills P as a 

subspace of X. We consider the following anycast 

field equations defined over an open bounded piece of 

network and /or feature space 
dR . They 

describe the dynamics of the mean anycast of each of 

p node populations. 

|

1

( ) ( , ) ( , ) [( ( ( , ), ) )]

(1)
( , ), 0,1 ,

( , ) ( , ) [ ,0]

p

i i ij j ij j

j

ext

i

i i

d
l V t r J r r S V t r r r h dr

dt

I r t t i p

V t r t r t T









   




   
   



  
We give an interpretation of the various parameters 

and functions that appear in (1),  is finite piece of 

nodes and/or feature space and is represented as an 

open bounded set of 
dR . The vector r  and r  

represent points in   . The function 
: (0,1)S R

 

is the normalized sigmoid function: 

 

1
( ) (2)

1 z
S z

e


   

It describes the relation between the input rate iv
 of 

population i  as a function of the packets potential, for 

example, 
[ ( )].i i i i iV v S V h  

 We note V  the 

p 
 dimensional vector 1( ,..., ).pV V

The 
p

 function 

, 1,..., ,i i p 
 represent the initial conditions, see 

below. We note 


 the  
p 

 dimensional vector 

1( ,..., ).p 
 The 

p
 function 

, 1,..., ,ext

iI i p
 

represent external factors from other network areas. 

We note 
extI  the 

p 
 dimensional vector 

1( ,..., ).ext ext

pI I
The 

p p
 matrix of functions 

, 1,...,{ }ij i j pJ J 
 represents the connectivity between 

populations i  and 
,j

 see below. The 
p

 real values 

, 1,..., ,ih i p
 determine the threshold of activity for 

each population, that is, the value of the nodes 

potential corresponding to 50% of the maximal 

activity. The 
p

real positive values 
, 1,..., ,i i p 

 

determine the slopes of the sigmoids at the origin. 

Finally the 
p

real positive values 
, 1,..., ,il i p

  

determine the speed at which each anycast node 

potential decreases exponentially toward its real value. 

We also introduce the function 
: ,p pS R R

 

defined by 

1 1 1( ) [ ( ( )),..., ( ))],p pS x S x h S h   
 and the 

diagonal 
p p

 matrix 0 1( ,..., ).pL diag l l
Is the 

intrinsic dynamics of the population given by the 

linear response of data transfer. 

( )i

d
l

dt


 is replaced 

by 

2( )i

d
l

dt


 to use the alpha function response. We 

use 

( )i

d
l

dt


 for simplicity although our analysis 

applies to more general intrinsic dynamics. For the 

sake, of generality, the propagation delays are not 

assumed to be identical for all populations, hence they 

are described by a matrix 
( , )r r

 whose element 

( , )ij r r
is the propagation delay between population 

j
 at r  and population i  at .r  The reason for this 

assumption is that it is still unclear from anycast if 

propagation delays are independent of the populations. 

We assume for technical reasons that   is continuous, 

that is 

20( , ).p pC R 

 
 Moreover packet data 
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indicate that   is not a symmetric function i.e., 

( , ) ( , ),ij ijr r r r 
 thus no assumption is made 

about this symmetry unless otherwise stated. In order 

to compute the righthand side of (1), we need to know 

the node potential factor V  on interval 
[ ,0].T

 The 

value of T  is obtained by considering the maximal 

delay: 

 
,

, ( , )
max ( , ) (3)m i j

i j r r
r r 




  

Hence we choose mT 
 

III. MATHEMATICAL FRAMEWORK 

A convenient functional setting for the non-delayed 

packet field equations is to use the space 
2( , )pF L R 

 which is a Hilbert space endowed 

with the usual inner product: 

 1

, ( ) ( ) (1)
p

i iF
i

V U V r U r dr





  

To give a meaning to (1), we defined the history space 
0([ ,0], )mC C F 

 with 

[ ,0]sup ( ) ,
mt t F  

 which is the Banach 

phase space associated with equation (3). Using the 

notation 
( ) ( ), [ ,0],t mV V t      

 we write 

(1) as  
.

0 1

0

( ) ( ) ( ) ( ), (2)
,

ext

tV t L V t L S V I t

V C


    


    
Where  

 

1 : ,

(., ) ( , (., ))

L C F

J r r r dr  





  
  

Is the linear continuous operator satisfying 

2 21 ( , )
.p pL R

L J 


 Notice that most of the papers 

on this subject assume   infinite, hence requiring 

.m  
   

 

Proposition 1.0  If the following assumptions are 

satisfied. 

1. 
2 2( , ),p pJ L R  

  

2. The external current 
0( , ),extI C R F

  

3. 
2

0 2( , ),sup .p p

mC R  

 
  

  

Then for any 
,C

 there exists a unique solution 
1 0([0, ), ) ([ , , )mV C F C F    

 to (3) 

Notice that this result gives existence on 
,R  finite-

time explosion is impossible for this delayed 

differential equation. Nevertheless, a particular 

solution could grow indefinitely, we now prove that 

this cannot happen. 

 

Boundedness of SolutiONS 

A valid model of neural networks should only feature 

bounded packet node potentials.  

 

Theorem 1.0 All the trajectories are ultimately 

bounded by the same constant R  if 

max ( ) .ext

t R F
I I t
 

  

Proof :Let us defined 
:f R C R 

 as 
2

0 1

1
( , ) (0) ( ) ( ), ( )

2

def
ext F

t t t F

d V
f t V L V L S V I t V t

dt
    

  

We note 1,...mini p il l
  

 
2

( , ) ( ) ( ) ( )t F F F
f t V l V t p J I V t    

  

Thus,  if 

 

2.
( ) 2 , ( , ) 0

2

def def
F

tF

p J I lR
V t R f t V

l


 
      

  

 

Let us show that the open route of F  of center 0 and 

radius 
, ,RR B

 is stable under the dynamics of 

equation. We know that 
( )V t

 is defined for all 

0t s  and that 
0f 

 on 
,RB

 the boundary of 

RB
. We consider three cases for the initial condition 

0.V
If 0 C

V R
 and set 

sup{ | [0, ], ( ) }.RT t s t V s B   
 Suppose that 

,T R
 then 

( )V T
 is defined and belongs to 

,RB
 

the closure of 
,RB

 because  RB
is closed, in effect to 

,RB
 we also have 

2
| ( , ) 0t T TF

d
V f T V

dt
    

 because 

( ) .RV T B
 Thus we deduce that for 0   and 

small enough, 
( ) RV T B 

 which contradicts the 

definition of T. Thus T R  and RB
is stable. 
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 Because f<0 on 
, (0)R RB V B 

 implies 

that 
0, ( ) Rt V t B  

. Finally we consider the case 

(0) RV CB
. Suppose that   

0, ( ) ,Rt V t B  
 

then 

2
0, 2 ,

F

d
t V

dt
   

 thus 
( )

F
V t

 is 

monotonically decreasing and reaches the value of R 

in finite time when 
( )V t

 reaches 
.RB

 This 

contradicts our assumption.  Thus  

0 | ( ) .RT V T B  
  

 

Proposition 1.1 : Let s  and t   be measured simple 

functions on .X  for 
,E M
 define 

 

( ) (1)
E

E s d  
  

Then 


 is a measure on M .  

( ) (2)
X X X

s t d s d td      
  

Proof : If s  and if 1 2, ,...E E
 are disjoint members 

of M whose union is 
,E
 the countable additivity of 


 shows that  

1 1 1

1 1 1

( ) ( ) ( )

( ) ( )

n n

i i i i r

i i r

n

i i r r

r i r

E A E A E

A E E

    

  



  

 

  

   

  

  

 
  

Also,
( ) 0,  

 so that 


 is not identically . 

Next, let  s  be as before, let 1,..., m 
 be the 

distinct values of  t,and let 
{ : ( ) }j jB x t x  

 If 

,ij i jE A B 
 the

( ) ( ) ( )
ij

i j ij
E

s t d E     
  

and 

( ) ( )
ij ij

i ij j ij
E E

sd td E E        
  

Thus (2) holds with ijE
 in place of X . Since  X is 

the disjoint union of the sets 

(1 ,1 ),ijE i n j m   
 the first half of our 

proposition implies that (2) holds. 

 

 

Theorem 1.1: If K  is a compact set in the plane 

whose complement is connected, if 
f

 is a continuous 

complex function on K  which is holomorphic in the 

interior of , and if 
0, 

 then there exists a 

polynomial P  such that 
( ) ( )f z P z  

 for all 

z K .  If the interior of K is empty, then part of the 

hypothesis is vacuously satisfied, and the conclusion 

holds for every 
( )f C K

. Note that  K need to be 

connected. 

Proof: By Tietze’s theorem, 
f

 can be extended to a 

continuous function in the plane, with compact 

support. We fix one such extension and denote it again 

by 
f

. For any 
0, 

 let 
( ) 

 be the supremum of 

the numbers 2 1( ) ( )f z f z
 Where 1z

 and 2z
 are 

subject to the condition 2 1z z  
. Since 

f
 is 

uniformly continous, we have 

0
lim ( ) 0 (1)


 



 From now on,   will 

be fixed. We shall prove that there is a polynomial P  

such that  

  

 
( ) ( ) 10,000 ( ) ( ) (2)f z P z z K   

  
By (1),   this proves the theorem. Our first objective is 

the construction of a function 
' 2( ),cC R

 such that 

for all z   

( ) ( ) ( ), (3)

2 ( )
( )( ) , (4)

f z z

z

 

 



 

 
  

And 

1 ( )( )
( ) ( ), (5)

X

z d d i
z


    

 


    


  

Where X  is the set of all points in the support of   

whose distance from the complement of K  does not 

 . (Thus  X contains no point which is ―far within‖ 

K .) We construct  as the convolution of 
f

 with a 

smoothing function A. Put 
( ) 0a r 

 if 
,r 
put  

 
2

2

2 2

3
( ) (1 ) (0 ), (6)

r
a r r 

 
   

  
And define 

( ) ( ) (7)A z a z
  

For all complex z . It is clear that 
' 2( )cA C R

. We 

claim that  
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2

3

1, (8)

0, (9)

24 2
, (10)

15

sR

R

R

A

A

A
 



 

  






    

 

The constants are so adjusted in (6) that (8) holds.  

(Compute the integral in polar coordinates), (9) holds 

simply because A  has compact support. To compute 

(10), express A  in polar coordinates, and note that 

0,A


 
   

 

' ,A a
r

  
  

Now define 

2 2

( ) ( ) ( ) ( ) (11)

R R

z f z Ad d A z f d d           

  

Since 
f

 and A  have compact support, so does  . 

Since  

 

2

( ) ( )

[ ( ) ( )] ( ) (12)

R

z f z

f z f z A d d   

 

  
 

And 
( ) 0A  

 if 
, 
  (3) follows from (8). The 

difference quotients of A  converge boundedly to the 

corresponding partial derivatives, since 
' 2( )cA C R

. 

Hence the last expression in (11) may be differentiated 

under the integral sign, and we obtain 

2

2

2

( )( ) ( )( ) ( )

( )( )( )

[ ( ) ( )]( )( ) (13)

R

R

R

z A z f d d

f z A d d

f z f z A d d

   

   

   

   

  

   







   

The last equality depends on (9). Now (10) and (13) 

give (4). If we write (13) with x
 and y

 in place 

of 
,

 we see that   has continuous partial 

derivatives, if we can show that 0   in 
,G
 

where G  is the set of all z K  whose distance from 

the complement of K  exceeds .  We shall do this by 

showing that  

 
( ) ( ) ( ); (14)z f z z G 

  

Note that 
0f 

 in G , since 
f

 is holomorphic 

there. Now if 
,z G
 then 

z 
 is in the interior of 

K  for all 


 with 
. 
 The mean value property 

for harmonic functions therefore gives, by the first 

equation in (11), 

2

2

0 0

0

( ) ( ) ( )

2 ( ) ( ) ( ) ( ) (15)

i

R

z a r rdr f z re d

f z a r rdr f z A f z

 








  

  

 

 

  

For all 
z G

 , we have now proved (3), (4), and (5) 

The definition of X  shows that X is compact and 

that X  can be covered by finitely many open discs 

1,..., ,nD D
 of radius 

2 ,
 whose centers are not in 

.K  Since 
2S K  is connected, the center of each 

jD
 can be joined to   by a polygonal path in 

2S K . It follows that each jD
contains a compact 

connected set 
,jE

 of diameter at least 
2 ,

 so that 
2

jS E
 is connected and so that 

.jK E  
  

with 2r  . There are functions 

2( )j jg H S E 
 

and constants jb
 so that the inequalities. 

 

2

2

50
( , ) , (16)

1 4,000
( , ) (17)

j

j

Q z

Q z
z z







 



 
 

   

Hold for jz E
 and 

,jD 
 if  

2( , ) ( ) ( ) ( ) (18)j j j jQ z g z b g z   
  

Let   be the complement of 1 ... .nE E 
 Then 

 is an open set which contains .K  Put 

1 1X X D 
 and 

1 1( ) ( ... ),j j jX X D X X     
 for 

2 ,j n 
  

Define  

( , ) ( , ) ( , ) (19)j jR z Q z X z    

  

And 

1
( ) ( )( ) ( , ) (20)

( )

X

F z R z d d

z
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Since,  

1

1
( ) ( )( ) ( , ) , (21)

i

j

j X

F z Q z d d   


  

  

(18) shows that F  is a finite linear combination of the 

functions jg
 and 

2

jg
. Hence 

( ).F H 
 By (20), 

(4), and (5) we have  

2 ( )
( ) ( ) | ( , )

1
| ( ) (22)

X

F z z R z

d d z
z

 




  


 

 




  
Observe that the inequalities (16) and (17) are valid 

with R  in place of jQ
 if 

X 
 and 

.z  
Now 

fix  
.z  

, put 
,iz e   

 and estimate the 

integrand in (22) by (16) if 
4 , 

 by (17) if 

4 . 
  The integral in (22) is then seen to be less 

than the sum of 

4

0

50 1
2 808 (23)d



   
 

 
  

 


  
And  

2

24

4,000
2 2,000 . (24)d




   






  

Hence (22) yields 

( ) ( ) 6,000 ( ) ( ) (25)F z z z    

  

Since 
( ), ,F H K  

 and 
2S K  is 

connected, Runge’s theorem shows that F  can be 

uniformly approximated on K  by polynomials. 

Hence (3) and (25) show that (2) can be satisfied. This 

completes the proof. 

 

Lemma 1.0 : Suppose 
' 2( ),cf C R

 the space of all 

continuously differentiable functions in the plane, with 

compact support. Put  

1
(1)

2
i

x y

  
   

     
Then the following ―Cauchy formula‖ holds: 

2

1 ( )( )
( )

( ) (2)

R

f
f z d d

z

i


 

 

  


 



 



  
Proof: This may be deduced from Green’s theorem. 

However, here is a simple direct proof: 

Put 
( , ) ( ), 0,ir f z re r    

 real 

 If 
,iz re   

 the chain rule gives 

1
( )( ) ( , ) (3)

2

i i
f e r

r r

  


  
     

  

The right side of (2) is therefore equal to the limit, as 

0, 
 of 

 

2

0

1
(4)

2

i
d dr

r r





 




   
  

  
 

  
 

 

For each 
0,r 

 is periodic in 
,
 with period 2 . 

The integral of 
/  

 is therefore 0, and (4) 

becomes 

2 2

0 0

1 1
( , ) (5)

2 2
d dr d

r

 




    

 

 
 

  
  

As 
0, ( , ) ( )f z    

 uniformly.  This gives 

(2)  

 

If X a   and 
 1,... nX k X X 

, then 

X X X a      , and so A  satisfies the 

condition 
( )

. Conversely, 

,

( )( ) ( ),
nA

c X d X c d X finite sums   

   

  



 

  


  

and so if A  satisfies 
( )

, then the subspace generated 

by the monomials 
,X a 

, is an ideal. The 

proposition gives a classification of the monomial 

ideals in 
 1,... nk X X

: they are in one to one 

correspondence with the subsets A  of 
n  satisfying 

( )
. For example, the monomial ideals in 

 k X
 are 

exactly the ideals 
( ), 1nX n 

, and the zero ideal 

(corresponding to the empty set A ). We write 

|X A  
 for the ideal corresponding to A  

(subspace generated by the 
,X a 

). 

 

LEMMA 1.1.  Let S  be a subset of 
n . The the 

ideal a  generated by 
,X S 

 is the monomial 

ideal corresponding to   

 | ,
df

n nA some S        
  

Thus, a monomial is in a  if and only if it is divisible 

by one of the 
, |X S 
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PROOF.   Clearly A  satisfies 
 

, and 

|a X A  
. Conversely, if 

A 
, then 

n  
 for some S , and 

X X X a     . The last statement follows 

from the fact that 
| nX X     

. Let 

nA   satisfy 
 

. From the geometry of  A , it is 

clear that there is a finite set of elements 

 1,... sS  
  of A such that  

 2| ,n

i iA some S        
 (The 

'i s
 are the corners of A ) Moreover, 

|
df

a X A    is generated by the monomials 

,i

iX S
  

. 

 

DEFINITION 1.0.   For a nonzero ideal a  in 

 1 ,..., nk X X
, we let 

( ( ))LT a
 be the ideal 

generated by  

 ( ) |LT f f a
  

 

LEMMA 1.2   Let a  be a nonzero ideal in  

 1 ,..., nk X X
; then 

( ( ))LT a
is a monomial ideal, 

and it equals 1( ( ),..., ( ))nLT g LT g
 for some 

1,..., ng g a
. 

PROOF.   Since  
( ( ))LT a

 can also be described as 

the ideal generated by the leading monomials (rather 

than the leading terms) of elements of a . 

 

THEOREM 1.2.  Every ideal a  in 
 1 ,..., nk X X

is finitely generated; more precisely, 1( ,..., )sa g g
 

where 1,..., sg g
are any elements of a  whose leading 

terms generate 
( )LT a

  

PROOF.   Let 
f a

. On applying the division 

algorithm, we find 

 1 1 1... , , ,...,s s i nf a g a g r a r k X X    

 , where either 0r   or no monomial occurring in it 

is divisible by any 
( )iLT g

. But 

i i
r f a g a  

, and therefore 

1( ) ( ) ( ( ),..., ( ))sLT r LT a LT g LT g 
, implies 

that every monomial occurring in r  is divisible by 

one in 
( )iLT g

. Thus 0r  , and 1( ,..., )sg g g
. 

 

DEFINITION 1.1.   A finite subset 

 1,| ..., sS g g
 of an ideal a  is a standard 

(

..

( )Gr obner
bases for a  if 

1( ( ),..., ( )) ( )sLT g LT g LT a
. In other words, S 

is a standard basis if the leading term of every element 

of a is divisible by at least one of the leading terms of 

the ig
. 

 

THEOREM 1.3  The ring 1[ ,..., ]nk X X
 is 

Noetherian i.e., every ideal is finitely generated. 

 

PROOF. For  
1,n 

 
[ ]k X

 is a principal ideal 

domain, which means that every ideal is generated by 

single element. We shall prove the theorem by 

induction on n . Note that the obvious map 

1 1 1[ ,... ][ ] [ ,... ]n n nk X X X k X X 
 is an 

isomorphism – this simply says that every polynomial 

f
 in n  variables 1,... nX X

 can be expressed 

uniquely as a polynomial in nX
 with coefficients in 

1[ ,..., ]nk X X
: 

1 0 1 1 1 1( ,... ) ( ,... ) ... ( ,... )r

n n n r nf X X a X X X a X X   

  

Thus the next lemma will complete the proof 

 

LEMMA 1.3.  If A  is Noetherian, then so also is 

[ ]A X
  

PROOF.          For a polynomial 
1

0 1 0( ) ... , , 0,r r

r if X a X a X a a A a     

  

r  is called the degree of 
f

, and 0a
 is its leading 

coefficient. We call 0 the leading coefficient of the 

polynomial 0.  Let a  be an ideal in 
[ ]A X

. The 

leading coefficients of the polynomials in a  form an 

ideal 
'a  in A ,  and since A  is Noetherian, 

'a will 

be finitely generated. Let 1,..., mg g
 be elements of a  

whose leading coefficients generate 
'a , and let r be 

the maximum degree of ig
. Now let 

,f a
 and 

suppose 
f

 has degree s r , say, 
...sf aX 

 

Then 
'a a  , and so we can write 
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, ,i ii

i i

a b a b A

a leading coefficient of g

 





  
Now 

, deg( ),
is r

i i i if b g X r g


  has degree 

deg( )f
 . By continuing in this way, we find that 

1mod( ,... )t mf f g g
 With tf  a 

polynomial of degree t r . For each d r , let da
 

be the subset of A  consisting of 0 and the leading 

coefficients of all polynomials in a  of degree 
;d

 it is 

again an ideal in  A . Let ,1 ,,...,
dd d mg g

 be 

polynomials of degree d  whose leading coefficients 

generate da
. Then the same argument as above shows 

that any polynomial df  in a  of degree d  can be 

written 1 ,1 ,mod( ,... )
dd d d d mf f g g

 With 

1df   of degree 1d  . On applying this remark 

repeatedly we find that 

1 01,1 1, 0,1 0,( ,... ,... ,... )
rt r r m mf g g g g
 

 Hence 

       

1 01 1,1 1, 0,1 0,( ,... ,... ,..., ,..., )
rt m r r m mf g g g g g g
 

 

 and so the polynomials 01 0,,..., mg g
 generate a   

 

One of the great successes of category theory in 

computer science has been the development of a 

―unified theory‖ of the constructions underlying 

denotational semantics. In the untyped  -calculus,  

any term may appear in the function position of an 

application. This means that a model D of the  -

calculus must have the property that given a term t  

whose interpretation is 
,d D

 Also, the 

interpretation of a functional abstraction like x . x  

is most conveniently defined as a function from 

Dto D
 , which must then be regarded as an element 

of D. Let 
 : D D D  

 be the function that 

picks out elements of D to represent elements of 

 D D
 and 

 : D D D  
 be the function 

that maps elements of D to functions of D.  Since 

( )f
 is intended to represent the function 

f
 as an 

element of D, it makes sense to require that 

( ( )) ,f f  
 that is, 

 D D
o id 




  

Furthermore, we often want to view every element of 

D as representing some function from D to D and 

require that elements representing the same function 

be equal – that is   

( ( ))

D

d d

or

o id

 

 




  

The latter condition is called extensionality. These 

conditions together imply that 
and 

 are inverses-

-- that is, D is isomorphic to the space of functions 

from D to D  that can be the interpretations of 

functional abstractions: 
 D D D 

 .Let us 

suppose we are working with the untyped 

calculus  , we need a solution ot the equation 

 ,D A D D  
 where A is some 

predetermined domain containing interpretations for 

elements of C.  Each element of D corresponds to 

either an element of A or an element of 
 ,D D

 

with a tag. This equation can be solved by finding 

least fixed points of the function 

 ( )F X A X X  
 from domains to domains -

-- that is, finding domains X  such that 

 ,X A X X  
 and such that for any domain 

Y also satisfying this equation, there is an embedding 

of X to Y  --- a pair of maps 

R

f

f

X Y
  

Such that   
R

X

R

Y

f o f id

f o f id




  

 

Where 
f g

 means that 
f approximates g

 in 

some ordering representing their information content. 

The key shift of perspective from the domain-theoretic 

to the more general category-theoretic approach lies in 

considering F not as a function on domains, but as a 

functor on a category of domains. Instead of a least 

fixed point of the function, F. 

 

Definition 1.3: Let K be a category and :F K K  

as a functor. A fixed point of F is a pair (A,a), where 

A is a K-object and 
: ( )a F A A

 is an 

isomorphism. A prefixed point of F is a pair (A,a), 

where A is a K-object and a is any arrow from F(A) to 

A 

Definition 1.4 : An chain  in a category K  is a 

diagram of the following form: 

1 2

1 2 .....
of f f

oD D D       
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Recall that a cocone 


 of an 
chain 

 is a K-

object X and a collection of K –arrows 

 : | 0i iD X i  
 such that 1i i io f  

 for 

all 0i  . We sometimes write 
: X 

 as a 

reminder of the arrangement of 
's

 components 

Similarly, a colimit 
: X 

is a cocone with the 

property that if 
': X   is also a cocone then 

there exists a unique mediating arrow 
':k X X  

such that for all 
0,, i ii v k o 

. Colimits of 

chains  are sometimes referred to as 

limco its . Dually, an 
op chain   in K is a 

diagram of the following form: 
1 2

1 2 .....
of f f

oD D D      A cone 
: X 

 

of an 
op chain    is a K-object X and a 

collection of K-arrows 
 : | 0i iD i 

 such that for 

all 10, i i ii f o   
. An  

op -limit of an 
op chain     is a cone 

: X 
 with the 

property that if 
': X  is also a cone, then there 

exists a unique mediating arrow 
':k X X  such 

that for all 
0, i ii ok  

 . We write k  (or just 

 ) for the distinguish initial object of K, when it has 

one, and A  for the unique arrow from   to 

each K-object A. It is also convenient to write 

1 2

1 2 .....
f f

D D    to denote all of   except 

oD
 and 0f . By analogy, 

 

 is 
 | 1i i 

. For the 

images of   and 


 under F we write  

1 2( ) ( ) ( )

1 2( ) ( ) ( ) ( ) .....
oF f F f F f

oF F D F D F D      

and 
 ( ) ( ) | 0iF F i  

  

We write 
iF  for the i-fold iterated composition of F – 

that is, 
1 2( ) , ( ) ( ), ( ) ( ( ))oF f f F f F f F f F F f  

 ,etc. With these definitions we can state that every 

monitonic function on a complete lattice has a least 

fixed point: 

 

Lemma 1.4. Let K  be a category with initial object 

  and let :F K K  be a functor. Define the 

chain 
 by 

2
! ( ) (! ( )) (! ( ))

2
( ) ( ) .........

F F F F F

F F
     

        

If both 
: D 

 and 
( ) : ( ) ( )F F F D  

are 

colimits, then (D,d) is an intial F-algebra, where

: ( )d F D D
  is the mediating arrow from 

( )F 
  

to the cocone 




  

 

 

Theorem 1.4 Let a DAG G given in which each node 

is a random variable, and let a discrete conditional 

probability distribution of each node given values of 

its parents in G be specified. Then the product of these 

conditional distributions yields a joint probability 

distribution P of the variables, and (G,P) satisfies the 

Markov condition. 

 

Proof. Order the nodes according to an ancestral 

ordering. Let 1 2, ,........ nX X X
be the resultant 

ordering. Next define.  

 

1 2 1 1

2 2 1 1

( , ,.... ) ( | ) ( | )...

.. ( | ) ( | ),

n n n n nP x x x P x pa P x Pa

P x pa P x pa

 

 

Where iPA
is the set of parents of iX

of in G and 

( | )i iP x pa
is the specified conditional probability 

distribution. First we show this does indeed yield a 

joint probability distribution. Clearly, 

1 20 ( , ,... ) 1nP x x x 
 for all values of the variables. 

Therefore, to show we have a joint distribution, as the 

variables range through all their possible values, is 

equal to one. To that end, Specified conditional 

distributions are the conditional distributions they 

notationally represent in the joint distribution. Finally, 

we show the Markov condition is satisfied. To do this, 

we need show for 1 k n   that  

whenever 

( ) 0, ( | ) 0

( | ) 0

( | , ) ( | ),

k k k

k k

k k k k k

P pa if P nd pa

and P x pa

then P x nd pa P x pa

 




 

Where kND
is the set of nondescendents of kX

of in 

G. Since k kPA ND
, we need only show 

( | ) ( | )k k k kP x nd P x pa
. First for a given k , 

order the nodes so that all and only nondescendents of 

kX
precede kX

in the ordering. Note that this 

ordering depends on k , whereas the ordering in the 

first part of the proof does not. Clearly then 

 

 

 

1 2 1

1 2

, ,....

, ,....

k k

k k k n

ND X X X

Let

D X X X
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follows kd
   

 

 

We define the 
thm cyclotomic field to be the field 

  / ( ( ))mQ x x
 Where 

( )m x
is the 

thm

cyclotomic polynomial. 
  / ( ( ))mQ x x

 
( )m x

 

has degree 
( )m

over 
Q

since 
( )m x

has degree 

( )m
. The roots of 

( )m x
 are just the primitive 

thm roots of unity, so the complex embeddings of 

  / ( ( ))mQ x x
are simply the 

( )m
maps  

 : / ( ( )) ,

1 , ( , ) 1,

( ) ,

k m

k

k m

Q x x C

k m k m where

x



 



 







 

m being our fixed choice of primitive 
thm root of 

unity. Note that 
( )k

m mQ 
for every 

;k
it follows 

that 
( ) ( )k

m mQ Q 
for all k relatively prime to m . 

In particular, the images of the i coincide, so 

  / ( ( ))mQ x x
is Galois over 

Q
. This means that 

we can write 
( )mQ 

for 
  / ( ( ))mQ x x

without 

much fear of ambiguity; we will do so from now on, 

the identification being 
.m x 

One advantage of 

this is that one can easily talk about cyclotomic fields 

being extensions of one another,or intersections or 

compositums; all of these things take place 

considering them as subfield of .C  We now 

investigate some basic properties of cyclotomic fields. 

The first issue is whether or not they are all distinct; to 

determine this, we need to know which roots of unity 

lie in 
( )mQ 

.Note, for example, that if m is odd, 

then m is a 2 thm root of unity. We will show that 

this is the only way in which one can obtain any non-
thm roots of unity. 

 

LEMMA 1.5   If m divides n , then 
( )mQ 

 is 

contained in 
( )nQ 

 

PROOF. Since 
,

n
m

m 
we have 

( ),m nQ 
so 

the result is clear 

 

LEMMA 1.6   If m and n are relatively prime, then  

  
( , ) ( )m n nmQ Q  

 
and 

           
( ) ( )m nQ Q Q  

 

(Recall the 
( , )m nQ  

 is the compositum of 

( ) ( ) )m nQ and Q 
 

 

PROOF. One checks easily that m n 
is a primitive 

thmn root of unity, so that  

( ) ( , )mn m nQ Q  
 

    ( , ) : ( ) : ( :

( ) ( ) ( );

m n m nQ Q Q Q Q Q

m n mn

   

  



 
 

Since 
 ( ) : ( );mnQ Q mn 

this implies that 

( , ) ( )m n nmQ Q  
 We know that 

( , )m nQ  
has 

degree 
( )mn

 over  
Q

, so we must have  

 
 ( , ) : ( ) ( )m n mQ Q n   

 
and 

 ( , ) : ( ) ( )m n mQ Q m   
 

 

 ( ) : ( ) ( ) ( )m m nQ Q Q m    
 

And thus that 
( ) ( )m nQ Q Q  

 

 

PROPOSITION 1.2 For any m and n  

 

 ,
( , ) ( )m n m n

Q Q  
 

And  

( , )( ) ( ) ( );m n m nQ Q Q   
 

here 
 ,m n

and 
 ,m n

denote the least common 

multiple and the greatest common divisor of m and 
,n
respectively. 

 

PROOF.    Write 
1 1

1 1...... ....k ke fe f

k km p p and p p

where the ip
are distinct primes. (We allow i ie or f

to be zero) 
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1 2
1 2

1 2
1 2

1 1
1 12

1 1
1 1

max( ) max( )1, ,1
1 1

( ) ( ) ( )... ( )

( ) ( ) ( )... ( )

( , ) ( )........ ( ) ( )... ( )

( ) ( )... ( ) ( )

( )....... (

e e ek
k

f f fk
k

e e f fk k
k

e f e fk k
k k

e ef k fk

m p p p

n p p p

m n p pp p

p p p p

p p

Q Q Q Q

and

Q Q Q Q

Thus

Q Q Q Q Q

Q Q Q Q

Q Q

   

   

     

   

 











 

max( ) max( )1, ,1
1 1........

,

)

( )

( );

e ef k fkp p

m n

Q

Q








 

 

An entirely similar computation shows that 

( , )( ) ( ) ( )m n m nQ Q Q   
 

 

Mutual information measures the information 

transferred when ix
 is sent and iy

 is received, and is 

defined as 

2

( )

( , ) log (1)
( )

i

i
i i

i

x
P

y
I x y bits

P x


 

In a noise-free channel, each iy
is uniquely connected 

to the corresponding ix
 , and so they constitute an 

input –output pair 
( , )i ix y

 for which 

 

2

1
( ) 1 ( , ) log

( )
i

i j
j

i

x
P and I x y

y P x
 

bits; that 

is, the transferred information is equal to the self-

information that corresponds to the input ix
 In a very 

noisy channel, the output iy
and input ix

would be 

completely uncorrelated, and so 

( ) ( )i
i

j

x
P P x

y


 

and also 
( , ) 0;i jI x y 

that is, there is no transference 

of information. In general, a given channel will 

operate between these two extremes. The mutual 

information is defined between the input and the 

output of a given channel. An average of the 

calculation of the mutual information for all input-

output pairs of a given channel is the average mutual 

information: 

2

. .

(

( , ) ( , ) ( , ) ( , ) log
( )

i

j

i j i j i j

i j i j i

x
P

y
I X Y P x y I x y P x y

P x

 
 

   
 
 

 

 
bits per symbol . This calculation is done over the 

input and output alphabets. The average mutual 

information. The following expressions are useful for 

modifying the mutual information expression: 

( , ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

ji
i j j i

j i

j
j i

ii

i
i j

ji

yx
P x y P P y P P x

y x

y
P y P P x

x

x
P x P P y

y

 








 

Then 

.

2

.

2

.

2

.

2

2

( , ) ( , )

1
( , ) log

( )

1
( , ) log

( )

1
( , ) log

( )

1
( ) ( ) log

( )

1
( ) log ( )

( )

( , ) ( ) ( )

i j

i j

i j

i j i

i j
ii j

j

i j

i j i

i
j

ji i

i

i i

I X Y P x y

P x y
P x

P x y
x

P
y

P x y
P x

x
P P y

y P x

P x H X
P x

XI X Y H X H
Y



 
  

 

 
 

  
 
 

 
 
 

 
  

 



 













 

Where 

2,

1
( ) ( , ) log

( )
i ji j

i

j

XH P x y
Y x

P
y



 

is usually called the equivocation. In a sense, the 

equivocation can be seen as the information lost in the 

noisy channel, and is a function of the backward 

conditional probability. The observation of an output 

symbol jy
provides 

( ) ( )XH X H
Y


 bits of 

information. This difference is the mutual information 

of the channel. Mutual Information: Properties Since 

( ) ( ) ( ) ( )ji
j i

j i

yx
P P y P P x

y x


 
The mutual information fits the condition 

( , ) ( , )I X Y I Y X
 

And by interchanging input and output it is also true 

that 

( , ) ( ) ( )YI X Y H Y H
X

 
 

Where 

2

1
( ) ( ) log

( )
j

j j

H Y P y
P y
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This last entropy is usually called the noise entropy. 

Thus, the information transferred through the channel 

is the difference between the output entropy and the 

noise entropy. Alternatively, it can be said that the 

channel mutual information is the difference between 

the number of bits needed for determining a given 

input symbol before knowing the corresponding 

output symbol, and the number of bits needed for 

determining a given input symbol after knowing the 

corresponding output symbol 

( , ) ( ) ( )XI X Y H X H
Y

 
 

As the channel mutual information expression is a 

difference between two quantities, it seems that this 

parameter can adopt negative values. However, and is 

spite of the fact that for some 
, ( / )j jy H X y

 can be 

larger than 
( )H X

, this is not possible for the 

average value calculated over all the outputs: 

2 2

, ,

( )
( , )

( , ) log ( , ) log
( ) ( ) ( )

i

j i j

i j i j

i j i ji i j

x
P

y P x y
P x y P x y

P x P x P y
 

 

Then 

,

( ) ( )
( , ) ( , ) 0

( , )

i j

i j

i j i j

P x P y
I X Y P x y

P x y
  

 
Because this expression is of the form 

2

1

log ( ) 0
M

i
i

i i

Q
P

P


 

The above expression can be applied due to the factor 

( ) ( ),i jP x P y
which is the product of two 

probabilities, so that it behaves as the quantity iQ
, 

which in this expression is a dummy variable that fits 

the condition 
1ii

Q 
. It can be concluded that the 

average mutual information is a non-negative number. 

It can also be equal to zero, when the input and the 

output are independent of each other. A related 

entropy called the joint entropy is defined as 

2

,

2

,

2

,

1
( , ) ( , ) log

( , )

( ) ( )
( , ) log

( , )

1
( , ) log

( ) ( )

i j

i j i j

i j

i j

i j i j

i j

i j i j

H X Y P x y
P x y

P x P y
P x y

P x y

P x y
P x P y












 

 

 

Theorem 1.5: Entropies of the binary erasure channel 

(BEC) The BEC is defined with an alphabet of two 

inputs and three outputs, with symbol probabilities.  

1 2( ) ( ) 1 ,P x and P x   
and transition 

probabilities 

 

3 2

2 1

3

1

1

2

3

2

( ) 1 ( ) 0,

( ) 0

( )

( ) 1

y y
P p and P

x x

y
and P

x

y
and P p

x

y
and P p

x

  





 
 

 

Lemma 1.7. Given an arbitrary restricted time-

discrete, amplitude-continuous channel whose 

restrictions are determined by sets nF
and whose 

density functions exhibit no dependence on the state s , 

let n be a fixed positive integer, and 
( )p x

an 

arbitrary probability density function on Euclidean n-

space. 
( | )p y x

for the density 

1 1( ,..., | ,... )n n np y y x x
and nF for F

. For any 

real number a, let 

( | )
( , ) : log (1)

( )

p y x
A x y a

p y

 
  
   

Then for each positive integer u , there is a code 

( , , )u n 
such that 

   ( , ) (2)aue P X Y A P X F     

 

Where 

 

 

( , ) ... ( , ) , ( , ) ( ) ( | )

... ( )

A

F

P X Y A p x y dxdy p x y p x p y x

and

P X F p x dx

  

 

 

 
 

Proof: A sequence 
(1)x F such that 

 
 

1

(1)| 1

: ( , ) ;

x

x

P Y A X x

where A y x y A





   


 

Choose the decoding set 1B
to be 

(1)x
A

. Having 

chosen 
(1) ( 1),........, kx x 

and 1 1,..., kB B  , select 
kx F such that 

( )

1
( )

1

| 1 ;k

k
k

ix
i

P Y A B X x 




 
     

 


  

Set 
( )

1

1
k

k

k ix i
B A B




 

, If the process does not 

terminate in a finite number of steps, then the 

sequences 
( )ix and decoding sets 

, 1,2,..., ,iB i u

form the desired code. Thus assume that the process 

terminates after t  steps. (Conceivably 0t  ). We 

will show t u  by showing that  

   ( , )ate P X Y A P X F     
. We 

proceed as follows.  
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Let 

 

1

( , )

. ( 0, ).

( , ) ( , )

( ) ( | )

( ) ( | ) ( )

x

x

t

jj

x y A

x y A

x y B A x

B B If t take B Then

P X Y A p x y dx dy

p x p y x dy dx

p x p y x dy dx p x








 

  

 



 



 

  



 
 

 

Algorithms 

Let A be a ring. Recall that an ideal a in A is a subset 

such that a is subgroup of A regarded as a group under 

addition; 

 
,a a r A ra A   

   
The ideal generated by a subset S of A is the 

intersection of all ideals A containing a ----- it is easy 

to verify that this is in fact an ideal, and that it consist 

of all finite sums of the form 
i i

r s
 with 

,i ir A s S 
. When 

 1,....., mS s s
, we shall 

write 1( ,....., )ms s
for the ideal it generates. 

Let a and b be ideals in A. The set 

 | ,a b a a b b  
 is an ideal, denoted by a b . 

The ideal generated by  
 | ,ab a a b b 

is 

denoted by ab . Note that ab a b  . Clearly ab

consists of all finite sums 
i i

a b
 with ia a

 and 

ib b
, and if 1( ,..., )ma a a

 and 1( ,..., )nb b b
, 

then 1 1( ,..., ,..., )i j m nab a b a b a b
.Let a  be an 

ideal of A. The set of cosets of a in A forms a ring 

/A a , and a a a  is a homomorphism 

: /A A a 
. The map 

1( )b b
 is a one to 

one correspondence between the ideals of /A a  and 

the ideals of A  containing a An ideal 
p

 if prime if 

p A
 and 

ab p a p  
 or 

b p
. Thus 

p
 is 

prime if and only if 
/A p

 is nonzero and has the 

property that  
0, 0 0,ab b a   

  i.e., 

/A p
is an integral domain. An ideal m  is maximal 

if 
|m A

 and there does not exist an ideal n  

contained strictly between m and A . Thus m is 

maximal if and only if /A m  has no proper nonzero 

ideals, and so is a field. Note that m  maximal   m

prime. The ideals of A B  are all of the form a b , 

with a  and b  ideals in A  and B . To see this, note 

that if c  is an ideal in  A B  and 
( , )a b c

, then 

( ,0) ( , )(1,0)a a b c 
 and 

(0, ) ( , )(0,1)b a b c 
. This shows that c a b   

with  

 | ( , )a a a b c some b b  
  

and  

  
 | ( , )b b a b c some a a  

 
 

Let A  be a ring. An A -algebra is a ring B  together 

with a homomorphism 
:Bi A B

. A 

homomorphism of A -algebra B C  is a 

homomorphism of rings 
: B C 

 such that 

( ( )) ( )B Ci a i a 
 for all . An  A -algebra B

is said to be finitely generated ( or of finite-type over 

A) if there exist elements 1,..., nx x B
 such that 

every element of B can be expressed as a polynomial 

in the ix
 with coefficients in 

( )i A
, i.e., such that the 

homomorphism 
 1,..., nA X X B

 sending iX
 to  

ix
is surjective.  A ring homomorphism A B  is 

finite, and B  is finitely generated as an A-module. 

Let k  be a field, and let A be a k -algebra. If 1 0  

in A , then the map k A  is injective, we can 

identify k with its image, i.e., we can regard k as a 

subring of A  . If 1=0 in a ring R, the R is the zero ring, 

i.e., 
 0R 

. Polynomial rings.  Let  k  be a field. A 

monomial in 1,..., nX X
 is an expression of the form 

1

1 ... ,naa

n jX X a N
 . The total degree of the 

monomial is ia . We sometimes abbreviate it by 

1, ( ,..., ) n

nX a a   
. The elements of the 

polynomial ring 
 1,..., nk X X

 are finite sums

1

1 1.... 1 ....... , ,n

n n

aa

a a n a a jc X X c k a  
   

With the obvious notions of equality, addition and 

multiplication. Thus the monomials from basis for  

 1,..., nk X X
 as a k -vector space. The ring 

 1,..., nk X X
is an integral domain, and the only 

units in it are the nonzero constant polynomials. A 

polynomial 1( ,..., )nf X X
 is irreducible if it is 

nonconstant and has only the obvious factorizations, 

a A
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i.e., 
f gh g 

 or h  is constant. Division in 

 k X
. The division algorithm allows us to divide a 

nonzero polynomial into another: let 
f

 and 
g

 be 

polynomials in 
 k X

with 
0;g 

 then there exist 

unique polynomials 
 ,q r k X

 such that 

f qg r 
 with either 0r   or deg r  < deg

g
. 

Moreover, there is an algorithm for deciding whether 

( )f g
, namely, find r and check whether it is zero. 

Moreover, the Euclidean algorithm allows to pass 

from finite set of generators for an ideal in 
 k X

to a 

single generator by successively replacing each pair of 

generators with their greatest common divisor. 

 

 (Pure) lexicographic ordering (lex). Here monomials 

are ordered by lexicographic(dictionary) order. More 

precisely, let 1( ,... )na a 
 and 1( ,... )nb b 

 be 

two elements of 
n ; then  

 
 and  X X 

(lexicographic ordering) if, in the vector difference 

  
, the left most nonzero entry is positive. 

For example,  

 
2 3 4 3 2 4 3 2;XY Y Z X Y Z X Y Z 

. Note that 

this isn’t quite how the dictionary would order them: it 

would put XXXYYZZZZ  after XXXYYZ . Graded 

reverse lexicographic order (grevlex). Here 

monomials are ordered by total degree, with ties 

broken by reverse lexicographic ordering. Thus, 

 
 if i ia b  , or i ia b   and in 

 
 the right most nonzero entry is negative. For 

example:  
4 4 7 5 5 4X Y Z X Y Z  (total degree greater) 

5 2 4 3 5 4 2,XY Z X YZ X YZ X YZ 
. 

 

Orderings on 
 1,... nk X X

 . Fix an ordering on the 

monomials in 
 1,... nk X X

. Then we can write an 

element 
f

 of 
 1,... nk X X

 in a canonical fashion, 

by re-ordering its elements in decreasing order. For 

example, we would write 
2 2 3 2 24 4 5 7f XY Z Z X X Z   

  
as 

3 2 2 2 25 7 4 4 ( )f X X Z XY Z Z lex    
  

or 
2 2 2 3 24 7 5 4 ( )f XY Z X Z X Z grevlex   

  

Let 
 1,..., na X k X X

   , in decreasing order: 

0 1

0 1 0 1 0..., ..., 0f a X X
 

         

  

Then we define. 

 The multidegree of 
f

 to be multdeg(
f

)= 

0 ;  

 The leading coefficient of 
f

to be LC(
f

)=

0
a ; 

 The leading monomial of  
f

to be LM(
f

) = 

0X


; 

 The leading term of 
f

to be LT(
f

) = 

0

0
a X



   

For the polynomial 
24 ...,f XY Z 

 the 

multidegree is (1,2,1), the leading coefficient is 4, the 

leading monomial is 
2XY Z , and the leading term is  

24XY Z . The division algorithm in 
 1,... nk X X

. 

Fix a monomial ordering in 
2 . Suppose given a 

polynomial 
f

 and an ordered set 1( ,... )sg g
 of 

polynomials; the division algorithm then constructs 

polynomials 1,... sa a
 and r   such that 

1 1 ... s sf a g a g r   
  Where either 0r   or no 

monomial in r  is divisible by any of 

1( ),..., ( )sLT g LT g
  Step 1: If 1( ) | ( )LT g LT f

, 

divide 1g
 into 

f
 to get 

 1 1 1 1

1

( )
, ,...,

( )
n

LT f
f a g h a k X X

LT g
   

 

If 1( ) | ( )LT g LT h
, repeat the process until  

1 1 1f a g f 
  (different 1a

) with 1( )LT f
 not 

divisible by 1( )LT g
. Now divide 2g

 into 1f , and 

so on, until 1 1 1... s sf a g a g r   
  With 

1( )LT r
 not divisible by any 1( ),... ( )sLT g LT g

  

Step 2: Rewrite 1 1 2( )r LT r r 
, and repeat Step 1 

with 2r  for 
f

: 1 1 1 3... ( )s sf a g a g LT r r    
  

(different 
'ia s

 )   Monomial ideals. In general, an 

ideal a  will contain a polynomial without containing 

the individual terms of the polynomial; for example, 

the ideal 
2 3( )a Y X 

 contains 
2 3Y X but not 

2Y  or 
3X . 
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DEFINITION 1.5. An ideal a  is monomial if 

c X a X a 

     

 all   with 
0c  .  

PROPOSITION 1.3. Let a be a monomial ideal, and 

let 
 |A X a 

. Then A satisfies the 

condition 
, ( )nA        

  

And a  is the k -subspace of 
 1,..., nk X X

 

generated by the 
,X A 

. Conversely, of A  is a 

subset of 
n  satisfying 

 
, then the k-subspace  a  

of 
 1,..., nk X X

 generated by 
 |X A  

is a 

monomial ideal. 

 

PROOF.  It is clear from its definition that a 

monomial ideal a  is the  k -subspace of 

 1,..., nk X X
  

generated by the set of monomials it contains. If 

X a   and 
 1,..., nX k X X 

 . 

   

If a permutation is chosen uniformly and at random 

from the !n  possible permutations in 
,nS

 then the 

counts 

( )n

jC
 of cycles of length 

j
 are dependent 

random variables. The joint distribution of 
( ) ( ) ( )

1( ,..., )n n n

nC C C
 follows from Cauchy’s 

formula, and is given by 

( )

1 1

1 1 1
[ ] ( , ) 1 ( ) , (1.1)

! !

j

nn
cn

j

j j j

P C c N n c jc n
n j c 

 
    

 
 

  

for 
nc 

.  

 

Lemma1.7 For nonnegative integers 

1,...,

[ ]( )

11 1

,

1
( ) 1 (1.4)

j

j

n

m
n n n

mn

j j

jj j

m m

E C jm n
j  

     
             

 

  

Proof.   This can be established directly by exploiting 

cancellation of the form 

[ ] !/ 1/ ( )!jm

j j j jc c c m 
  

when 
,j jc m

 which occurs between the ingredients 

in Cauchy’s formula and the falling factorials in the 

moments. Write jm jm . Then, with the first 

sum indexed by 1( ,... ) n

nc c c  
 and the last sum 

indexed by  1( ,..., ) n

nd d d  
 via the 

correspondence 
,j j jd c m 

 we have  

[ ] [ ]( ) ( )

1 1

[ ]

: 1 1

11 1

( ) [ ] ( )

( )
1

!

1 1
1

( )!

j j

j

j

j j

j j

n n
m mn n

j j

cj j

m
nn

j

j c
c c m for all j j j j

n nn

jm d
d jj j j

E C P C c c

c
jc n

j c

jd n m
j j d

 

  

 

 
  

 

 
  

 

 
   

 

 

  

  

  

This last sum simplifies to the indicator 
1( ),m n

 

corresponding to the fact that if 
0,n m 

 then 

0jd 
 for 

,j n m 
 and a random permutation in 

n mS   must have some cycle structure 1( ,..., )n md d  . 

The moments of 

( )n

jC
  follow immediately as 

 ( ) [ ]( ) 1 (1.2)n r r

jE C j jr n 
  

We note for future reference that (1.4) can also be 

written in the form  

[ ] [ ]( )

11 1

( ) 1 , (1.3)j j

n n n
m mn

j j j

jj j

E C E Z jm n
 

     
      

    
 

  

Where the jZ
 are independent Poisson-distribution 

random variables that satisfy 
( ) 1/jE Z j

  

 

The marginal distribution of cycle counts provides a 

formula for the joint distribution of the cycle counts 

,n

jC
 we find the distribution of 

n

jC
 using a 

combinatorial approach combined with the inclusion-

exclusion formula. 

 

Lemma  1.8.   For 
1 ,j n 

 

 

[ / ]
( )

0

[ ] ( 1) (1.1)
! !

k ln j k
n l

j

l

j j
P C k

k l

 



  
  

Proof.     Consider the set I  of all possible cycles of 

length 
,j

 formed with elements chosen from 

 1,2,... ,n
 so that 

[ ]/j jI n
. For each 

,I 
 

consider the ―property‖ 
G  of having 

;
 that is,  

G is the set of permutations nS 
 such that   is 

one of the cycles of .  We then have 

( )!,G n j  
since the elements of 

 1,2,...,n
 

not in   must be permuted among themselves. To 

use the inclusion-exclusion formula we need to 

calculate the term 
,rS

 which is the sum of the 
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probabilities of the r -fold intersection of properties, 

summing over all sets of r distinct properties. There 

are two cases to consider. If the r properties are 

indexed by r cycles having no elements in common, 

then the intersection specifies how 
rj

 elements are 

moved by the permutation, and there are 

( )!1( )n rj rj n 
 permutations in the intersection. 

There are 
[ ] / ( !)rj rn j r

 such intersections. For the 

other case, some two distinct properties name some 

element in common, so no permutation can have both 

these properties, and the r -fold intersection is empty. 

Thus 

[ ]

( )!1( )

1 1
1( )

! ! !

r

rj

r r

S n rj rj n

n
rj n

j r n j r

  

  

  
Finally, the inclusion-exclusion series for the number 

of permutations having exactly k  properties is 

,

0

( 1)l

k l

l

k l
S

l




 
  

 


  
Which simplifies to (1.1) Returning to the original hat-

check problem, we substitute j=1 in (1.1) to obtain the 

distribution of the number of fixed points of a random 

permutation. For 
0,1,..., ,k n

  

( )

1

0

1 1
[ ] ( 1) , (1.2)

! !

n k
n l

l

P C k
k l





  
  

and the moments of 
( )

1

nC
 follow from (1.2) with 

1.j 
 In particular, for  

2,n 
 the mean and 

variance of 
( )

1

nC
are both equal to 1. The joint 

distribution of 
( ) ( )

1( ,..., )n n

bC C
 for any 1 b n   

has an expression similar to (1.7); this too can be 

derived by inclusion-exclusion. For any 

1( ,..., ) b

bc c c  
 with 

,im ic   

1

( ) ( )

1

...

01 1

[( ,..., ) ]

1 1 1 1
( 1) (1.3)

! !

i i

b

i

n n

b

c lb b
l l

l withi ii i
il n m

P C C c

i c i l

 

 

 



     
     

     


 

  

The joint moments of the first b  counts 
( ) ( )

1 ,...,n n

bC C
 can be obtained directly from (1.2) and 

(1.3) by setting 1 ... 0b nm m   
  

 

The limit distribution of cycle counts 

It follows immediately from Lemma 1.2 that for each 

fixed 
,j

 as 
,n
 

( ) 1/[ ] , 0,1,2,...,
!

k
n j

j

j
P C k e k

k


  

  

So that 

( )n

jC
converges in distribution to a random 

variable jZ
 having a Poisson distribution with mean 

1/ ;j
 we use the notation 

( )n

j d jC Z
 where 

(1/ )j oZ P j
  to describe this. Infact, the limit 

random variables are independent. 

 

Theorem 1.6   The process of cycle counts converges 

in distribution to a Poisson process of   with 

intensity 
1j
. That is, as 

,n
  

( ) ( )

1 2 1 2( , ,...) ( , ,...) (1.1)n n

dC C Z Z

  

Where the 
, 1,2,...,jZ j 

 are independent Poisson-

distributed random variables with  

1
( )jE Z

j


  

Proof.  To establish the converges in distribution one 

shows that for each fixed 
1,b 

 as 
,n
  

 
( ) ( )

1 1[( ,..., ) ] [( ,..., ) ]n n

b bP C C c P Z Z c  
  

 

Error rates 

The proof of Theorem says nothing about the rate of 

convergence. Elementary analysis can be used to 

estimate this rate when 1b  . Using properties of 

alternating series with decreasing terms, for 

0,1,..., ,k n
  

( )

1 1

1 1 1
( ) [ ] [ ]

! ( 1)! ( 2)!

1

!( 1)!

nP C k P Z k
k n k n k

k n k

    
   


 

   

 

It follows that  
1 1

( )

1 1

0

2 2 1
[ ] [ ] (1.11)

( 1)! 2 ( 1)!

n nn
n

k

n
P C k P Z k

n n n

 




    

  


  
Since 

1

1

1 1 1
[ ] (1 ...) ,

( 1)! 2 ( 2)( 3) ( 1)!

e
P Z n

n n n n n



     
    

  

We see from (1.11) that the total variation distance 

between the distribution 
( )

1( )nL C
 of 

( )

1

nC
 and the 

distribution 1( )L Z
 of 1Z
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Establish the asymptotics of 

( )( )n

nA C     under 

conditions 0( )A
 and 01( ),B

 where 

 
'

( ) ( )

1 1

( ) 0 ,

i i

n n

n ij

i n r j r

A C C
    

  
 

and 

''( / ) 1 ( )g

i i idr r O i   
 as 

,i 
 for 

some 
' 0.g 

  We start with the expression 

'

'
( ) 0

0

0

1

1

[ ( ) ]
[ ( )]

[ ( ) ]

1 (1 ) (1.1)

i i

n m
n

m

i

i n i
r j r

P T Z n
P A C

P T Z n

E
ir



 

  






 
  

 


  

  

'

0

1 1

1

1 '

1,2,7

[ ( ) ]

exp [log(1 ) ]

1 ( ( )) (1.2)

n

i

P T Z n

d
i d i d

n

O n n


 



 







 
   

 





  
and 

  

'

0

1 1

1

1

1,2,7

[ ( ) ]

exp [log(1 ) ]

1 ( ( )) (1.3)

n

i

P T Z n

d
i d i d

n

O n n


 



 







 
   

 





 

Where  
'

1,2,7
( )n

 refers to the quantity derived from 

'Z . It thus follows that 
( ) (1 )[ ( )]n d

nP A C Kn  
 

for a constant K , depending on Z  and the 
'

ir  and 

computable explicitly from (1.1) – (1.3), if Conditions 

0( )A
 and 01( )B

 are satisfied and if 

'

( )g

i O i  
 

from some 
' 0,g 

 since, under these circumstances, 

both  
1 '

1,2,7
( )n n

 and   
1

1,2,7
( )n n

 tend to zero 

as .n  In particular, for polynomials and square 

free polynomials, the relative error in this asymptotic 

approximation is of order 
1n

 if 
' 1.g 

  

 

For 0 / 8b n   and 0 ,n n
 with 0n

  

 7,7

( ( [1, ]), ( [1, ]))

( ( [1, ]), ( [1, ]))

( , ),

TV

TV

d L C b L Z b

d L C b L Z b

n b





 

  

Where  7,7
( , ) ( / )n b O b n 

 under Conditions 

0 1( ), ( )A D
 and 11( )B

 Since, by the Conditioning 

Relation, 

0 0( [1, ] | ( ) ) ( [1, ] | ( ) ),b bL C b T C l L Z b T Z l  
 

  
It follows by direct calculation that 

0 0

0

0

( ( [1, ]), ( [1, ]))

( ( ( )), ( ( )))

max [ ( ) ]

[ ( ) ]
1 (1.4)

[ ( ) ]

TV

TV b b

b
A

r A

bn

n

d L C b L Z b

d L T C L T Z

P T Z r

P T Z n r

P T Z n





 

  
 

 



 

  

Suppressing the argument Z  from now on, we thus 

obtain  

( ( [1, ]), ( [1, ]))TVd L C b L Z b
 

 

0

0 0

[ ]
[ ] 1

[ ]

bn
b

r n

P T n r
P T r

P T n 

  
   

 


 
[ /2]

0
0

/2 0 0

[ ]
[ ]

[ ]

n

b
b

r n r b

P T r
P T r

P T n 


  


 

 

0

0

[ ]( [ ] [ ]
n

b bn bn

s

P T s P T n s P T n r
 

 
       
 


 
[ /2]

0 0

/2 0

[ ] [ ]
n

b b

r n r

P T r P T r
 

    
 

 [ /2]

0

0 0

[ /2]

0 0

0 [ /2] 1

[ ] [ ]
[ ]

[ ]

[ ] [ ] [ ] / [ ]

n
bn bn

b

s n

n n

b bn n

s s n

P T n s P T n r
P T s

P T n

P T r P T s P T n s P T n



  

    
 



     



 

 The first sum is at most 
1

02 ;bn ET

the third is bound 

by 

 

0 0
/2

10.5(1)

( max [ ]) / [ ]

2 ( / 2, ) 3
,

[0,1]

b n
n s n

P T s P T n

n b n

n P





 
 



  

 

 

[ /2] [ /2]
2

0 010.8
0 0

10.8 0

3 1
4 ( ) [ ] [ ]

[0,1] 2

12 ( )

[0,1]

n n

b b

r s

b

n
n n P T r P T s r s

P

n ET

P n












 

 



  



 

  

Hence we may take 
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10.81

07,7

10.5(1)

6 ( )
( , ) 2 ( ) 1

[0,1]

6
( / 2, ) (1.5)

[0,1]

b

n
n b n ET Z P

P

n b
P
















  

  
  



  
 

Required order under Conditions 0 1( ), ( )A D
 and 

11( ),B
 if 

( ) .S  
 If not,    10.8

n

 can be 

replaced by    10.11
n

in the above, which has the 

required order, without the restriction on the ir  

implied by 
( )S  

. Examining the Conditions  

0 1( ), ( )A D
 and 11( ),B

it is perhaps surprising to find 

that 11( )B
 is required instead of just 01( );B

 that is, 

that we should need 

1

2
( )a

ill
l O i 




  to hold for 

some 1 1a 
. A first observation is that a similar 

problem arises with the rate of decay of 1i  as well. 

For this reason, 1n
 is replaced by 1n



. This makes it 

possible to replace condition 1( )A
 by the weaker pair 

of conditions 0( )A
and 1( )D

in the eventual 

assumptions needed for    7,7
,n b

 to be of order 

( / );O b n
  the decay rate requirement of order 

1i  

 

is shifted from 1i  itself to its first difference. This is 

needed to obtain the right approximation error for the 

random mappings example. However, since all the 

classical applications make far more stringent 

assumptions about the 1, 2,i l 
 than are made in 

11( )B
. The critical point of the proof is seen where 

the initial estimate of the difference
( ) ( )[ ] [ 1]m m

bn bnP T s P T s   
. The factor 

 10.10
( ),n

 which should be small, contains a far tail 

element from 1n


 of the form 1 1( ) ( ),n u n 
 which 

is only small if 1 1,a 
 being otherwise of order 

11( )aO n  

 for any 
0, 

 since 2 1a 
 is in any 

case assumed. For 
/ 2,s n

 this gives rise to a 

contribution of order  
11

( )
aO n   

 in the estimate of 

the difference 
[ ] [ 1],bn bnP T s P T s   

 which, 

in the remainder of the proof, is translated into a 

contribution of order 
11

( )
aO tn   

for differences of 

the form 
[ ] [ 1],bn bnP T s P T s   

 finally 

leading to a contribution of order 
1abn  

 for any 

0   in  7.7
( , ).n b

 Some improvement would 

seem to be possible, defining the function 
g

 by 

   ( ) 1 1 ,
w s w s t

g w
  

 
  differences that are of the 

form 
[ ] [ ]bn bnP T s P T s t   

 can be directly 

estimated, at a cost of only a single contribution of the 

form 1 1( ) ( ).n u n 
 Then, iterating the cycle, in 

which one estimate of a difference in point 

probabilities is improved to an estimate of smaller 

order, a bound of the form  

112[ ] [ ] ( )a

bn bnP T s P T s t O n t n        
 

for any 0   could perhaps be attained, leading to a 

final error estimate in order  
11( )aO bn n   

for 

any 0  , to replace  7.7
( , ).n b

 This would be of 

the ideal order 
( / )O b n

for large enough 
,b

 but 

would still be coarser for small .b   

 

 

With b and n  as in the previous section, we wish to 

show that  

 

1

0 0

7,8

1
( ( [1, ]), ( [1, ])) ( 1) 1

2

( , ),

TV b bd L C b L Z b n E T ET

n b





   



  

Where  
121 1

7.8
( , ) ( [ ])n b O n b n b n      

 for 

any 0   under Conditions 0 1( ), ( )A D
 and 12( ),B

with 12
. The proof uses sharper estimates. As before, 

we begin with the formula  

 

0

0 0

( ( [1, ]), ( [1, ]))

[ ]
[ ] 1

[ ]

TV

bn
b

r n

d L C b L Z b

P T n r
P T r

P T n 

  
   

 


 

  
Now we observe that  
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[ /2]

0
0

0 00 0

0

[ /2] 1

2 2

0 0 0
/2

0

10.5(2)2 2

0

[ ] [ ]
[ ] 1

[ ] [ ]

[ ]( [ ] [ ])

4 ( max [ ]) / [ ]

[ / 2]

3 ( / 2, )
8 , (1.1)

[0,1]

n

bn b
b

r rn n

n

b bn bn

s n

b b n
n s n

b

b

P T n r P T r
P T r

P T n P T n

P T s P T n s P T n r

n ET P T s P T n

P T n

n b
n ET

P





 

 



 



   
   

  

      

   

 

 

 



  

We have   

     

0[ /2]

0

0

[ /2]

0

0

[ /2]

0 0

0

0 02
0 00

1

010.14 10.8

[ ]

[ ]

( [ ]( [ ] [ ]

( )(1 )
[ ] [ ] )

1

1
[ ] [ ]

[ ]

( , ) 2( ) 1 4 ( )

6

bn

n

r

n

b bn bn

s

n
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The approximation in (1.2) is further simplified by 

noting that  

[ /2] [ /2]

0 0

0 0

( )(1 )
[ ] [ ]

1

n n

b b

r s

s r
P T r P T s

n
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( )(1 )
[ ]

1
b

s
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[ /2]

0 0

0 [ /2]

1 2 2

0 0 0
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1
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n
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r s n

b b b

s r
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n

n E T T n n ET



 

 

 

 
  



    

 

 

 

and then by observing that  

 

0 0

[ /2] 0

1

0 0 0 0

2 2

0

( )(1 )
[ ] [ ]

1

1 ( [ / 2] ( 1 / 2 ))

4 1 (1.4)

b b

r n s

b b b b

b

s r
P T r P T s

n

n ET P T n E T T n

n ET







 





  
  

 

    

 

 

 

 

Combining the contributions of (1.2) –(1.3), we thus 

find tha
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The quantity  7.8
( , )n b

is seen to be of the order 

claimed under Conditions 0 1( ), ( )A D
 and 12( )B

, 

provided that 
( ) ;S  

 this supplementary 

condition can be removed if  10.8
( )n

 is replaced by 

 10.11
( )n

   in the definition of  7.8
( , )n b

, has the 

required order without the restriction on the ir  implied 

by assuming that 
( ) .S  

Finally, a direct 

calculation now shows that 

0 0

0 0

0 0

[ ] [ ]( )(1 )

1
1

2

b b

r s

b b

P T r P T s s r

E T ET





  

 
    

 

  

 

 
 

Example 1.0.  Consider the point 

(0,...,0) nO  
. For an arbitrary vector r , the 

coordinates of the point x O r   are equal to the 

respective coordinates of the vector 
1: ( ,... )nr x x x

 and 
1( ,..., )nr x x

. The vector r 

such as in the example is called the position vector or 

the radius vector of the point x  . (Or, in greater detail: 

r  is the radius-vector of x  w.r.t an origin O). Points 

are frequently specified by their radius-vectors. This 

presupposes the choice of O as the ―standard origin‖.   

Let us summarize. We have considered 
n  and 

interpreted its elements in two ways: as points and as 
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vectors. Hence we may say that we leading with the 

two copies of  :n  
n = {points},      

n = {vectors}  

Operations with vectors: multiplication by a number, 

addition. Operations with points and vectors: adding a 

vector to a point (giving a point), subtracting two 

points (giving a vector). 
n treated in this way is 

called an n-dimensional affine space. (An ―abstract‖ 

affine space is a pair of sets , the set of points and the 

set of vectors so that the operations as above are 

defined axiomatically). Notice that vectors in an affine 

space are also known as ―free vectors‖. Intuitively, 

they are not fixed at points and ―float freely‖ in space. 

From 
n considered as an affine space we can 

precede in two opposite directions: 
n  as an 

Euclidean space   
n as an affine space   

n as 

a manifold.Going to the left means introducing some 

extra structure which will make the geometry richer. 

Going to the right means forgetting about part of the 

affine structure; going further in this direction will 

lead us to the so-called ―smooth (or differentiable) 

manifolds‖. The theory of differential forms does not 

require any extra geometry. So our natural direction is 

to the right. The Euclidean structure, however, is 

useful for examples and applications. So let us say a 

few words about it: 

 

Remark 1.0.  Euclidean geometry.  In 
n  

considered as an affine space we can already do a 

good deal of geometry. For example, we can consider 

lines and planes, and quadric surfaces like an ellipsoid. 

However, we cannot discuss such things as ―lengths‖, 

―angles‖ or ―areas‖ and ―volumes‖. To be able to do 

so, we have to introduce some more definitions, 

making 
n a Euclidean space. Namely, we define the 

length of a vector 
1( ,..., )na a a

 to be  

1 2 2: ( ) ... ( ) (1)na a a  
  

After that we can also define distances between points 

as follows: 

( , ) : (2)d A B AB


  
One can check that the distance so defined possesses 

natural properties that we expect: is it always non-

negative and equals zero only for coinciding points; 

the distance from A to B is the same as that from B to 

A (symmetry); also, for three points, A, B and C, we 

have 
( , ) ( , ) ( , )d A B d A C d C B 

 (the ―triangle 

inequality‖). To define angles, we first introduce the 

scalar product of two vectors 

 
1 1( , ) : ... (3)n na b a b a b  

  

Thus 
( , )a a a

 . The scalar product is also 

denote by dot: 
. ( , )a b a b

, and hence is often 

referred to as the ―dot product‖ . Now, for nonzero 

vectors, we define the angle between them by the 

equality 

( , )
cos : (4)

a b

a b
 

  
The angle itself is defined up to an integral 

multiple of 2  . For this definition to be consistent 

we have to ensure that the r.h.s. of (4) does not exceed 

1 by the absolute value. This follows from the 

inequality 
2 22( , ) (5)a b a b

  
known as the Cauchy–Bunyakovsky–Schwarz 

inequality (various combinations of these three names 

are applied in different books). One of the ways of 

proving (5) is to consider the scalar square of the 

linear combination 
,a tb

 where t R . As  

( , ) 0a tb a tb  
 is a quadratic polynomial in t  

which is never negative, its discriminant must be less 

or equal zero. Writing this explicitly yields (5). The 

triangle inequality for distances also follows from the 

inequality (5). 

 

Example 1.1.    Consider the function 
( ) if x x

 

(the i-th coordinate). The linear function 
idx  (the 

differential of 
ix  ) applied to an arbitrary vector h  is 

simply 
ih .From these examples follows that we can 

rewrite 
df

 as 

1

1
... , (1)n

n

f f
df dx dx

x x

 
  
    

which is the standard form. Once again: the partial 

derivatives in (1) are just the coefficients (depending 

on x ); 
1 2, ,...dx dx

 are linear functions giving on an 

arbitrary vector h  its coordinates 
1 2, ,...,h h

 

respectively. Hence 

  

1

( ) 1
( )( )

... , (2)

hf x

n

n

f
df x h h

x

f
h

x


   





  

 

Theorem   1.7.     Suppose we have a parametrized 

curve 
( )t x t

 passing through 0

nx 
 at 0t t

 

and with the velocity vector 0( )x t 
 Then  

0 0 0

( ( ))
( ) ( ) ( )( ) (1)

df x t
t f x df x

dt
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Proof.  Indeed, consider a small increment of the 

parameter 0 0:t t t t
, Where 0t  . On the 

other hand, we have  

0 0 0( ) ( ) ( )( ) ( )f x h f x df x h h h   
  for an 

arbitrary vector h , where 
( ) 0h 

 when 0h  . 

Combining it together, for the increment of 
( ( ))f x t

  

we obtain 

0 0

0

0

( ( ) ( )

( )( . ( ) )

( . ( ) ). ( )

( )( ). ( )

f x t t f x

df x t t t

t t t t t t

df x t t t

 

    

 

  

    

        

    

     

For a certain 
( )t 

 such that 
( ) 0t  

when 

0t   (we used the linearity of 0( )df x
). By the 

definition, this means that the derivative of 
( ( ))f x t

 

at 0t t
 is exactly 0( )( )df x 

. The statement of the 

theorem can be expressed by a simple formula: 

1

1

( ( ))
... (2)n

n

df x t f f
x x

dt x x

 
  
    

 

To calculate the value Of 
df

 at a point 0x
 on a given 

vector   one can take an arbitrary curve passing 

Through 0x
 at 0t  with   as the velocity vector at 0t

and calculate the usual derivative of 
( ( ))f x t

 at 

0t t
. 

 

Theorem 1.8.  For functions 
, :f g U  

,

,nU  
  

 

( ) (1)

( ) . . (2)

d f g df dg

d fg df g f dg

  

 
   

 

Proof. Consider an arbitrary point 0x
 and an arbitrary 

vector   stretching from it. Let a curve 
( )x t

 be such 

that 0 0( )x t x
 and 0( )x t 

.  

Hence 

0( )( )( ) ( ( ( )) ( ( )))
d

d f g x f x t g x t
dt

  
  

at 0t t
 and  

0( )( )( ) ( ( ( )) ( ( )))
d

d fg x f x t g x t
dt

 
  

at 0t t
 Formulae (1) and (2) then immediately 

follow from the corresponding formulae for the usual 

derivative Now, almost without change the theory 

generalizes to functions taking values in  
m  instead 

of  . The only difference is that now the differential 

of a map : mF U    at a point x  will be a linear 

function taking vectors in 
n  to vectors in 

m

(instead of  ) . For an arbitrary vector 
| ,nh 

  

 

( ) ( ) ( )( )F x h F x dF x h  
  

+
( ) (3)h h

  

Where 
( ) 0h 

  when  0h . We have  
1( ,..., )mdF dF dF

 and  

1

1

1 1

11

1

...

....

... ... ... ... (4)

...

n

n

n

nm m

n

F F
dF dx dx

x x

F F

dxx x

dxF F

x x

 
  
 

  
     

   
      
 
     

 

In this matrix notation we have to write vectors as 

vector-columns. 

 

Theorem 1.9. For an arbitrary parametrized curve 

( )x t
 in 

n , the differential of a   map 

: mF U    (where 
nU   ) maps the velocity 

vector 
( )x t

 to the velocity vector of the curve 

( ( ))F x t
 in :m   

.( ( ))
( ( ))( ( )) (1)

dF x t
dF x t x t

dt


    
 

Proof.  By the definition of the velocity vector, 
.

( ) ( ) ( ). ( ) (2)x t t x t x t t t t      

  

Where 
( ) 0t  

 when 0t  . By the 

definition of the differential,  

( ) ( ) ( )( ) ( ) (3)F x h F x dF x h h h   

  

Where 
( ) 0h 

 when 0h . we obtain  
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.

.

. .

.

( ( )) ( ( ). ( ) )

( ) ( )( ( ) ( ) )

( ( ) ( ) ). ( ) ( )

( ) ( )( ( ) ( )

h

F x t t F x x t t t t

F x dF x x t t t t

x t t t t x t t t t

F x dF x x t t t t





  



       

      

       

     



   
 

For some 
( ) 0t  

 when 0t  . This precisely 

means that 

.

( ) ( )dF x x t
 is the velocity vector of 

( )F x
. As every vector attached to a point can be 

viewed as the velocity vector of some curve passing 

through this point, this theorem gives a clear 

geometric picture of dF  as a linear map on vectors. 

   

Theorem 1.10 Suppose we have two maps 

:F U V  and 
: ,G V W

 where 

, ,n m pU V W    
 (open domains). Let 

: ( )F x y F x
. Then the differential of the 

composite map :GoF U W  is the composition 

of the differentials of F  and :G   

( )( ) ( ) ( ) (4)d GoF x dG y odF x
  

 

Proof.   We can use the description of the 

differential .Consider a curve 
( )x t

 in 
n  with the 

velocity vector 

.

x . Basically, we need to know to 

which vector in  
p it is taken by 

( )d GoF
. the 

curve 
( )( ( ) ( ( ( ))GoF x t G F x t

. By the same 

theorem, it equals the image under dG  of the 

Anycast Flow vector to the curve 
( ( ))F x t

 in 
m . 

Applying the theorem once again, we see that the 

velocity vector to the curve 
( ( ))F x t

is the image 

under dF of the vector 

.

( )x t
. Hence 

. .

( )( ) ( ( ))d GoF x dG dF x
  for an arbitrary vector 

.

x  . 

 

Corollary 1.0.    If we denote coordinates in 
n by 

1( ,..., )nx x
 and in 

m by 
1( ,..., )my y

, and write 

1

1

1

1

... (1)

... , (2)

n

n

n

n

F F
dF dx dx

x x

G G
dG dy dy

y y

 
  
 

 
  
 

  
Then the chain rule can be expressed as follows: 

1

1
( ) ... , (3)m

m

G G
d GoF dF dF

y y

 
  
    

Where 
idF  are taken from (1). In other words, to get 

( )d GoF
 we have to substitute into (2) the 

expression for 
i idy dF

 from (3). This can also be 

expressed by the following matrix formula: 

  

1 1 1 1

11 1

1 1

.... ....

( ) ... ... ... ... ... ... ... (4)

... ...

m n

np p m m

m n

G G F F

dxy y x x

d GoF

dxG G F F

y y x x

     
         
    
          

         
 

i.e., if dG  and dF  are expressed by matrices of 

partial derivatives, then 
( )d GoF

 is expressed by the 

product of these matrices. This is often written as  

 

1 11 1

11

1 1

1 1

1

1

........

... ... ... ... ... ...

... ...

....

... ... ... , (5)

...

mn

p p p p

n m

n

m m

n

z zz z

y yx x

z z z z

x x y y

y y

x x

y y

x x

    
        
  
  

     
         

  
 
  

 
 
  

 
    

Or 

1

, (6)
im

a i a
i

z z y

x y x

 



  


  


  

Where it is assumed that the dependence of 
my

 

on 
nx  is given by the map F , the dependence 

of 
pz  on 

my
 is given by the map 

,G
 and 

the dependence of  
pz on 

nx is given by the 

composition GoF .  
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Definition 1.6.  Consider an open domain 
nU   . 

Consider also another copy of 
n , denoted for 

distinction 

n

y , with the standard coordinates 
1( ... )ny y

. A system of coordinates in the open 

domain U  is given by a map 
: ,F V U

 where 
n

yV  
 is an open domain of 

n

y , such that the 

following three conditions are satisfied :  

(1) F  is smooth; 

(2) F  is invertible; 

(3) 
1 :F U V   is also smooth 

 

The coordinates of a point x U  in this system are 

the standard coordinates of 

1( ) n

yF x 
 

In other words,  
1 1: ( ..., ) ( ..., ) (1)n nF y y x x y y

  

Here the variables 
1( ..., )ny y

 are the ―new‖ 

coordinates of the point x   

 

Example  1.2.     Consider a curve in 
2  specified in 

polar coordinates as  

( ) : ( ), ( ) (1)x t r r t t  
  

We can simply use the chain rule. The map 
( )t x t

 

can be considered as the composition of the maps  

( ( ), ( )),( , ) ( , )t r t t r x r   
. Then, by the 

chain rule, we have  
. . .

(2)
dx x dr x d x x

x r
dt r dt dt r




 

   
    

   

   

Here 

.

r  and 

.


 are scalar coefficients depending on t , 

whence the partial derivatives 
,x x

r 
 
 

  are 

vectors depending on point in 
2 . We can compare 

this with the formula in the ―standard‖ coordinates: 
. . .

1 2x e x e y 
. Consider the vectors   

,x x
r 

 
 

. Explicitly we have  

(cos ,sin ) (3)

( sin , cos ) (4)

x

r

x
r r

 

 








 


  

From where it follows that these vectors make a basis 

at all points except for the origin (where 0r  ). It is 

instructive to sketch a picture, drawing vectors 

corresponding to a point as starting from that point. 

Notice that  
,x x

r 
 
 

 are, respectively, the 

velocity vectors for the curves 
( , )r x r 

  

0( )fixed 
 and 0( , ) ( )x r r r fixed  

. 

We can conclude that for an arbitrary curve given in 

polar coordinates the velocity vector will have 

components 

. .

( , )r 
 if as a basis we take 

: , : :r
x xe e

r  
  
 

  
. . .

(5)rx e r e  
   

A characteristic feature of the basis 
,re e  is that it is 

not ―constant‖ but depends on point. Vectors ―stuck to 

points‖ when we consider curvilinear coordinates. 

 

Proposition  1.3.   The velocity vector has the same 

appearance in all coordinate systems. 

Proof.        Follows directly from the chain rule and 

the transformation law for the basis ie
.In particular, 

the elements of the basis 
ii

xe
x


  (originally, a 

formal notation) can be understood directly as the 

velocity vectors of the coordinate lines 
1( ,..., )i nx x x x

  (all coordinates but 
ix  are 

fixed). Since we now know how to handle velocities 

in arbitrary coordinates, the best way to treat the 

differential of a map : n mF    is by its action 

on the velocity vectors. By definition, we set 

0 0 0

( ) ( ( ))
( ) : ( ) ( ) (1)

dx t dF x t
dF x t t

dt dt


  

Now 0( )dF x
 is a linear map that takes vectors 

attached to a point 0

nx 
 to vectors attached to the 

point 
( ) mF x 

  

1

1

1 1

11

1

1

...

...

( ,..., ) ... ... ... ... , (2)

...

n

n

n

m

nm m

n

F F
dF dx dx

x x

F F

dxx x

e e

dxF F

x x

 
  
 

  
     
  
      
 
     

In particular, for the differential of a function we 

always have  

1

1
... , (3)n

n

f f
df dx dx

x x
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Where 
ix  are arbitrary coordinates. The form of the 

differential does not change when we perform a 

change of coordinates. 

 

Example  1.3   Consider a 1-form in 
2  given in the 

standard coordinates: 

 

A ydx xdy  
  In the polar coordinates we will 

have 
cos , sinx r y r  

, hence 

cos sin

sin cos

dx dr r d

dy dr r d

  

  

 

 
  

Substituting into A , we get 

2 2 2 2

sin (cos sin )

cos (sin cos )

(sin cos )

A r dr r d

r dr r d

r d r d

   

   

   

  

 

  
  

Hence  
2A r d

 is the formula for A  in the polar 

coordinates. In particular, we see that this is again a 1-

form, a linear combination of the differentials of 

coordinates with functions as coefficients. Secondly, 

in a more conceptual way, we can define a 1-form in a 

domain U  as a linear function on vectors at every 

point of U : 
1

1( ) ... , (1)n

n      
  

If 

i

ie  , where 
ii

xe
x


 . Recall that the 

differentials of functions were defined as linear 

functions on vectors (at every point), and  

( ) (2)i i i

j jj

x
dx e dx

x


 
  

      at 

every point x .  

 

Theorem  1.9.   For arbitrary 1-form   and path 


, 

the integral 


 does not change if we change 

parametrization of 


 provide the orientation remains 

the same. 

Proof: Consider 
'

( ( )),
dx

x t
dt


 and  

'

'
( ( ( ))),

dx
x t t

dt


 As 

'

'
( ( ( ))),

dx
x t t

dt


=

'

' '
( ( ( ))), . ,

dx dt
x t t

dt dt


  

 

 

 

Let 
p

 be a rational prime and let 
( ).pK  

 We 

write 


 for p  or this section. Recall that K  has 

degree 
( ) 1p p  

 over 
.
 We wish to show that 

 .KO  
 Note that 


 is a root of 

1,px 
 and 

thus is an algebraic integer; since K
 is a ring we 

have that 
  .KO 

 We give a proof without 

assuming unique factorization of ideals. We begin 

with some norm and trace computations. Let 
j

 be an 

integer. If 
j

is not divisible by 
,p

 then 
j

 is a 

primitive 
thp

 root of unity, and thus its conjugates are 
2 1, ,..., .p   

 Therefore 

 
2 1

/ ( ) ... ( ) 1 1j p

K pTr            

  

If 
p

 does divide 
,j
 then 

1,j 
 so it has only the 

one conjugate 1, and  / ( ) 1j

KTr p    By 

linearity of the trace, we find that  
2

/ /

1

/

(1 ) (1 ) ...

(1 )

K K

p

K

Tr Tr

Tr p

 

 

   

  

 

  

We also need to compute the norm of 
1 

. For this, 

we use the factorization  

 

1 2

2 1

... 1 ( )

( )( )...( );

p p

p

p

x x x

x x x  

 



    

   
  

Plugging in 1x   shows that  

 
2 1(1 )(1 )...(1 )pp       

  

Since the 
(1 )j

 are the conjugates of 
(1 ),

this 

shows that  / (1 )KN p   The key result for 

determining the ring of integers KO
 is the following. 

 

LEMMA 1.9 

  
(1 ) KO p   

  

Proof.  We saw above that 
p

 is a multiple of 

(1 )
 in 

,KO
 so the inclusion 

(1 ) KO p   
 is immediate.  Suppose now 

that the inclusion is strict. Since 
(1 ) KO 

is an 

ideal of   containing 
p

 and 
p

is a maximal 

ideal of  , we must have  
(1 ) KO   

 

Thus we can write  
1 (1 )  
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For some 
.KO 
 That is, 

1 
 is a unit in 

.KO
  

 

COROLLARY 1.1   For any 
,KO 

 

/ ((1 ) ) .KTr p   
  

PROOF.       We have  

 

/ 1 1

1 1 1 1

1

1 1

((1 ) ) ((1 ) ) ... ((1 ) )

(1 ) ( ) ... (1 ) ( )

(1 ) ( ) ... (1 ) ( )

K p

p p

p

p

Tr        

       

     



 





     

    

    



 

Where the i  are the complex embeddings of K  

(which we are really viewing as automorphisms of K ) 

with the usual ordering.  Furthermore, 
1 j

 is a 

multiple of 
1 

 in KO
 for every 

0.j 
 Thus 

/ ( (1 )) (1 )K KTr O      Since the trace is 

also a rational integer. 

 

PROPOSITION 1.4  Let 
p

 be a prime number and 

let 
| ( )pK  

 be the 
thp

 cyclotomic field. Then  

[ ] [ ] / ( ( ));K p pO x x   
 Thus 

21, ,..., p

p p  

 is an integral basis for KO
. 

PROOF.    Let   KO 
 and write 

2

0 1 2... p

pa a a   

   
  With 

.ia 
 Then 

 

2

0 1

2 1

2

(1 ) (1 ) ( ) ...

( )p p

p

a a

a

    

  



     

 
  

By the linearity of the trace and our above calculations 

we find that  / 0( (1 ))KTr pa    We also have  

/ ( (1 )) ,KTr p   
so 0a 

  Next consider 

the algebraic integer  
1 3

0 1 2 2( ) ... ;p

pa a a a    

    
 This is 

an algebraic integer since 
1 1p  

 is. The same 

argument as above shows that 1 ,a 
 and 

continuing in this way we find that all of the ia
 are in 

 . This completes the proof. 

  

Example 1.4   Let 
K  

, then the local ring ( )p
 

is simply the subring of 


 of rational numbers with 

denominator relatively prime to 
p

. Note that this ring   

( )p
is not the ring p of 

p
-adic integers; to get  

p one must complete ( )p
. The usefulness of 

,K pO
 comes from the fact that it has a particularly 

simple ideal structure. Let a be any proper ideal of 

,K pO
 and consider the ideal Ka O

 of 
.KO

 We 

claim that ,( ) ;K K pa a O O 
   That is, that a  is 

generated by the elements of a  in 
.Ka O
 It is clear 

from the definition of an ideal that 

,( ) .K K pa a O O 
 To prove the other inclusion, 

let   be any element of a . Then we can write 

/  
 where KO 

 and 
.p 
 In particular, 

a 
 (since 

/ a  
 and a  is an ideal), so 

KO 
 and 

.p 
 so 

.Ka O  
 Since 

,1/ ,K pO 
 this implies that 

,/ ( ) ,K K pa O O    
 as claimed.We can use 

this fact to determine all of the ideals of , .K pO
 Let a  

be any ideal of ,K pO
and consider the ideal 

factorization of Ka O
in 

.KO
 write it as 

n

Ka O p b 
 For some n  and some ideal 

,b
 

relatively prime to 
.p

 we claim first that 

, , .K p K pbO O
 We now find that 

  , , ,( ) n n

K K p K p K pa a O O p bO p O   
  Since 

, .K pbO
 Thus every ideal of ,K pO

 has the form 

,

n

K pp O
 for some 

;n
 it follows immediately that 

,K pO
is noetherian. It is also now clear that ,

n

K pp O
is 

the unique non-zero prime ideal in ,K pO
. Furthermore, 

the inclusion , ,/K K p K pO O pO
 Since 

, ,K p KpO O p 
 this map is also surjection, since 

the residue class of ,/ K pO  
 (with KO 

 and 

p 
) is the image of 

1 

 in / ,K pO
 which 

makes sense since 


 is invertible in / .K pO
 Thus the 

map is an isomorphism. In particular, it is now 

abundantly clear that every non-zero prime ideal of 

,K pO
is maximal.  To show that ,K pO

is a 

Dedekind domain, it remains to show that it is 

integrally closed in K . So let 
K 

 be a root of a 

polynomial with coefficients in  , ;K pO
 write this 
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polynomial as  

11 0

1 0

...m mm

m

x x
 

 





  

 With 

i KO 
 and 

.i K pO 
 Set 0 1 1... .m    

 

Multiplying by 
m

 we find that 


 is the root of a 

monic polynomial with coefficients in 
.KO

 Thus 

;KO 
 since 

,p 
 we have 

,/ K pO   
. Thus  ,K pO

is integrally close in 

.K   
 

COROLLARY 1.2.   Let K  be a number field of 

degree n  and let   be in KO
 then 

'

/ /( ) ( )K K KN O N  
  

PROOF.  We assume a bit more Galois theory than 

usual for this proof. Assume first that 
/K 

 is 

Galois. Let   be an element of 
( / ).Gal K 

 It is 

clear that /( ) / ( ) ;K KO O    
 since 

( ) ,K KO O 
 this shows that 

' '

/ /( ( ) ) ( )K K K KN O N O    . Taking the 

product over all 
( / ),Gal K  

 we have 
' '

/ / /( ( ) ) ( )n

K K K K KN N O N O     Since 

/ ( )KN   is a rational integer and KO
 is a free -

module of rank 
,n
   

// ( )K K KO N O   Will have order / ( ) ;n

KN   

therefore 

 

'

/ / /( ( ) ) ( )n

K K K K KN N O N O     

This completes the proof.  In the general case, let L  

be the Galois closure of K  and set 
[ : ] .L K m

  

 

A. Spatial Analysis 

Spatial Analysis of people suffering from Cancer in 

North America and the trend in Geo Location. Spatial 

Analysis is to measure properties and relationship with 

spatial localization and the events like Brain Cancer in 

America. The model processes define the distribution 

of spread of cancer in space.  

 

Taxonomy used are Events, Point Patterns to 

express occurrences of Cancer patient as points in 

space listed as Point Processes and give the 

localization coordinates. This study developed the 

modelling process for exploratory analysis to provide 

graphs, maps and spatial patterns. 

 

In Point Pattern Analysis the object of interest is the 

spatial location of cancer events as the type of cancer 

and the numbers associated with Mortality.  Objective 

is to study the spatial distribution and develop testing 

hypothesis about the observed and forecast pattern. 

The model uses the geostatistics techniques to 

define homogeneous bahavior on the spatial 

correlation data structure in geolocation. 

 

Spatial Autocorrelation is the spatial dependency 

based on computation framework, this is to measure 

relationship between two random variables, but are 

applying the concept on multiple variable the 

distinguish Brain Tumor Types, Nervous Cancer 

Types, Location and Influence Factors.  Verifying 

spatial dependency varies based on comparative 

analysis of population sample and nearest points. 

 

 

 

 

Fig 1 :  Delaunay Tetrahedra Volume 

 

 

 

Fig. 2:  F Function ( Cumulative Sample Point to 

Nearest Cell Distances) 

 

 
 

Fig 3: G Function (Cumulative Nearest Neighbor 

Distribution) 
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Fig  4: K Function (Cumulative Density) 

 

 
 

Fig  5  : Near Neighbors 

 

 
 

Fig 6 : Three Dimension Autocorrelation and 

Histogram 

 

 
 

Fig  7 : Voronio Domain 

 

 

 

Fig 8 :  Autocorrelation Histogram 

 

 
 

Fig 9 :  Voronio Domain Director Vector and 

Histogram 

 

 
 

Fig 10 : North America Cancer patient distribution 
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Fig11: Crude Incidence Rate [4] 
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Classification of Brain Cancer
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 Fig. 12  Classification of Brain Cancer 

IV. CONCLUSIONS 

Cancer patients in America is reducing and 

especially Brain Cancer percentage is in control and 

not increase as compared to Lung Cancer.  Next work 

is to layout the framework for epidemic models 
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