
International Journal of Computer & Organization Trends –Volume 2 Issue 6 November to December 2012

ISSN: 2249-2593 http://www.ijcotjournal.org Page 138

Ajax Complexity
Akash K Singh, PhD

IBM Corporation

Sacramento, USA

Abstract—For century, This paper discuss the new era of

Internet application and user experience, Ajax is a new

technology and this paper address the Software system

complexity and Algorithms for better feature and

performance.

Keywords- Web Technologies, AJAX, Web2.0

I. INTRODUCTION

Over the last few years, the web is establishing

increased importance in society with the rise of social

networking sites and the semantic web, facilitated and

driven by the popularity of client-side scripting

commonly known as AJAX. These allow extended

functionality and more interactivity in web

applications. Engineering practices dictate that we

need to be able to model these applications. However,

languages to model web applications have fallen

behind, with most existing web modelling languages

still solely focused on the hypertext structure of web

sites, with little regard for user interaction or common

web-specific concepts. This paper provides an

overview of technologies in use in today‘s web

applications, along with some concepts we propose

are necessary to model these. We present a brief

survey of existing web modelling languages including

WebML, UWE, W2000 and OOWS, along with a

discussion of their capability to describe these new

modeling approaches. Finally, we discuss the

possibilities of extending an existing language to

handle these new concepts. Keywords: web

engineering, models, interactivity, AJAX, RIAs,

events.

The World Wide Web started out in the early 1990s

as an implementation of a globally distributed

hypertext system. Primitive pieces of software called

web browsers allowed users to render hypertext into

visually pleasing representations that could be

navigated by keyboard or mouse. These early web

sites were generally static pages, and were typically

modeled with languages focused on the hypertext

structure and navigation of the web site (Garzotto et

al. 1993). The full integration of hypertext with

relational databases allowed the creation of data-

intensive websites, which also necessitated new

modelling concepts and languages (Merialdo et al.

2003). Currently, the most popular modelling

languages for web applications areWebML (Ceri et

al. 2000) and UWE (Koch & Kraus 2002). Both of

these languages represent web applications using

conceptual models (data structure of the application

domain), navigational models, and presentation

models. As such, the ability to express the

interactivity of the application is generally restricted

to the navigational models, which allow designers to

visually represent the components, links and pages of

the application. These languages are excellent at

describing older web applications; however recently

the increased use of interactivity, client-side scripting,

and web-specific concepts such as cookies and

sessions have left existing languages struggling to

keep up with these Rich Internet Applications (RIAs:

Preciado et al. 2005). In this paper we aim to review

these existing languages and identify where they are

falling short, and how they could be improved. This

paper is organised as follows. Section 2 is an

overview of some of the features possible with rich

scripting support. To model these new features, we

propose in Section 3 some new modelling concepts

for interactive web applications. We present a brief

survey of the existing modelling languages WebML

and UWE in Sections 4 and 5, and discuss their

ability to model these new concepts. We briefly

mention W2000, OOWS and other potential

languages in Section 6; a summary of our language

evaluations are presented in Table 2. In the final

section, we discuss our findings, provide an overview

of related work, and highlight future work of this

research project. 2 New Features Arguably, the most

important recent feature of the web is the ability to

run scripts on the client (generally through

Javascript). Combined with the ability to access and

modify client-side Document Object Models

(DOM:W3C Group 2004) of the browser, and the

ability to compose asynchronous background requests

to the web, these concepts together are commonly

referred to as AJAX (Garrett 2005). AJAX allows

applications to provide rich client-side interfaces, and

allows the browser to communicate with the web

without forcing page refreshes; both fundamental

features of RIAs. Technologies like AJAX support

thin client applications that can take full advantage of

the computer power of the clients. These applications

reduce the total cost of ownership (TCO) to

organisations as they

are deployed and maintained on directly manageable

servers, and aim to be platform-independent on the

client side. To achieve this, AJAX has had to

overcome limitations of the underlaying

HTTP/HTML protocols, such as synchronous and

stateless request processing, and the pull model

limitation where application state changes are always

initiated by the client1. This has resulted in rich

applications that use the web browser as a virtual

machine. The impact of these technologies has been

significant; new services such as Google Docs

International Journal of Computer & Organization Trends –Volume 2 Issue 6 November to December 2012

ISSN: 2249-2593 http://www.ijcotjournal.org Page 139

(Google Inc. 2006) are implementing collaborative

software solutions directly on the web, based on the

software as a service philosophy, and to some degree

competing with traditional desktop software such as

Microsoft Office. RIAs can also be developed in

environments such as Flash, which are provided as a

plugin to existing web browsers, but can reduce

accessibility2. One popular example of AJAX is to

provide an auto-compliable destination address text

field in an e-mail web application. As the user enters

characters into this field, the client contacts the server

for addresses containing these characters, displaying

a list of suggested addresses. This improves usability,

potentially reduces the overall bandwidth of network

communication, and improves interactivity and

responsiveness. An investigation of some of the most

popular AJAX-based websites on the web allows us

to identify some of the features that these new

technology provides to web applications. This has

allowed us to develop a comprehensive selection of

use cases for AJAX technologies, which we omit

from this paper for brevity. Without going into detail,

and removing features that are already addressed in

existing modeling languages, new application

features that require support include:

1. Storing data on the client and/or server, both

volatile and persistent3;

2. Allowing automatic user authentication based on

cookies4;

3. Allowing form validation to occur on the server,on

the client before submission, or in real-time during

form entry;

4. Providing different output formats for resources,

including HTML, XML, WML, and Flash, possibly

based on the user-agent of the visitor;

5. Providing web services and data feeds, and

integration with external services and feeds, both on

the server and the client;

6. Preventing the user from corrupting the state of a

web application, for example by using browser

navigation buttons;

7. Providing more natural user actions such as

dragand- drop, keyboard shortcuts, and interactive

maps;

8. Describing visual effects of transitions between

application states5;

9. Having scheduled events on either the client or the

server;

10. Allowing web applications to be used offline6;

11. Distributing functionality between the client and

the server, based on client functionality, determined

at runtime.

These new features are distributed over both the

clients and servers of web applications. Existing

languages based solely on replacing the entire client-

side DOM on each request are clearly no longer

appropriate, as scripting permits modifying the DOM

at runtime. We require a more dynamic language,

which can be extended to handle these new features.

Recently, many new web trends have appeared under

the Web 2.0 umbrella, changing the web

significantly, from read-only static pages to dynamic

user-created content and rich interaction. Many Web

2.0 sites rely heavily on AJAX (Asynchronous

JAVASCRIPT and XML) [8], a prominent enabling

technology in which a clever combination of

JAVASCRIPT and Document Object Model (DOM)

manipulation, along with asynchronous client/server

delta communication [16] is used to achieve a high

level of user interactivity on the web. With this new

change comes a whole set of new challenges, mainly

due to the fact that AJAX shatters the metaphor of a

web ‗page‘ upon which many classic web

technologies are based. One of these challenges is

testing such applications [6, 12, 14]. With the ever-

increasing demands on the quality of Web 2.0

applications, new techniques and models need to be

developed to test this new class of software. How to

automate such a testing technique is the question that

we address in this paper. In order to detect a fault, a

testing method should meet the following conditions

[18, 20]: reach the fault-execution, which causes the

fault to be executed, trigger the error creation, which

causes the fault execution to generate an incorrect

intermediate state, and propagate the error, which

enables the incorrect intermediate state to propagate

to the output and cause a detectable output error.

Meeting these reach/trigger/propagate conditions is

more difficult for AJAX applications compared to

classical web applications. During the past years, the

general approach in testing web applications has been

to request a response from the server (via a hypertext

link) and to analyze the resulting HTML. This testing

approach based on the page-sequence paradigm has

serious limitations meeting even the first (reach)

condition on AJAX sites. Recent tools such as

Selenium1 use a capture/replay style for testing

AJAX applications. Although such tools are capable

of executing the fault, they demand a substantial

amount of manual effort on the part of the tester.

Static analysis techniques have limitations in

revealing faults which are due to the complex run-

time behavior of modern rich web applications. It is

this dynamic run-time interaction that is believed [10]

to make testing such applications a challenging task.

On the other hand, when applying dynamic analysis

on this new domain of web, the main difficulty lies in

detecting the various doorways to different dynamic

states and providing proper interface mechanisms for

input values. In this paper, we discuss challenges of

testing AJAX and propose an automated testing

technique for finding faults in AJAX user interfaces.

We extend our AJAX crawler, CRAWLJAX

(Sections 4–5), to infer a state-flow graph for all

(client-side) user interface states. We identify AJAX-

specific faults that can occur in such states and

International Journal of Computer & Organization Trends –Volume 2 Issue 6 November to December 2012

ISSN: 2249-2593 http://www.ijcotjournal.org Page 140

generic and application-specific invariants that can

serve as oracle to detect such faults (Section 6). From

the inferred graph, we automatically generate test

cases (Section 7) that cover the paths discovered

during the crawling process. In addition, we use our

open source tool called ATUSA (Section 8),

implementing the testing technique, to conduct a

number of case studies (Section 9) to discuss (Section

10) and evaluate the effectiveness of our approach.

A. Interface Model

A web application‘s interface is most obviously

characterized by the variety of UI widgets displayed

on each page, which we represent by elements of the

set Widgets. Web applications typically distinguish

several basic widget classes such as text fields, radio

buttons, drop-down list boxes etc.

(Classes := {ctext, cradio, ccheck, cselect1,

cselectn}), which we identify through the relation

class : Widgets → Classes.

For the purpose of input evaluation, it will be helpful

to specify the ranges of values that users can

enter/select in widgets. We specify this in the relation

range: Widgets →P(S). Depending on the class of the

widget w, range(w) will be:

• the generic set S for text fields, which allow any

input;

• some fixed subset Sw →S for drop-down list

boxes,which allow a 1-of-n selection;

• the power set P(Sw) of some fixed subset Sw →S

for multi-select boxes, which allow an m-of-n

selection;

• some string sw →S for individual check boxes and

radio buttons, which are either undefined or have one

particular value.

In applications based on our model, the placement of

widgets on web pages (from the set Pages) is

governed by a series of hierarchically nested layout

containers (Containers) that define visual alignment

and semantic cohesion of widgets. The nesting

relationships between widgets and containers can be

expressed in the relation container: (Widgets→

Containers) → (Containers->Pages) that indicates in

which container or page s_→Containers → Pages a

widget or container s→Widgets -> Containers is

directly contained. To reason about transitive

containment, we also define a convenience relation

page: (Widgets→Containers) → Pages that identifies

which page a widget is placed on by recursive

application of the container relation: p = page(s) : →

(p → Pages→p = container(s)) →c → Containers : (c

= container(s) → p = page(c))

B. Data Model

In our formal model, the variables holding the web

application‘s data are represented by elements of the

set Variables. Variables may have different types—in

most applications, we find Boolean, integer, floating-

point and string values or sets

(Types := {P(B),P(Z),P(R),P(S)},respectively).

We express variables‘ types by the relationtype :

Variables → Types.

To store the entered content, each widget must be

bound to a variable in the application‘s data model.

This binding is modeled by the relation binding :

Widgets → Variables. Note that several widgets can

be bound to the same variable (e.g. a group of check

boxes whose combined state is stored as a set of

string values).

C. Evaluation Aspects

Input evaluations are characterized by several criteria

that together constitute particular behavior rules. In

this paper, we will discuss input evaluation for the

purpose of deciding validity, visibility, and

availability of widgets, i.e. for interface responses

such as highlighting violating widgets, hiding

invisible widgets, and disabling (e.g. ―graying out‖)

unavailable widgets, respectively.

At the core of each rule is an expression e →

Expressions that describes the actual evaluation of

certain values in order to arrive at a decision for one

of the above purposes. Our model allows expressions

to consist of arbitrarily nestable terms. These can

trivially be literals (out of the universal set L := B →

R → S) or variables from the data model, but also

comparisons, arithmetic, boolean or string operations,

which can be distinguished by their operator op(e), so

Expressions → (L → Variables) (for the sake of

conciseness, we we will not go into the details of

expressions‘ concrete structure). Ultimately, an

expression must resolve to a boolean value indicating

the outcome of the decision. Of course, a rule for any

purpose must relate to certain subjects on which the

respective reaction is effected. These may not only be

individual widgets, but also groups of widgets

contained directly or transitively in a particular

container or page, so we define Subjects := Widgets

→ Containers → Pages. Note that the subject widgets

do not necessarily correspond to the expression‘s

parameters (business requirements might e.g. suggest

that only one of several evaluated widgets should be

highlighted as invalid if the validation fails). For the

purpose of input validation, we must consider several

additional characteristics. First, we can distinguish

different levels of validation, which we will describe

as Levels := {lexist, ltech, ldomain}. The most basic

level is checking for the existence of any input in a

required field. Next, the technical check concerns

International Journal of Computer & Organization Trends –Volume 2 Issue 6 November to December 2012

ISSN: 2249-2593 http://www.ijcotjournal.org Page 141

whether a particular input can be converted sensibly

to the given data type. Finally, performing any

domain-specific validation of the input is only

sensible if the previous two validation levels were

satisfied. In practice, not all validation rules would

typically be evaluated at the same time—from our

experience from several industrial projects, we rather

identified four common validation triggers

(Triggers := {tblurWidget, tleavePage, tsaveData,

tcommitData}):

Validation may occur upon a widget‘s ―blurring‖ (i.e.

losing focus) when the cursor is moved to another

widget; upon leaving a page in order to jump to the

next or previous page of the dialog; upon saving the

data entered so far as a draft version, in order to

prevent data loss or continue working on the dialog at

a later time; and finally upon committing all entered

data in order to proceed to the next task in a business

process. By staging the validation through assigning

rules to appropriate triggers, developers can strike a

balance between business requirements and usability

considerations, ensuring data integrity while

maintaining users‘ flexibility in working with the

application. In a similar vein, experience shows that

typically not all rule violations are equally serious:

Depending on the business semantics of each rule,

developers may choose to assign different severity

levels to it. We therefore distinguish

Severities := {sinfo, swarning, serror} (with the

natural order sinfo < swarning < serror),

and define different behavior for different severities.

D. Evaluation Rules

Having introduced all aspects characterizing input

evaluation, we can now define the constituent

elements of the rules for different purposes: Rules

determining visibility and availability of widgets are

fully described by the deciding expression and the set

of affected subjects, while validation rules require all

of the aspects described above:

Rvisibility : → Expressions×P(Subjects)

Ravailability : → Expressions×P(Subjects)

Rvalidation: → Expressions×P(Subjects) × Levels ×

Triggers × Severities

While the visibility and availability rules, as well as

the existence and domain validation rules, need to be

specified by the application designer, the necessary

technical validation checks can be inferred from the

interface and data model. To facilitate an integrated

display of all validation, we derive the subset of

Rvalidation comprising the technical validation rules

as

{(λ, w, ltech, tblurWidget, serror) | →w → Widgets},

based on the assumption that type or range violations

should be detected as early as possible, and reported

as errors. To access particular components of the

rules‘ tuples, our following discussion will assume

the existence of the convenience functions

expression, subjects, level, trigger, and severity that

return the respective components of a rule. Since we

will often be interested in all rules pertaining to a

certain subject, we also define the abbreviation Rs p

to denote all rules for a purpose p that affect a subject

s. Summing up, we can describe the static, design-

time specification of input evaluation for a web

application as a tuple Aspec := (Widgets, class, range,

Containers, Pages, container, binding, Variables,

type, Rvisibility , Ravailability, Rvalidation).

E. User Interface Behavior

Last but not least, we must define how the user

interface reacts to the various conditions that arise

from input evaluation; namely validation results,

visibility and availability of widgets, and navigation

options. These will be covered in the following

subsections.

1) Issue Notifications: We suggest that validation

issues be displayed in two ways: On top of each page,

the interface displays a concise list of human-

readable explanations for all violations that were

identified on the current and other pages. In case

several rules are violated for a particular set of

subjects, we display only the most severe notification

to reduce clutter, as indicated by the function

issueDisp : Rvalidation → B:issueDisp(r) : → r →

Issues → _r_ → Issues : (subjects(r_) → subjects(r)

→ severity(r_) > severity(r))

To further aid the user in identifying the invalid input,

we highlight the respective widget in a color

corresponding to the severity (e.g. red for errors,

orange for warnings etc.). Two relationships

influence this coloring scheme: Firstly, if the subject

of a rule is not an individual widget, but rather a

container, the issue is assumed to apply to all directly

and transitively contain widgets, which are all colored

accordingly. Secondly, if a subject is affected by

several issues (through multiple rules or inclusion in

affected containers), it will be colored according to

the most severe issue. To indicate this, the partial

relation highlight: Subjects →_ Severities indicates

which severity (if any) applies to a particular subject:

highlight(s) = v: → v = max ({v | v =

highlight(container(s))} → {v | →r → Rs validation :

(issueDisp(r) → v = severity(r)}))

We assume here that the relation max: P(Severities)

→ Severities returns the maximum element from a set

of severities.

2) Visibility: In the previous section, we have already

often relied on an indication of whether a particular

interface component is currently visible. For any

International Journal of Computer & Organization Trends –Volume 2 Issue 6 November to December 2012

ISSN: 2249-2593 http://www.ijcotjournal.org Page 142

given subject, this state depends both on any explicit

visibility rules, and on the visibility of the

surrounding containers, as the relation isVisible :

Subjects → B indicates: isVisible(s) : →

(isVisible(container(s)) → s → Pages) → r →

Rvisibility(s): isSatisfied(expression(r))

In analogy to validation rules, where just one rule

violation suffices to consider an input invalid, we

require that all of a widget‘s applicable visibility rules

must be satisfied for it to be visible.

3) Availability: In some use cases, developers may

not want to render a widget invisible, thus hiding it

from the interface model and removing its input from

the data model, but would only like to prevent users

from editing the widget‘s contents, even though it

remains part of the interface and data model. This

deactivation can be accomplished by ―graying out‖

the widget or otherwise preventing it from gaining the

input focus, while still remaining visible. In our

model, availability rules are stated and evaluated just

like visibility rules, as the relation isAvailable :

Subjects → B indicates: isAvailable(s) : →

(isAvailable(container(s)) → s → Pages) → r →

Ravailability(s): isSatisfied(expression(r))

Note that while visibility affects the data model and is

used in quite a few of the above relations, availability

is a pure interface reaction that does not affect how

data is evaluated or stored.

4) Navigation Opportunities: When considering the

availability of widgets, the navigation buttons on each

page (typically, for navigating forward and backward

in a dialog wizard, saving a draft of the current data,

or committing it for further processing) require

special treatment: The user should be prevented from

saving a draft, let alone committing all input, but

possibly even leaving a page, when the model still

violates any validation rules. Since the availability of

the corresponding buttons does not depend directly

on the widget contents, but on the outcome of all

validations in the respective scope, this behavior

cannot be specified by means of regular availability

rules. Instead, our model contains built-in ―meta‖

rules governing navigation opportunities. In the

following predicates, we distinguish between

validation rules that must be satisfied for saving a

draft, and a possibly more restrictive set that must be

satisfied for committing the input for further

processing: commitEnabled : → r → Issues :

(trigger(r) → commitBlocks → severity(r) = serror)

saveEnabled : → r → Issues : (trigger(r) →

saveBlocks → severity(r) = serror)

leaveEnabled(from) : → r → Issues : (trigger(r) →

leaveBlocks → severity(r) = serror →s → subjects(r):

from = page(s))

F. AJAX Testing Challenges

In AJAX applications, the state of the user interface is

determined dynamically, through event-driven

changes in the browser‘s DOM that are only visible

after executing the corresponding JAVASCRIPT

code. The resulting challenges can be explained

through the reach/trigger/propagate conditions as

follows. Reach. The event-driven nature of AJAX

presents the first serious testing difficulty, as the

event model of the browser must be manipulated

instead of just constructing and sending appropriate

URLs to the server. Thus, simulating user events on

AJAX interfaces requires an environment equipped

with all the necessary technologies, e.g.,

JAVASCRIPT, DOM, and the XMLHttpRequest

object used for asynchronous communication. One

way to reach the fault-execution automatically for

AJAX is by adopting a web crawler, capable of

detecting and firing events on clickable elements on

the web interface. Such a crawler should be able to

exercise all user interface events of an AJAX site,

crawl through different UI states and infer a model of

the navigational paths and states. We proposed such a

crawler for AJAX, discussed in our previous work

[14], Trigger. Once we are able to derive different

dynamic states of an AJAX application, possible

faults can be triggered by generating UI events. In

addition input values can cause faulty states. Thus, it

is important to identify input data entry points, which

are primarily comprised of DOM forms. In addition,

executing different sequences of events can also

trigger an incorrect state. Therefore, we should be

able to generate and execute different event

sequences. Propagate. In AJAX, any response to a

client-side event is injected into the single-page

interface and therefore, faults propagate to and are

manifested at the DOM level. Hence, access to the

dynamic run-time DOM is a necessity to be able to

analyze and detect the propagated errors. Automating

the process of assessing the correctness of test case

output is a challenging task, known as the oracle

problem [24]. Ideally a tester acts as an oracle who

knows the expected output, in terms of DOM tree,

elements and their attributes, after each state change.

When the state space is huge, it becomes practically

impossible. In practice, a baseline version, also

known as the Gold Standard [5], of the application is

used to generate the expected behavior. Oracles used

in the web testing literature are mainly in the form of

HTML comparators [22] and validators [2].

G. Deriving AJAX States

Here, we briefly outline our AJAX crawling

technique and tool called CRAWLJAX [14].

CRAWLJAX can exercise client side code, and

identify clickable elements that change the state

within the browser‘s dynamically built DOM. From

these state changes, we infer a state-flow graph,

which captures the states of the user interface, and the

International Journal of Computer & Organization Trends –Volume 2 Issue 6 November to December 2012

ISSN: 2249-2593 http://www.ijcotjournal.org Page 143

possible event-based transitions between them. We

define an AJAX UI state change as a change on the

DOM tree caused either by server-side state changes

propagated to the client, or client-side events handled

by the AJAX engine. We model such changes by

recording the paths (events) to these DOM changes to

be able to navigate between the different states.

Inferring the State Machine. The state-flow graph is

created incrementally. Initially, it only contains the

root state and new states are created and added as the

application is crawled and state changes are analyzed.

The following components participate in the

construction of the graph: CRAWLJAX uses an

embedded browser interface (with different

implementations: IE, Mozilla) supporting

technologies required by AJAX; A robot is used to

simulate user input (e.g., click, mouseOver, text

input) on the embedded browser; The finite state

machine is a data component maintaining the state-

flow graph, as well as a pointer to the current state;

The controller has access to the browser‘s DOM and

analyzes and detects state changes. It also controls the

robot‘s actions and is responsible for updating the

state machine when relevant changes occur on the

DOM. Detecting Clickables. CRAWLJAX

implements an algorithm which makes use of a set of

candidate elements, which are all exposed to an event

type (e.g., click, mouseOver). In automatic mode, the

candidate clickables are labeled as such based on

their HTML tag element name and attribute

constraints. For instance, all elements with a tag div,

a, and span having attribute class="menuitem" are

considered as candidate clickable. For each candidate

element, the crawler fires a click on the element (or

other event types, e.g., mouseOver), in the embedded

browser. Creating States. After firing an event on a

candidate clickable, the algorithm compares the

resulting DOM tree with the way as it was just before

the event fired, in order to determine whether the

event results in a state change. If a change is detected

according to the Levenshtein edit distance, a new

state is created and added to the state-flow graph of

the state machine. Furthermore, a new edge is created

on the graph between the state before the event and

the current state. Processing Document Tree Deltas.

After a new state has been detected, the crawling

procedure is recursively called to find new possible

states in the partial changes made to the DOM tree.

CRAWLJAX computes the differences between the

previous document tree and the current one, by means

of an enhanced Diff algorithm to detect AJAX par-

212 trial updates which may be due to a server

request call that injects new elements into the DOM.

Navigating the States. Upon completion of the

recursive call, the browser should be put back into the

previous state. A dynamically changed DOM state

does not register itself with the browser history

engine automatically, so triggering the ‗Back‘

function of the browser is usually insufficient. To

deal with this AJAX crawling problem, we save

information about the elements and the order in

which their execution results in reaching a given

state. We then can reload the application and follow

and execute the elements from the initial state to the

desired state. CRAWLJAX adopts XPath to provide a

reliable, and persistent element identification

mechanism. For each state changing element, it

reverse engineers the XPath expression of that

element which returns its exact location on the DOM.

This expression is saved in the state machine and

used to find the element after a reload. Note that

because of side effects of the element execution and

server-side state, there is no guarantee that we reach

the exact same state when we traverse a path a second

time. It is, however, as close as we can get. Data

Entry Points in order to provide input values on

AJAX web applications, we have adopted a reverse

engineering process, similar to [3, 10], to extract all

exposed data entry points. To this end, we have

extended our crawler with the capability of detecting

DOM forms on each newly detected state (this

extension is also shown in Algorithm 1). For each

new state, we extract all form elements from the

DOM tree. For each form, a hashcode is calculated on

the attributes (if available) and the HTML structure of

the input fields of the form. With this hashcode,

custom values are associated and stored in a database,

which are used for all forms with the same code. If no

custom data fields are available yet, all data,

including input fields, their default values, and

options are extracted from the DOM form. Since in

AJAX forms are usually sent to the server through

JAVASCRIPT functions, the action attribute of the

form does not always correspond to the server-side

entry URL. Also, any element (e.g., A, DIV) could be

used to trigger the right JAVASCRIPT function to

submit the form. In this case, the crawler tries to

identify the element that is responsible for form

submission. Note that the tester can always verify the

submit element and change it in the database, if

necessary. Once all necessary data is gathered, the

form is inserted automatically into the database.

Every input form provides thus a data entry point and

the tester can later alter the database with additional

desired input values for each form. If the crawler does

find a match in the database, the input values are used

to fill the DOM form and submit it. Upon submission,

the resulting state is analyzed recursively by the

crawler and if a valid state change occurs the state-

flow graph is updated accordingly. Testing AJAX

States through Invariants with access to different

dynamic DOM states we can check the user interface

against different constraints. We propose to express

those as invariants on the DOM tree, which we thus

can check automatically in any state. We distinguish

between invariants on the DOM-tree, between DOM-

tree states, and application-specific invariants. Each

invariant is based on a fault model [5], representing

AJAX specific faults that are likely to occur and

which can be captured through the given invariant.

International Journal of Computer & Organization Trends –Volume 2 Issue 6 November to December 2012

ISSN: 2249-2593 http://www.ijcotjournal.org Page 144

II. PROPOSED APPROACH

The goal of the proposed approach is to statically

check web application invocations for correctness and

detect errors. There are three basic steps to the

approach (A) identify generated invocations, (B)

compute interfaces and domain constraints, and (C)

check that each invocation matches an interface. A.

Identify Invocation Related Information The goal of

this step is to identify invocation related information

in each component of the web application. The

information to be identified is: (a) the set of argument

names that will be included in the invocation, (b)

potential values for each argument, (c) domain

information for each argument, and (d) the request

method of the invocation. The general process of this

step is that the approach computes the possible

HTML pages that each component can generate.

During this process, domain and value information is

identified by tracking the source of each substring in

the computed set of pages. Finally, the computed

pages and substring source information are combined

to identify the invocation information. 1) Compute

Possible HTML Pages: The approach analyzes a web

application to compute the HTML pages each

component can generate. Prior work by the author [4]

is extended, to compute these pages in such a way as

to preserve domain information about each

invocation. The approach computes the fixed point

solution to the data-flow equations and at the end of

the computation, the fragment associated with the

root method of each component contains the set of

possible HTML pages that could be generated by

executing the component. 2) Identify Domain and

Value Information: The approach identifies domain

and value information for each argument in an

invocation. The key insight for this part of the

approach is that the source of the substrings used to

define invocations in an HTML page can provide

useful information about the domain and possible

values of each argument. For example, if a substring

used to define the value of an invocation originates

from a call to StringBuilder.append(int), this indicates

that the argument‘s domain is of type integer. To

identify this type of information, strings from certain

types of sources are identified and annotated using a

process similar to static tainting. Then the strings and

their corresponding annotations are tracked as the

approach computes the fixed point solution to the

equations. The mechanism for identifying and

tracking string sources starts with the resolve

function, which analyzes a node n in an application

and computes a conservative approximation of the

string values that could be generated at that node. The

general intuition is that when the resolve function

analyzes a string source that can indicate domain or

value information, a special domain and value (DV)

function is used to complete the analysis. The DV

function returns a finite state automaton (FSA)

defined as the quintuple (S, S0, F) whose accepted

language is the possible values that could be

generated by the expression. In addition, the DV

function also defines two domain type, where T is a

basic type of character, integer, float, long, double, or

string; and V : S that maps each transition to a

symbol in or a special symbol that denotes any value.

D is used to track the inferred domain of a substring

and V is used to track possible values. A DV function

is defined for each general type of string source. For

the purpose of the description of the DV functions

below, e refers to any transition (S) defined by and

the function L(e) returns the symbol associated with

the transition e. Functions that return a string

variable: Substrings originating from these types of

functions can have any value and a domain of string.

This is represented as V (e) and D(e) string. String

constants: The string constant provides a value for the

argument and a domain of string. This is represented

as V (e) = L(e) and D(e) = string. Member of a

collection: For example, a string variable defined by a

specific member of a list of strings. More broadly, of

the form v = collection hTi[x] where v is the string

variable, collection contains objects of type T, and x

denotes the index of the collection that defines v. In

this case, a domain can be provided based on the type

of object contained in the collection. This is

represented as D(e) = T, and V (e) = collection[x] if

the value is resolvable or V (e) otherwise.

Conversion of a basic type to a string: For example,

Integer.toString(). More broadly any function

convert(X)! S where X is a basic type and S is a

string type. This operation implies that the string

should be a string representation of type X. This is

represented as D(e) = X, and V (e) if X is defined by

a variable or V (e) = L(e) otherwise. Append a basic

type to a string: For example, a call to

StringBuilder.append(int). More broadly,

append(S,X) ! S0 where S is a string type, X is a

basic type, and S0 is the string representation of the

concatenation of the two arguments. In this case, the

domain of the substring that was appended to S

should be X. This is represented as D(eX) = X. V

(eX) if X is defined by a variable or V (eX) = L(eX)

otherwise. The subscripts denote the subset of

transitions defined by the FSA of the string

representation of X.

3) Combining Information: The final part of

identifying invocation related information is to

combine the information identified by computing the

HTML pages and the domain and value tracking. The

key insight for this step is that substrings of the

HTML pages that syntactically define an invocation‘s

value will also have annotations from the DV

functions. To identify this information, a custom

parser is used to parse each of the computed HTML

pages and recognize HTML tags while maintaining

and recording any annotations. Example: Using the

equations listed in Figure 3, the Out[exitNode] of

servlet OrderStatus is equal to {{2, 5–12, 14–17, 22},

{2, 5–12, 19–22}. The analysis performs resolve on

International Journal of Computer & Organization Trends –Volume 2 Issue 6 November to December 2012

ISSN: 2249-2593 http://www.ijcotjournal.org Page 145

each of the nodes in each of the sets that comprise

Out[exitNode]. Nodes 2, 5, 7–12, 14, 16, 17, 19, 20,

and 22 involve constants, so resolve returns the

values of the constants and the domain information is

any string (*). Nodes 6 and 15 originate from special

string sources. The variable oid is defined by a

function that returns strings and can be of any value

(*), and the variable quant is an append of a basic

type, so it is marked as type int. After computing the

resolve function for each of the nodes, the final value

of fragments[service] is comprised of two web pages,

which differ only in that one traverses the true branch

at line 13 and therefore includes an argument for

quant and a different value for task The approach

then parses the HTML to identify invocations. By

examining the annotations associated with the

substring that defines each argument‘s value, the

value for arguments oid and quant are identified. The

<select> tag has three different options that can each

supply a different value. So three copies are made of

each of the two web form based invocations. Each

copy is assigned one of the three possible values for

the shipto argument. The final result is the

identification of six invocations originating from

OrderStatus. Each tuple in the lists -the name, domain

type, and values of the identified argument.

A. Identify Interfaces

This step of the proposed approach identifies

interface information for each component of a web

application. The proposed approach extends prior

work in interface analysis [5] to also identify the

HTTP request method for each interface. The specific

mechanism for specifying HTTP request methods

depends on the framework. In the Java Enterprise

Edition (JEE) framework, the name of the entry

method first accessed specifies its expected request

method. For example, the doPost or doGet method

indicates that the POST or GET request methods,

respectively, will be used to decode arguments. The

proposed approach builds a call graph of the

component and marks all methods that are reachable

from the specially named root methods as having the

request method of the originating method. Example:

ProcessOrder can accept two interfaces due to the

branch taken at line 17: (1) {oid, task, shipto, other}

and (2) {oid, task, shipto, other, quant}. From the

implementation of ProcessOrder it is possible to infer

domain information for some of the parameters. From

this information, the first interface is determined to

have an IDC of

int(shipto).(shipto=1_shipto=2).task=‖purchase‖; and

the second interface has an IDC of

int(shipto).(shipto=1_shipto=2).task=‖modify‖.int(qu

ant).

Unless otherwise specified, the domain of a

parameter is a string. Lastly, by traversing the call

graph of ProcessOrder all parameters (and therefore,

all interfaces) are identified as having originated from

a method that expects a POST request.

B. Verify Invocations

The third step of the approach checks each invocation

to ensure that it matches an interface of the

invocation‘s target. An invocation matches an

interface if the following three conditions hold: (1)

the request method of the invocation is equal to the

request method of the interface; (2) the set of the

interface‘s parameter names and the invocation‘s

argument names are equal; and (3) the domains and

values of the invocation satisfy an IDC of the

interface. For the third condition, domain and value

constraints are checked. The domain of an argument

is considered to match the domain of a parameter if

both are of the same type or if the value of the

argument can be successfully converted to the

corresponding parameter‘s domain type. For

example, if the parameter domain constraint is Integer

and the argument value is ―5,‖ then the constraint

would be satisfied. Example: Consider the interfaces

identified and the invocations. Each of the six

invocations is checked to see if it matches either of

the two interfaces. Only invocation 2 represents a

correct invocation and the rest will be identified as

errors.

C. Evaluation

The evaluation measures the precision of the reported

results. The proposed approach was implemented as a

prototype tool, WAIVE+. The subjects used in the

evaluation are four Java Enterprise Edition (JEE)

based web applications: Bookstore, Daffodil,

Filelister, and JWMA. These applications range in

size from 8,600 to 29,000 lines of code. All of the

applications are available as open source and are

implemented using a mix of static HTML, JavaScript,

Java servlets, and regular Java code. To address the

research questions, WAIVE+ was run on the four

applications. For each application the reported

invocation errors were inspected. Table II shows the

results of inspecting the reported invocations. Each

invocation error was classified as either a confirmed

error or a false positive. Invocations in both

classifications were also further classified based on

whether the error reported was due to a violation of

one of the correctness properties, the invocation did

not match an interface because of an incorrectly

specified request method (R.M.), the argument names

did not match the parameter names of any interface of

the target (N.), and the value and domain information

of an invocation did not match the interface domain

constraint (IDC). The table also reports the total

number of invocations identified for each application

(# Invk.). As the results in Table II show, WAIVE+

identified 69 erroneous invocations and had 20 false

positives. Prior approaches can only detect errors

related to names, so the comparable total of errors for

International Journal of Computer & Organization Trends –Volume 2 Issue 6 November to December 2012

ISSN: 2249-2593 http://www.ijcotjournal.org Page 146

WAIVE was 33 erroneous invocations and 19 false

positives. These results indicate that the new domain

information checks resulted in the discovery of 36

additional errors and 1 false positive. Overall, the

results are very encouraging. The approach identified

36 new errors that had been previously undetectable

while only producing one additional false positive.

III. CONCURRENT AJAX CRAWLING

The algorithm and its implementation for crawling

AJAX, as just described, is sequential, depth-first,

and single-threaded. Since we crawl the Web

application dynamically, the crawling runtime is

determined by the following factors.

(1) The speed at which the Web server responds to

HTTP requests.

(2) Network latency.

(3) The crawler‘s internal processes (e.g., analyzing

the DOM, firing events, updating the state machine).

(4) The speed of the browser in handling the events

and request/response pairs, modifying the DOM, and

rendering the user interface.

We have no influence on the first two factors and

already have many optimization heuristics for the

third step. Therefore, we focus on the last factor, the

browser. Since the algorithm has to wait some

considerable amount of time for the browser to finish

its tasks after each event, our hypothesis is that we

can decrease the total runtime by adopting concurrent

crawling through multiple browsers.

A. Multi-threaded, Multi-Browser Crawling

The idea is to maintain a single state machine and

split the original controller into a new controller and

multiple crawling nodes. The controller is the single

main thread monitoring the total crawl procedure. In

this new setting, each crawling node is responsible

for deriving its corresponding robot and browser

instances to crawl a specific path. Compared with

Figure 3, the new architecture is capable of having

multiple crawler instances, running from a single

controller. All the crawlers share the same state

machine. The state machine makes sure every crawler

can read and update the state machine in a

synchronized way. This way, the operation of

discovering new states can be executed in parallel.

B. Partition Function

To divide the work over the crawlers in a multi-

threaded manner, a partition function must be

designed. The performance of a concurrent approach

is determined by the quality of its partition function

[Garavel et al. 2001]. A partition function can be

either static or dynamic. With a static partition

function, the division of work is known in advance,

before executing the code. When a dynamic partition

function is used, the decision of which thread will

execute a given node is made at runtime. Our

algorithm infers the state-flow graph of an AJAX

application dynamically and incrementally. Thus, due

to this dynamic nature, we adopt a dynamic partition

function. The task of our dynamic partition function

is to distribute the work equally over all the

participating crawling nodes. While crawling an

AJAX application, we define work as bringing the

browser back into a given state and exploring the first

unexplored candidate state from that state. Our

proposed partition function operates as follows. After

the discovery of a new state, if there are still

unexplored candidate clickables left in the previous

state, that state is assigned to another thread for

further exploration. The processor chosen will be the

one with the least amount of work left. Visualizes our

partition function for concurrent crawling of a simple

Web application. In the Index state, two candidate

clickables are detected that can lead: S 1 and S 11.

The initial thread continues with the exploration of

the states S 1, S 2, S 3, S 4, and finishes in S 5, in a

depth-first manner. Simultaneously, a new thread is

branched off to explore state S 11. This new thread

(thread #2) first reloads the browser to Index and then

goes into S 11. In state S 2 and S 6, this same

branching mechanism happens, which results in a

total of five threads. Now that the partition function

has been introduced, the original sequential crawling

algorithm (Algorithm 1) can be changed into a

concurrent version.

We consider the following Ajax Complexity field

equations defined over an open bounded piece of

network and /or feature space
dR . They

describe the dynamics of the mean anycast of each of

p node populations.

|

1

() (,) (,) [(((,),))]

(1)
(,), 0,1 ,

(,) (,) [,0]

p

i i ij j ij j

j

ext

i

i i

d
l V t r J r r S V t r r r h dr

dt

I r t t i p

V t r t r t T

We give an interpretation of the various parameters

and functions that appear in (1), is finite piece of

nodes and/or feature space and is represented as an

open bounded set of
dR . The vector r and r

represent points in . The function : (0,1)S R

is the normalized sigmoid function:

1

() (2)
1 z

S z
e

It describes the relation between the input rate iv of

population i as a function of the packets potential,

for example, [()].i i i i iV v S V h We note V

the p dimensional vector 1(,...,).pV V The p

International Journal of Computer & Organization Trends –Volume 2 Issue 6 November to December 2012

ISSN: 2249-2593 http://www.ijcotjournal.org Page 147

function , 1,..., ,i i p represent the initial

conditions, see below. We note the p

dimensional vector
1(,...,).p The p function

, 1,..., ,ext

iI i p represent external factors from

other network areas. We note
extI the p

dimensional vector 1(,...,).ext ext

pI I The p p

matrix of functions
, 1,...,{ }ij i j pJ J represents the

connectivity between populations i and ,j see

below. The p real values , 1,..., ,ih i p determine

the threshold of activity for each population, that is,

the value of the nodes potential corresponding to 50%

of the maximal activity. The p real positive values

, 1,..., ,i i p determine the slopes of the sigmoids

at the origin. Finally the p real positive values

, 1,..., ,il i p determine the speed at which each

anycast node potential decreases exponentially

toward its real value. We also introduce the function

: ,p pS R R defined by

1 1 1() [(()),..., ())],p pS x S x h S h and the

diagonal p p matrix 0 1(,...,).pL diag l l Is the

intrinsic dynamics of the population given by the

linear response of data transfer. ()i

d
l

dt
 is replaced

by
2()i

d
l

dt
 to use the alpha function response. We

use ()i

d
l

dt
 for simplicity although our analysis

applies to more general intrinsic dynamics. For the

sake, of generality, the propagation delays are not

assumed to be identical for all populations, hence

they are described by a matrix (,)r r whose

element (,)ij r r is the propagation delay between

population j at r and population i at .r The

reason for this assumption is that it is still unclear

from anycast if propagation delays are independent of

the populations. We assume for technical reasons that

 is continuous, that is
20(,).p pC R

Moreover packet data indicate that is not a

symmetric function i.e., (,) (,),ij ijr r r r thus no

assumption is made about this symmetry unless

otherwise stated. In order to compute the righthand

side of (1), we need to know the node potential factor

V on interval [,0].T The value of T is obtained

by considering the maximal delay:

 ,
, (,)

max (,) (3)m i j
i j r r

r r

Hence we choose mT

C. Mathematical Framework

A convenient functional setting for the non-delayed

packet field equations is to use the space
2(,)pF L R which is a Hilbert space endowed

with the usual inner product:

1

, () () (1)
p

i iF
i

V U V r U r dr

To give a meaning to (1), we defined the history

space
0([,0],)mC C F with

[,0]sup () ,
mt t F which is the Banach

phase space associated with equation (3). Using the

notation () (), [,0],t mV V t we write

(1) as
.

0 1

0

() () () (), (2)
,

ext

tV t L V t L S V I t

V C

Where

1 : ,

(.,) (, (.,))

L C F

J r r r dr

Is the linear continuous operator satisfying

2 21 (,)
.p pL R

L J
 Notice that most of the papers

on this subject assume infinite, hence requiring

.m

Proposition 1.0 If the following assumptions are

satisfied.

1.
2 2(,),p pJ L R

2. The external current
0(,),extI C R F

3.
2

0 2(,),sup .p p

mC R

Then for any ,C there exists a unique solution

1 0([0,),) ([, ,)mV C F C F to (3)

Notice that this result gives existence on ,R finite-

time explosion is impossible for this delayed

differential equation. Nevertheless, a particular

solution could grow indefinitely, we now prove that

this cannot happen.

D. Boundedness of Solutions

A valid model of neural networks should only feature

bounded packet node potentials.

International Journal of Computer & Organization Trends –Volume 2 Issue 6 November to December 2012

ISSN: 2249-2593 http://www.ijcotjournal.org Page 148

Theorem 1.0 All the trajectories are ultimately

bounded by the same constant R if

max () .ext

t R F
I I t

Proof :Let us defined :f R C R as

2

0 1

1
(,) (0) () (), ()

2

def
ext F

t t t F

d V
f t V L V L S V I t V t

dt

We note
1,...mini p il l

2

(,) () () ()t F F F
f t V l V t p J I V t

Thus, if

2.
() 2 , (,) 0

2

def def
F

tF

p J I lR
V t R f t V

l

Let us show that the open route of F of center 0 and

radius , ,RR B is stable under the dynamics of

equation. We know that ()V t is defined for all

0t s and that 0f on ,RB the boundary of

RB . We consider three cases for the initial condition

0.V If 0 C
V R and set

sup{ | [0,], () }.RT t s t V s B Suppose that

,T R then ()V T is defined and belongs to ,RB

the closure of ,RB because RB is closed, in effect to

,RB we also have

2
| (,) 0t T TF

d
V f T V

dt
 because

() .RV T B Thus we deduce that for 0 and

small enough, () RV T B which contradicts the

definition of T. Thus T R and RB is stable.

 Because f<0 on , (0)R RB V B implies

that 0, () Rt V t B . Finally we consider the

case (0) RV CB . Suppose that

0, () ,Rt V t B then
2

0, 2 ,
F

d
t V

dt

thus ()
F

V t is monotonically decreasing and

reaches the value of R in finite time when ()V t

reaches .RB This contradicts our assumption. Thus

0 | () .RT V T B

Proposition 1.1 : Let s and t be measured simple

functions on .X for ,E M define

() (1)
E

E s d

Then

 is a measure on M .

() (2)
X X X

s t d s d td

Proof : If s and if 1 2, ,...E E are disjoint members

of M whose union is ,E the countable additivity of

 shows that

1 1 1

1 1 1

() () ()

() ()

n n

i i i i r

i i r

n

i i r r

r i r

E A E A E

A E E

Also,
() 0,

 so that

 is not identically .

Next, let s be as before, let 1,..., m be the

distinct values of t,and let { : () }j jB x t x If

,ij i jE A B the

() () ()
ij

i j ij
E

s t d E

and () ()
ij ij

i ij j ij
E E

sd td E E

Thus (2) holds with
ijE in place of X . Since X is

the disjoint union of the sets

(1 ,1),ijE i n j m the first half of our

proposition implies that (2) holds.

Theorem 1.1: If K is a compact set in the plane

whose complement is connected, if f is a

continuous complex function on K which is

holomorphic in the interior of , and if 0, then

there exists a polynomial P such that

() ()f z P z for all z K . If the interior of

K is empty, then part of the hypothesis is vacuously

satisfied, and the conclusion holds for every

()f C K . Note that K need to be connected.

Proof: By Tietze‘s theorem, f can be extended to a

continuous function in the plane, with compact

support. We fix one such extension and denote it

again by f . For any 0, let () be the

supremum of the numbers 2 1() ()f z f z Where

1z and 2z are subject to the condition 2 1z z .

Since f is uniformly continous, we have

International Journal of Computer & Organization Trends –Volume 2 Issue 6 November to December 2012

ISSN: 2249-2593 http://www.ijcotjournal.org Page 149

0
lim () 0 (1)

 From now on, will

be fixed. We shall prove that there is a polynomial

P such that

 () () 10,000 () () (2)f z P z z K

By (1), this proves the theorem. Our first objective

is the construction of a function
' 2(),cC R such

that for all z

() () (), (3)

2 ()
()() , (4)

f z z

z

And

1 ()()
() (), (5)

X

z d d i
z

Where X is the set of all points in the support of

whose distance from the complement of K does not

 . (Thus X contains no point which is ―far within‖

K .) We construct as the convolution of f with a

smoothing function A. Put () 0a r if ,r put

2

2

2 2

3
() (1) (0), (6)

r
a r r

And define

() () (7)A z a z

For all complex z . It is clear that
' 2()cA C R . We

claim that

2

3

1, (8)

0, (9)

24 2
, (10)

15

sR

R

R

A

A

A

The constants are so adjusted in (6) that (8) holds.

(Compute the integral in polar coordinates), (9) holds

simply because A has compact support. To compute

(10), express A in polar coordinates, and note that

0,A

' ,A a
r

Now define

2 2

() () () () (11)

R R

z f z Ad d A z f d d

Since f and A have compact support, so does .

Since

2

() ()

[() ()] () (12)

R

z f z

f z f z A d d

And () 0A if , (3) follows from (8).

The difference quotients of A converge boundedly

to the corresponding partial derivatives, since
' 2()cA C R . Hence the last expression in (11) may

be differentiated under the integral sign, and we

obtain

2

2

2

()() ()() ()

()()()

[() ()]()() (13)

R

R

R

z A z f d d

f z A d d

f z f z A d d

The last equality depends on (9). Now (10) and (13)

give (4). If we write (13) with x and
y in place

of , we see that has continuous partial

derivatives, if we can show that 0 in ,G

where G is the set of all z K whose distance from

the complement of K exceeds . We shall do this

by showing that

 () () (); (14)z f z z G

Note that 0f in G , since f is holomorphic

there. Now if ,z G then z is in the interior of

K for all with . The mean value property

for harmonic functions therefore gives, by the first

equation in (11),

2

2

0 0

0

() () ()

2 () () () () (15)

i

R

z a r rdr f z re d

f z a r rdr f z A f z

For all z G , we have now proved (3), (4), and (5)

The definition of X shows that X is compact and

that X can be covered by finitely many open discs

1,..., ,nD D of radius 2 , whose centers are not in

.K Since
2S K is connected, the center of each

jD can be joined to by a polygonal path in

2S K . It follows that each jD contains a compact

connected set ,jE of diameter at least 2 , so that

2

jS E is connected and so that .jK E

International Journal of Computer & Organization Trends –Volume 2 Issue 6 November to December 2012

ISSN: 2249-2593 http://www.ijcotjournal.org Page 150

with 2r . There are functions
2()j jg H S E

and constants
jb so that the inequalities.

2

2

50
(,) , (16)

1 4,000
(,) (17)

j

j

Q z

Q z
z z

Hold for
jz E and ,jD if

2(,) () () () (18)j j j jQ z g z b g z

Let be the complement of 1nE E Then

 is an open set which contains .K Put

1 1X X D and

1 1() (...),j j jX X D X X for

2 ,j n

Define

(,) (,) (,) (19)j jR z Q z X z

And

1
() ()() (,) (20)

()

X

F z R z d d

z

Since,

1

1
() ()() (,) , (21)

i

j

j X

F z Q z d d

(18) shows that F is a finite linear combination of

the functions jg and
2

jg . Hence ().F H

By

(20), (4), and (5) we have

2 ()
() () | (,)

1
| () (22)

X

F z z R z

d d z
z

Observe that the inequalities (16) and (17) are valid

with R in place of jQ if X and .z Now

fix .z , put ,iz e and estimate the

integrand in (22) by (16) if 4 , by (17) if

4 . The integral in (22) is then seen to be less

than the sum of

4

0

50 1
2 808 (23)d

And

2

24

4,000
2 2,000 . (24)d

Hence (22) yields

() () 6,000 () () (25)F z z z

Since (), ,F H K and
2S K is

connected, Runge‘s theorem shows that F can be

uniformly approximated on K by polynomials.

Hence (3) and (25) show that (2) can be satisfied.

This completes the proof.

Lemma 1.0 : Suppose
' 2(),cf C R the space of all

continuously differentiable functions in the plane,

with compact support. Put

1
(1)

2
i

x y

Then the following ―Cauchy formula‖ holds:

2

1 ()()
()

() (2)

R

f
f z d d

z

i

Proof: This may be deduced from Green‘s theorem.

However, here is a simple direct proof:

Put (,) (), 0,ir f z re r real

 If ,iz re the chain rule gives

1
()() (,) (3)

2

i i
f e r

r r

The right side of (2) is therefore equal to the limit, as

0, of

2

0

1
(4)

2

i
d dr

r r

For each 0,r is periodic in , with period 2

. The integral of / is therefore 0, and (4)

becomes

2 2

0 0

1 1
(,) (5)

2 2
d dr d

r

As 0, (,) ()f z uniformly. This

gives (2)

If X a and 1,... nX k X X , then

X X X a , and so A satisfies the

condition () . Conversely,

International Journal of Computer & Organization Trends –Volume 2 Issue 6 November to December 2012

ISSN: 2249-2593 http://www.ijcotjournal.org Page 151

,

()() (),
nA

c X d X c d X finite sums

and so if A satisfies () , then the subspace

generated by the monomials ,X a , is an ideal.

The proposition gives a classification of the

monomial ideals in 1,... nk X X : they are in one to

one correspondence with the subsets A of
n

satisfying () . For example, the monomial ideals in

 k X are exactly the ideals (), 1nX n , and the

zero ideal (corresponding to the empty set A). We

write |X A for the ideal corresponding to

A (subspace generated by the ,X a).

LEMMA 1.1. Let S be a subset of
n . The the

ideal a generated by ,X S is the monomial

ideal corresponding to

 | ,
df

n nA some S

Thus, a monomial is in a if and only if it is divisible

by one of the , |X S

PROOF. Clearly A satisfies , and

|a X A . Conversely, if A , then

n for some S , and

X X X a . The last statement follows

from the fact that | nX X . Let

nA satisfy . From the geometry of A , it

is clear that there is a finite set of elements

 1,... sS of A such that

 2| ,n

i iA some S

(The 'i s are the corners of A) Moreover,

|
df

a X A is generated by the monomials

,i

iX S
 .

DEFINITION 1.0. For a nonzero ideal a in

 1 ,..., nk X X , we let (())LT a be the ideal

generated by

 () |LT f f a

LEMMA 1.2 Let a be a nonzero ideal in

 1 ,..., nk X X ; then (())LT a is a monomial ideal,

and it equals 1((),..., ())nLT g LT g for some

1,..., ng g a .

PROOF. Since (())LT a can also be described as

the ideal generated by the leading monomials (rather

than the leading terms) of elements of a .

THEOREM 1.2. Every ideal a in 1 ,..., nk X X

is finitely generated; more precisely,

1(,...,)sa g g where 1,..., sg g are any elements

of a whose leading terms generate ()LT a

PROOF. Let f a . On applying the division

algorithm, we find

 1 1 1... , , ,...,s s i nf a g a g r a r k X X

 , where either 0r or no monomial occurring in it

is divisible by any ()iLT g . But

i i
r f a g a , and therefore

1() () ((),..., ())sLT r LT a LT g LT g , implies

that every monomial occurring in r is divisible by

one in ()iLT g . Thus 0r , and 1(,...,)sg g g .

DEFINITION 1.1. A finite subset

 1,| ..., sS g g of an ideal a is a standard (

..

()Gr obner bases for a if

1((),..., ()) ()sLT g LT g LT a . In other words, S

is a standard basis if the leading term of every

element of a is divisible by at least one of the leading

terms of the ig .

THEOREM 1.3 The ring 1[,...,]nk X X is

Noetherian i.e., every ideal is finitely generated.

PROOF. For 1,n []k X is a principal ideal

domain, which means that every ideal is generated by

single element. We shall prove the theorem by

induction on n . Note that the obvious map

1 1 1[,...][] [,...]n n nk X X X k X X is an

isomorphism – this simply says that every polynomial

f in n variables 1,... nX X can be expressed

uniquely as a polynomial in nX with coefficients in

1[,...,]nk X X :

1 0 1 1 1 1(,...) (,...) ... (,...)r

n n n r nf X X a X X X a X X

Thus the next lemma will complete the proof

International Journal of Computer & Organization Trends –Volume 2 Issue 6 November to December 2012

ISSN: 2249-2593 http://www.ijcotjournal.org Page 152

LEMMA 1.3. If A is Noetherian, then so also is

[]A X

PROOF. For a polynomial

1

0 1 0() ... , , 0,r r

r if X a X a X a a A a

r is called the degree of f , and 0a is its leading

coefficient. We call 0 the leading coefficient of the

polynomial 0. Let a be an ideal in []A X . The

leading coefficients of the polynomials in a form an

ideal
'a in A , and since A is Noetherian,

'a will

be finitely generated. Let 1,..., mg g be elements of

a whose leading coefficients generate
'a , and let r

be the maximum degree of ig . Now let ,f a and

suppose f has degree s r , say, ...sf aX

Then
'a a , and so we can write

, ,i ii

i i

a b a b A

a leading coefficient of g

Now

, deg(),
is r

i i i if b g X r g

 has degree

deg()f . By continuing in this way, we find that

1mod(,...)t mf f g g With tf a

polynomial of degree t r . For each d r , let da

be the subset of A consisting of 0 and the leading

coefficients of all polynomials in a of degree ;d it

is again an ideal in A . Let ,1 ,,...,
dd d mg g be

polynomials of degree d whose leading coefficients

generate da . Then the same argument as above

shows that any polynomial df in a of degree d can

be written 1 ,1 ,mod(,...)
dd d d d mf f g g

With 1df of degree 1d . On applying this

remark repeatedly we find that

1 01,1 1, 0,1 0,(,... ,... ,...)
rt r r m mf g g g g
 Hence

1 01 1,1 1, 0,1 0,(,... ,... ,..., ,...,)
rt m r r m mf g g g g g g

 and so the polynomials
01 0,,..., mg g generate a

One of the great successes of category theory in

computer science has been the development of a

―unified theory‖ of the constructions underlying

denotational semantics. In the untyped -calculus,

any term may appear in the function position of an

application. This means that a model D of the -

calculus must have the property that given a term t

whose interpretation is ,d D Also, the

interpretation of a functional abstraction like x . x

is most conveniently defined as a function from

Dto D , which must then be regarded as an element

of D. Let : D D D be the function that

picks out elements of D to represent elements of

 D D and : D D D be the function

that maps elements of D to functions of D. Since

()f is intended to represent the function f as an

element of D, it makes sense to require that

(()) ,f f that is,
 D D

o id

Furthermore, we often want to view every element of

D as representing some function from D to D and

require that elements representing the same function

be equal – that is

(())

D

d d

or

o id

The latter condition is called extensionality. These

conditions together imply that and are

inverses--- that is, D is isomorphic to the space of

functions from D to D that can be the interpretations

of functional abstractions: D D D .Let us

suppose we are working with the untyped

calculus , we need a solution ot the equation

 ,D A D D where A is some

predetermined domain containing interpretations for

elements of C. Each element of D corresponds to

either an element of A or an element of ,D D

with a tag. This equation can be solved by finding

least fixed points of the function

 ()F X A X X from domains to domains -

-- that is, finding domains X such that

 ,X A X X and such that for any domain

Y also satisfying this equation, there is an embedding

of X to Y --- a pair of maps

R

f

f

X Y

Such that
R

X

R

Y

f o f id

f o f id

Where f g means that f approximates g in

some ordering representing their information content.

The key shift of perspective from the domain-

theoretic to the more general category-theoretic

approach lies in considering F not as a function on

International Journal of Computer & Organization Trends –Volume 2 Issue 6 November to December 2012

ISSN: 2249-2593 http://www.ijcotjournal.org Page 153

domains, but as a functor on a category of domains.

Instead of a least fixed point of the function, F.

Definition 1.3: Let K be a category and :F K K

as a functor. A fixed point of F is a pair (A,a), where

A is a K-object and : ()a F A A is an

isomorphism. A prefixed point of F is a pair (A,a),

where A is a K-object and a is any arrow from F(A)

to A

Definition 1.4 : An chain in a category K is a

diagram of the following form:

1 2

1 2
of f f

oD D D

Recall that a cocone of an chain is a K-

object X and a collection of K –arrows

 : | 0i iD X i such that 1i i io f for

all 0i . We sometimes write : X as a

reminder of the arrangement of 's components

Similarly, a colimit : X is a cocone with the

property that if
': X is also a cocone then

there exists a unique mediating arrow
':k X X

such that for all 0,, i ii v k o . Colimits of

chains are sometimes referred to as

limco its . Dually, an
op chain in K is a

diagram of the following form:

1 2

1 2
of f f

oD D D

A cone : X

of an
op chain is a K-object X and a

collection of K-arrows : | 0i iD i such that for

all 10, i i ii f o . An
op -limit of an

op chain is a cone : X with the

property that if
': X is also a cone, then there

exists a unique mediating arrow
':k X X such

that for all 0, i ii ok . We write k (or just

) for the distinguish initial object of K, when it has

one, and A for the unique arrow from to

each K-object A. It is also convenient to write

1 2

1 2
f f

D D to denote all of except

oD and 0f . By analogy,
 is | 1i i . For the

images of and under F we write

1 2() () ()

1 2() () () ()
oF f F f F f

oF F D F D F D

and () () | 0iF F i

We write
iF for the i-fold iterated composition of F

– that is,

1 2() , () (), () (())oF f f F f F f F f F F f

 ,etc. With these definitions we can state that every

monitonic function on a complete lattice has a least

fixed point:

Lemma 1.4. Let K be a category with initial object

 and let :F K K be a functor. Define the

chain by
2

! () (! ()) (! ())
2

() ()
F F F F F

F F

If both : D

and () : () ()F F F D

are colimits, then (D,d) is an intial F-algebra, where

: ()d F D D

 is the mediating arrow from

()F

 to the cocone

Theorem 1.4 Let a DAG G given in which each node

is a random variable, and let a discrete conditional

probability distribution of each node given values of

its parents in G be specified. Then the product of

these conditional distributions yields a joint

probability distribution P of the variables, and (G,P)

satisfies the Markov condition.

Proof. Order the nodes according to an ancestral

ordering. Let 1 2, ,........ nX X X be the resultant

ordering. Next define.

1 2 1 1

2 2 1 1

(, ,....) (|) (|)...

.. (|) (|),

n n n n nP x x x P x pa P x Pa

P x pa P x pa

Where iPA is the set of parents of iX of in G and

(|)i iP x pa is the specified conditional probability

distribution. First we show this does indeed yield a

joint probability distribution. Clearly,

1 20 (, ,...) 1nP x x x for all values of the

variables. Therefore, to show we have a joint

distribution, as the variables range through all their

possible values, is equal to one. To that end,

Specified conditional distributions are the conditional

distributions they notationally represent in the joint

distribution. Finally, we show the Markov condition

is satisfied. To do this, we need show for 1 k n

that

whenever

() 0, (|) 0

(|) 0

(| ,) (|),

k k k

k k

k k k k k

P pa if P nd pa

and P x pa

then P x nd pa P x pa

Where kND is the set of nondescendents of kX of in

G. Since k kPA ND , we need only show

International Journal of Computer & Organization Trends –Volume 2 Issue 6 November to December 2012

ISSN: 2249-2593 http://www.ijcotjournal.org Page 154

(|) (|)k k k kP x nd P x pa . First for a given k ,

order the nodes so that all and only nondescendents

of kX precede kX in the ordering. Note that this

ordering depends on k , whereas the ordering in the

first part of the proof does not. Clearly then

1 2 1

1 2

, ,....

, ,....

k k

k k k n

ND X X X

Let

D X X X

follows
kd

We define the
thm cyclotomic field to be the field

 / (())mQ x x

Where ()m x is the

thm

cyclotomic polynomial. / (())mQ x x ()m x

has degree ()m over Q since ()m x has degree

()m . The roots of ()m x are just the primitive

thm roots of unity, so the complex embeddings of

 / (())mQ x x are simply the ()m maps

 : / (()) ,

1 , (,) 1,

() ,

k m

k

k m

Q x x C

k m k m where

x

m being our fixed choice of primitive
thm root of

unity. Note that ()k

m mQ for every ;k it follows

that () ()k

m mQ Q for all k relatively prime to

m . In particular, the images of the i coincide, so

 / (())mQ x x is Galois over Q . This means that

we can write ()mQ for / (())mQ x x without

much fear of ambiguity; we will do so from now on,

the identification being .m x One advantage of

this is that one can easily talk about cyclotomic fields

being extensions of one another,or intersections or

compositums; all of these things take place

considering them as subfield of .C We now

investigate some basic properties of cyclotomic

fields. The first issue is whether or not they are all

distinct; to determine this, we need to know which

roots of unity lie in ()mQ .Note, for example, that if

m is odd, then m is a 2 thm root of unity. We will

show that this is the only way in which one can

obtain any non-
thm roots of unity.

LEMMA 1.5 If m divides n , then ()mQ is

contained in ()nQ

PROOF. Since ,
n

m
m we have (),m nQ so

the result is clear

LEMMA 1.6 If m and n are relatively prime, then

 (,) ()m n nmQ Q

and

 () ()m nQ Q Q

(Recall the (,)m nQ is the compositum of

() ())m nQ and Q

PROOF. One checks easily that m n is a primitive

thmn root of unity, so that

() (,)mn m nQ Q

 (,) : () : (:

() () ();

m n m nQ Q Q Q Q Q

m n mn

Since () : ();mnQ Q mn this implies that

(,) ()m n nmQ Q

We know that (,)m nQ has

degree ()mn

over Q , so we must have

 (,) : () ()m n mQ Q n

and

 (,) : () ()m n mQ Q m

 () : () () ()m m nQ Q Q m

And thus that () ()m nQ Q Q

PROPOSITION 1.2 For any m and n

 ,
(,) ()m n m n

Q Q

And

(,)() () ();m n m nQ Q Q

here ,m n and ,m n denote the least common

multiple and the greatest common divisor of m and

,n respectively.

PROOF. Write 1 1

1 1......k ke fe f

k km p p and p p

where the ip are distinct primes. (We allow i ie or f

to be zero)

International Journal of Computer & Organization Trends –Volume 2 Issue 6 November to December 2012

ISSN: 2249-2593 http://www.ijcotjournal.org Page 155

1 2
1 2

1 2
1 2

1 1
1 12

1 1
1 1

max() max()1, ,1
1 1

() () ()... ()

() () ()... ()

(,) ()........ () ()... ()

() ()... () ()

()....... (

e e ek
k

f f fk
k

e e f fk k
k

e f e fk k
k k

e ef k fk

m p p p

n p p p

m n p pp p

p p p p

p p

Q Q Q Q

and

Q Q Q Q

Thus

Q Q Q Q Q

Q Q Q Q

Q Q

max() max()1, ,1
1 1........

,

)

()

();

e ef k fkp p

m n

Q

Q

An entirely similar computation shows that

(,)() () ()m n m nQ Q Q

Mutual information measures the information

transferred when ix is sent and iy is received, and is

defined as

2

()

(,) log (1)
()

i

i
i i

i

x
P

y
I x y bits

P x

In a noise-free channel, each iy is uniquely connected

to the corresponding ix , and so they constitute an

input –output pair (,)i ix y for which

2

1
() 1 (,) log

()
i

i j
j

i

x
P and I x y

y P x
 bits;

that is, the transferred information is equal to the self-

information that corresponds to the input ix

In a very

noisy channel, the output iy and input ix would be

completely uncorrelated, and so () ()i
i

j

x
P P x

y

and also (,) 0;i jI x y that is, there is no

transference of information. In general, a given

channel will operate between these two extremes. The

mutual information is defined between the input and

the output of a given channel. An average of the

calculation of the mutual information for all input-

output pairs of a given channel is the average mutual

information:

2

. .

(

(,) (,) (,) (,) log
()

i

j

i j i j i j

i j i j i

x
P

y
I X Y P x y I x y P x y

P x

bits per symbol . This calculation is done over the

input and output alphabets. The average mutual

information. The following expressions are useful for

modifying the mutual information expression:

(,) () () () ()

() () ()

() () ()

ji
i j j i

j i

j
j i

ii

i
i j

ji

yx
P x y P P y P P x

y x

y
P y P P x

x

x
P x P P y

y

Then

.

2

.

2

.

2

.

2

2

(,) (,)

1
(,) log

()

1
(,) log

()

1
(,) log

()

1
() () log

()

1
() log ()

()

(,) () ()

i j

i j

i j

i j i

i j
ii j

j

i j

i j i

i
j

ji i

i

i i

I X Y P x y

P x y
P x

P x y
x

P
y

P x y
P x

x
P P y

y P x

P x H X
P x

XI X Y H X H
Y

Where
2,

1
() (,) log

()
i ji j

i

j

XH P x y
Y x

P
y

is usually called the equivocation. In a sense, the

equivocation can be seen as the information lost in

the noisy channel, and is a function of the backward

conditional probability. The observation of an output

symbol jy provides () ()XH X H
Y

 bits of

information. This difference is the mutual

information of the channel. Mutual Information:

Properties Since

() () () ()ji
j i

j i

yx
P P y P P x

y x

The mutual information fits the condition

(,) (,)I X Y I Y X

And by interchanging input and output it is also true

that

(,) () ()YI X Y H Y H
X

Where

2

1
() () log

()
j

j j

H Y P y
P y

International Journal of Computer & Organization Trends –Volume 2 Issue 6 November to December 2012

ISSN: 2249-2593 http://www.ijcotjournal.org Page 156

This last entropy is usually called the noise entropy.

Thus, the information transferred through the channel

is the difference between the output entropy and the

noise entropy. Alternatively, it can be said that the

channel mutual information is the difference between

the number of bits needed for determining a given

input symbol before knowing the corresponding

output symbol, and the number of bits needed for

determining a given input symbol after knowing the

corresponding output symbol

(,) () ()XI X Y H X H
Y

As the channel mutual information expression is a

difference between two quantities, it seems that this

parameter can adopt negative values. However, and is

spite of the fact that for some , (/)j jy H X y can be

larger than ()H X , this is not possible for the

average value calculated over all the outputs:

2 2

, ,

()
(,)

(,) log (,) log
() () ()

i

j i j

i j i j

i j i ji i j

x
P

y P x y
P x y P x y

P x P x P y

Then

,

() ()
(,) (,) 0

(,)

i j

i j

i j i j

P x P y
I X Y P x y

P x y

Because this expression is of the form

2

1

log () 0
M

i
i

i i

Q
P

P

The above expression can be applied due to the factor

() (),i jP x P y which is the product of two

probabilities, so that it behaves as the quantity iQ ,

which in this expression is a dummy variable that fits

the condition 1ii
Q . It can be concluded that

the average mutual information is a non-negative

number. It can also be equal to zero, when the input

and the output are independent of each other. A

related entropy called the joint entropy is defined as

2

,

2

,

2

,

1
(,) (,) log

(,)

() ()
(,) log

(,)

1
(,) log

() ()

i j

i j i j

i j

i j

i j i j

i j

i j i j

H X Y P x y
P x y

P x P y
P x y

P x y

P x y
P x P y

Theorem 1.5: Entropies of the binary erasure channel

(BEC) The BEC is defined with an alphabet of two

inputs and three outputs, with symbol probabilities.

1 2() () 1 ,P x and P x and transition

probabilities

3 2

2 1

3

1

1

2

3

2

() 1 () 0,

() 0

()

() 1

y y
P p and P

x x

y
and P

x

y
and P p

x

y
and P p

x

Lemma 1.7. Given an arbitrary restricted time-

discrete, amplitude-continuous channel whose

restrictions are determined by sets nF and whose

density functions exhibit no dependence on the state

s , let n be a fixed positive integer, and ()p x an

arbitrary probability density function on Euclidean n-

space. (|)p y x for the density

1 1(,..., | ,...)n n np y y x x and nF for F
.

For any

real number a, let

(|)
(,) : log (1)

()

p y x
A x y a

p y

Then for each positive integer u , there is a code

(, ,)u n such that

 (,) (2)aue P X Y A P X F

Where

(,) ... (,) , (,) () (|)

... ()

A

F

P X Y A p x y dxdy p x y p x p y x

and

P X F p x dx

Proof: A sequence
(1)x F such that

1

(1)| 1

: (,) ;

x

x

P Y A X x

where A y x y A

Choose the decoding set 1B to be (1)x
A . Having

chosen
(1) (1),........, kx x

and 1 1,..., kB B , select

kx F such that

()

1
()

1

| 1 ;k

k
k

ix
i

P Y A B X x

Set ()

1

1
k

k

k ix i
B A B

 , If the process does not

terminate in a finite number of steps, then the

sequences
()ix and decoding sets , 1,2,..., ,iB i u

form the desired code. Thus assume that the process

terminates after t steps. (Conceivably 0t). We

will show t u by showing that

 (,)ate P X Y A P X F . We

proceed as follows.

International Journal of Computer & Organization Trends –Volume 2 Issue 6 November to December 2012

ISSN: 2249-2593 http://www.ijcotjournal.org Page 157

Let

1

(,)

. (0,).

(,) (,)

() (|)

() (|) ()

x

x

t

jj

x y A

x y A

x y B A x

B B If t take B Then

P X Y A p x y dx dy

p x p y x dy dx

p x p y x dy dx p x

E. Algorithms

Ideals. Let A be a ring. Recall that an ideal a in A

is a subset such that a is subgroup of A regarded as a

group under addition;

,a a r A ra A

The ideal generated by a subset S of A is the

intersection of all ideals A containing a ----- it is easy

to verify that this is in fact an ideal, and that it consist

of all finite sums of the form i i
r s with

,i ir A s S . When 1,....., mS s s , we shall

write 1(,.....,)ms s for the ideal it generates.

Let a and b be ideals in A. The set

 | ,a b a a b b is an ideal, denoted by a b

. The ideal generated by | ,ab a a b b is

denoted by ab . Note that ab a b . Clearly ab

consists of all finite sums i i
a b with ia a and

ib b , and if 1(,...,)ma a a and 1(,...,)nb b b ,

then 1 1(,..., ,...,)i j m nab a b a b a b .Let a be an

ideal of A. The set of cosets of a in A forms a ring

/A a , and a a a is a homomorphism

: /A A a . The map
1()b b is a one to

one correspondence between the ideals of /A a and

the ideals of A containing a An ideal p if prime if

p A and ab p a p or b p . Thus p

is prime if and only if /A p is nonzero and has the

property that 0, 0 0,ab b a i.e.,

/A p is an integral domain. An ideal m is maximal

if |m A and there does not exist an ideal n

contained strictly between m and A . Thus m is

maximal if and only if /A m has no proper nonzero

ideals, and so is a field. Note that m maximal

m prime. The ideals of A B are all of the form

a b , with a and b ideals in A and B . To see

this, note that if c is an ideal in A B and

(,)a b c , then (,0) (,)(1,0)a a b c and

(0,) (,)(0,1)b a b c . This shows that

c a b with

 | (,)a a a b c some b b

and

 | (,)b b a b c some a a

Let A be a ring. An A -algebra is a ring B together

with a homomorphism :Bi A B . A

homomorphism of A -algebra B C is a

homomorphism of rings : B C such that

(()) ()B Ci a i a for all . An A -algebra

B is said to be finitely generated (or of finite-type

over A) if there exist elements 1,..., nx x B such

that every element of B can be expressed as a

polynomial in the ix with coefficients in ()i A , i.e.,

such that the homomorphism 1,..., nA X X B

sending iX to ix is surjective. A ring

homomorphism A B is finite, and B is finitely

generated as an A-module. Let k be a field, and let

A be a k -algebra. If 1 0 in A , then the map

k A is injective, we can identify k with its

image, i.e., we can regard k as a subring of A . If

1=0 in a ring R, the R is the zero ring, i.e., 0R .

Polynomial rings. Let k be a field. A monomial in

1,..., nX X is an expression of the form

1

1 ... ,naa

n jX X a N . The total degree of the

monomial is ia . We sometimes abbreviate it by

1, (,...,) n

nX a a
.

The elements of the

polynomial ring 1,..., nk X X are finite sums

1

1 1.... 1 , ,n

n n

aa

a a n a a jc X X c k a

With the obvious notions of equality, addition and

multiplication. Thus the monomials from basis for

 1,..., nk X X as a k -vector space. The ring

 1,..., nk X X is an integral domain, and the only

units in it are the nonzero constant polynomials. A

polynomial 1(,...,)nf X X is irreducible if it is

nonconstant and has only the obvious factorizations,

i.e., f gh g or h is constant. Division in

 k X . The division algorithm allows us to divide a

nonzero polynomial into another: let f and g be

polynomials in k X with 0;g then there exist

unique polynomials ,q r k X such that

a A

International Journal of Computer & Organization Trends –Volume 2 Issue 6 November to December 2012

ISSN: 2249-2593 http://www.ijcotjournal.org Page 158

f qg r with either 0r or deg r < deg g .

Moreover, there is an algorithm for deciding whether

()f g , namely, find r and check whether it is

zero. Moreover, the Euclidean algorithm allows to

pass from finite set of generators for an ideal in

 k X to a single generator by successively replacing

each pair of generators with their greatest common

divisor.

 (Pure) lexicographic ordering (lex). Here

monomials are ordered by lexicographic(dictionary)

order. More precisely, let 1(,...)na a and

1(,...)nb b be two elements of
n ; then

 and X X (lexicographic ordering) if,

in the vector difference , the left most

nonzero entry is positive. For example,

2 3 4 3 2 4 3 2;XY Y Z X Y Z X Y Z . Note that

this isn‘t quite how the dictionary would order them:

it would put XXXYYZZZZ after XXXYYZ .

Graded reverse lexicographic order (grevlex). Here

monomials are ordered by total degree, with ties

broken by reverse lexicographic ordering. Thus,

 if i ia b , or i ia b and in

 the right most nonzero entry is negative. For

example:
4 4 7 5 5 4X Y Z X Y Z (total degree greater)

5 2 4 3 5 4 2,XY Z X YZ X YZ X YZ
.

Orderings on 1,... nk X X . Fix an ordering on the

monomials in 1,... nk X X . Then we can write an

element f of 1,... nk X X in a canonical fashion,

by re-ordering its elements in decreasing order. For

example, we would write
2 2 3 2 24 4 5 7f XY Z Z X X Z

as

3 2 2 2 25 7 4 4 ()f X X Z XY Z Z lex

or
2 2 2 3 24 7 5 4 ()f XY Z X Z X Z grevlex

Let 1,..., na X k X X

 , in decreasing

order:

0 1

0 1 0 1 0..., ..., 0f a X X

Then we define.

 The multidegree of
f

 to be multdeg(
f

)=

0 ;

 The leading coefficient of
f

to be LC(
f

)=

0
a ;

 The leading monomial of
f

to be LM(
f

)

= 0X

;

 The leading term of
f

to be LT(
f

) =

0

0
a X

For the polynomial
24 ...,f XY Z the

multidegree is (1,2,1), the leading coefficient is 4, the

leading monomial is
2XY Z , and the leading term is

24XY Z . The division algorithm in 1,... nk X X .

Fix a monomial ordering in
2 . Suppose given a

polynomial f and an ordered set 1(,...)sg g of

polynomials; the division algorithm then constructs

polynomials 1,... sa a and r such that

1 1 ... s sf a g a g r Where either 0r or

no monomial in r is divisible by any of

1(),..., ()sLT g LT g Step 1: If 1() | ()LT g LT f ,

divide 1g into f to get

 1 1 1 1

1

()
, ,...,

()
n

LT f
f a g h a k X X

LT g

If 1() | ()LT g LT h , repeat the process until

1 1 1f a g f (different 1a) with 1()LT f not

divisible by 1()LT g . Now divide 2g into 1f , and

so on, until 1 1 1... s sf a g a g r With

1()LT r not divisible by any 1(),... ()sLT g LT g

Step 2: Rewrite 1 1 2()r LT r r , and repeat Step 1

with 2r for f :

1 1 1 3... ()s sf a g a g LT r r (different

'ia s) Monomial ideals. In general, an ideal a

will contain a polynomial without containing the

individual terms of the polynomial; for example, the

ideal
2 3()a Y X contains

2 3Y X but not
2Y

or
3X .

DEFINITION 1.5. An ideal a is monomial if

c X a X a

 all with 0c .

PROPOSITION 1.3. Let a be a monomial ideal, and

let |A X a . Then A satisfies the

condition , ()nA

International Journal of Computer & Organization Trends –Volume 2 Issue 6 November to December 2012

ISSN: 2249-2593 http://www.ijcotjournal.org Page 159

And a is the k -subspace of 1,..., nk X X

generated by the ,X A . Conversely, of A is a

subset of
n satisfying , then the k-subspace

a of 1,..., nk X X generated by |X A is

a monomial ideal.

PROOF. It is clear from its definition that a

monomial ideal a is the k -subspace of

 1,..., nk X X

generated by the set of monomials it contains. If

X a
 and

 1,..., nX k X X
 .

If a permutation is chosen uniformly and at random

from the !n possible permutations in ,nS then the

counts
()n

jC of cycles of length j are dependent

random variables. The joint distribution of
() () ()

1(,...,)n n n

nC C C follows from Cauchy‘s

formula, and is given by

()

1 1

1 1 1
[] (,) 1 () , (1.1)

! !

j

nn
cn

j

j j j

P C c N n c jc n
n j c

for
nc .

Lemma1.7 For nonnegative integers

1,...,

[]()

11 1

,

1
() 1 (1.4)

j

j

n

m
n n n

mn

j j

jj j

m m

E C jm n
j

Proof. This can be established directly by exploiting

cancellation of the form
[] !/ 1/ ()!jm

j j j jc c c m

when ,j jc m which occurs between the

ingredients in Cauchy‘s formula and the falling

factorials in the moments. Write jm jm .

Then, with the first sum indexed by

1(,...) n

nc c c and the last sum indexed by

1(,...,) n

nd d d via the correspondence

,j j jd c m we have

[] []() ()

1 1

[]

: 1 1

11 1

() [] ()

()
1

!

1 1
1

()!

j j

j

j

j j

j j

n n
m mn n

j j

cj j

m
nn

j

j c
c c m for all j j j j

n nn

jm d
d jj j j

E C P C c c

c
jc n

j c

jd n m
j j d

This last sum simplifies to the indicator 1(),m n

corresponding to the fact that if 0,n m then

0jd for ,j n m and a random permutation

in n mS must have some cycle structure

1(,...,)n md d . The moments of
()n

jC follow

immediately as

 () []() 1 (1.2)n r r

jE C j jr n

We note for future reference that (1.4) can also be

written in the form

[] []()

11 1

() 1 , (1.3)j j

n n n
m mn

j j j

jj j

E C E Z jm n

Where the jZ are independent Poisson-distribution

random variables that satisfy () 1/jE Z j

The marginal distribution of cycle counts provides a

formula for the joint distribution of the cycle counts

,n

jC we find the distribution of
n

jC using a

combinatorial approach combined with the inclusion-

exclusion formula.

Lemma 1.8. For 1 ,j n

[/]

()

0

[] (1) (1.1)
! !

k ln j k
n l

j

l

j j
P C k

k l

Proof. Consider the set I of all possible cycles of

length ,j formed with elements chosen from

 1,2,... ,n so that
[]/j jI n . For each ,I

consider the ―property‖ G of having ; that is,

G is the set of permutations nS such that is

one of the cycles of . We then have

()!,G n j since the elements of 1,2,...,n

not in must be permuted among themselves. To

use the inclusion-exclusion formula we need to

calculate the term ,rS which is the sum of the

probabilities of the r -fold intersection of properties,

summing over all sets of r distinct properties. There

are two cases to consider. If the r properties are

indexed by r cycles having no elements in common,

then the intersection specifies how rj elements are

International Journal of Computer & Organization Trends –Volume 2 Issue 6 November to December 2012

ISSN: 2249-2593 http://www.ijcotjournal.org Page 160

moved by the permutation, and there are

()!1()n rj rj n permutations in the intersection.

There are
[] / (!)rj rn j r such intersections. For the

other case, some two distinct properties name some

element in common, so no permutation can have both

these properties, and the r -fold intersection is empty.

Thus

[]

()!1()

1 1
1()

! ! !

r

rj

r r

S n rj rj n

n
rj n

j r n j r

Finally, the inclusion-exclusion series for the number

of permutations having exactly k properties is

,

0

(1)l

k l

l

k l
S

l

Which simplifies to (1.1) Returning to the original

hat-check problem, we substitute j=1 in (1.1) to

obtain the distribution of the number of fixed points

of a random permutation. For 0,1,..., ,k n

()

1

0

1 1
[] (1) , (1.2)

! !

n k
n l

l

P C k
k l

and the moments of
()

1

nC follow from (1.2) with

1.j In particular, for 2,n the mean and

variance of
()

1

nC are both equal to 1. The joint

distribution of
() ()

1(,...,)n n

bC C for any 1 b n

has an expression similar to (1.7); this too can be

derived by inclusion-exclusion. For any

1(,...,) b

bc c c with ,im ic

1

() ()

1

...

01 1

[(,...,)]

1 1 1 1
(1) (1.3)

! !

i i

b

i

n n

b

c lb b
l l

l withi ii i
il n m

P C C c

i c i l

The joint moments of the first b counts
() ()

1 ,...,n n

bC C can be obtained directly from (1.2)

and (1.3) by setting 1 ... 0b nm m

The limit distribution of cycle counts

It follows immediately from Lemma 1.2 that for each

fixed ,j as ,n

() 1/[] , 0,1,2,...,
!

k
n j

j

j
P C k e k

k

So that
()n

jC converges in distribution to a random

variable jZ having a Poisson distribution with mean

1/ ;j we use the notation
()n

j d jC Z where

(1/)j oZ P j to describe this. Infact, the limit

random variables are independent.

Theorem 1.6 The process of cycle counts converges

in distribution to a Poisson process of with

intensity
1j . That is, as ,n

() ()

1 2 1 2(, ,...) (, ,...) (1.1)n n

dC C Z Z

Where the , 1,2,...,jZ j are independent Poisson-

distributed random variables with
1

()jE Z
j

Proof. To establish the converges in distribution one

shows that for each fixed 1,b as ,n

() ()

1 1[(,...,)] [(,...,)]n n

b bP C C c P Z Z c

Error rates

The proof of Theorem says nothing about the rate of

convergence. Elementary analysis can be used to

estimate this rate when 1b . Using properties of

alternating series with decreasing terms, for

0,1,..., ,k n

()

1 1

1 1 1
() [] []

! (1)! (2)!

1

!(1)!

nP C k P Z k
k n k n k

k n k

It follows that
1 1

()

1 1

0

2 2 1
[] [] (1.11)

(1)! 2 (1)!

n nn
n

k

n
P C k P Z k

n n n

Since
1

1

1 1 1
[] (1 ...) ,

(1)! 2 (2)(3) (1)!

e
P Z n

n n n n n

We see from (1.11) that the total variation distance

between the distribution
()

1()nL C of
()

1

nC and the

distribution 1()L Z of 1Z

Establish the asymptotics of
()()n

nA C under

conditions 0()A and 01(),B where

'

() ()

1 1

() 0 ,

i i

n n

n ij

i n r j r

A C C

and
''(/) 1 ()g

i i idr r O i as ,i for

some
' 0.g We start with the expression

International Journal of Computer & Organization Trends –Volume 2 Issue 6 November to December 2012

ISSN: 2249-2593 http://www.ijcotjournal.org Page 161

'

'
() 0

0

0

1

1

[()]
[()]

[()]

1 (1) (1.1)

i i

n m
n

m

i

i n i
r j r

P T Z n
P A C

P T Z n

E
ir

'

0

1 1

1

1 '

1,2,7

[()]

exp [log(1)]

1 (()) (1.2)

n

i

P T Z n

d
i d i d

n

O n n

and

'

0

1 1

1

1

1,2,7

[()]

exp [log(1)]

1 (()) (1.3)

n

i

P T Z n

d
i d i d

n

O n n

Where

'

1,2,7
()n refers to the quantity derived from

'Z . It thus follows that
() (1)[()]n d

nP A C Kn

for a constant K , depending on Z and the
'

ir and

computable explicitly from (1.1) – (1.3), if

Conditions 0()A and 01()B are satisfied and if

'

()g

i O i from some
' 0,g since, under these

circumstances, both

1 '

1,2,7
()n n and

1

1,2,7
()n n tend to zero as .n In particular,

for polynomials and square free polynomials, the

relative error in this asymptotic approximation is of

order
1n
 if

' 1.g

For 0 / 8b n and 0 ,n n with 0n

 7,7

(([1,]), ([1,]))

(([1,]), ([1,]))

(,),

TV

TV

d L C b L Z b

d L C b L Z b

n b

Where 7,7
(,) (/)n b O b n under Conditions

0 1(), ()A D and 11()B

Since, by the Conditioning

Relation,

0 0([1,] | ()) ([1,] | ()),b bL C b T C l L Z b T Z l

It follows by direct calculation that

0 0

0

0

(([1,]), ([1,]))

((()), (()))

max [()]

[()]
1 (1.4)

[()]

TV

TV b b

b
A

r A

bn

n

d L C b L Z b

d L T C L T Z

P T Z r

P T Z n r

P T Z n

Suppressing the argument Z from now on, we thus

obtain

(([1,]), ([1,]))TVd L C b L Z b

0

0 0

[]
[] 1

[]

bn
b

r n

P T n r
P T r

P T n

[/2]

0
0

/2 0 0

[]
[]

[]

n

b
b

r n r b

P T r
P T r

P T n

0

0

[]([] []
n

b bn bn

s

P T s P T n s P T n r

[/2]

0 0

/2 0

[] []
n

b b

r n r

P T r P T r

 [/2]

0

0 0

[/2]

0 0

0 [/2] 1

[] []
[]

[]

[] [] [] / []

n
bn bn

b

s n

n n

b bn n

s s n

P T n s P T n r
P T s

P T n

P T r P T s P T n s P T n

 The first sum is at most
1

02 ;bn ET
the third is

bound by

0 0
/2

10.5(1)

(max []) / []

2 (/ 2,) 3
,

[0,1]

b n
n s n

P T s P T n

n b n

n P

[/2] [/2]
2

0 010.8
0 0

10.8 0

3 1
4 () [] []

[0,1] 2

12 ()

[0,1]

n n

b b

r s

b

n
n n P T r P T s r s

P

n ET

P n

Hence we may take

10.81

07,7

10.5(1)

6 ()
(,) 2 () 1

[0,1]

6
(/ 2,) (1.5)

[0,1]

b

n
n b n ET Z P

P

n b
P

Required order under Conditions 0 1(), ()A D and

11(),B if () .S If not, 10.8
n

 can be

International Journal of Computer & Organization Trends –Volume 2 Issue 6 November to December 2012

ISSN: 2249-2593 http://www.ijcotjournal.org Page 162

replaced by
 10.11

n
in the above, which has the

required order, without the restriction on the ir

implied by ()S . Examining the Conditions

0 1(), ()A D and 11(),B it is perhaps surprising to find

that 11()B is required instead of just 01();B that is,

that we should need 1

2
()a

ill
l O i

 to hold

for some 1 1a . A first observation is that a similar

problem arises with the rate of decay of 1i as well.

For this reason, 1n is replaced by 1n

. This makes it

possible to replace condition 1()A by the weaker

pair of conditions 0()A and 1()D in the eventual

assumptions needed for
 7,7

,n b to be of order

(/);O b n the decay rate requirement of order
1i

is shifted from 1i itself to its first difference. This is

needed to obtain the right approximation error for the

random mappings example. However, since all the

classical applications make far more stringent

assumptions about the 1, 2,i l than are made in

11()B . The critical point of the proof is seen where

the initial estimate of the difference
() ()[] [1]m m

bn bnP T s P T s . The factor

 10.10
(),n which should be small, contains a far tail

element from 1n

 of the form 1 1() (),n u n which

is only small if 1 1,a being otherwise of order

11()aO n
 for any 0, since 2 1a is in any

case assumed. For / 2,s n this gives rise to a

contribution of order 11
()

aO n
 in the estimate of

the difference [] [1],bn bnP T s P T s which,

in the remainder of the proof, is translated into a

contribution of order 11
()

aO tn
for differences of

the form [] [1],bn bnP T s P T s finally

leading to a contribution of order 1abn
 for any

0 in 7.7
(,).n b Some improvement would

seem to be possible, defining the function g by

 () 1 1 ,
w s w s t

g w

 differences that are of the

form [] []bn bnP T s P T s t can be directly

estimated, at a cost of only a single contribution of

the form 1 1() ().n u n Then, iterating the cycle,

in which one estimate of a difference in point

probabilities is improved to an estimate of smaller

order, a bound of the form

112[] [] ()a

bn bnP T s P T s t O n t n

for any 0 could perhaps be attained, leading to a

final error estimate in order 11()aO bn n for

any 0 , to replace
 7.7

(,).n b This would be of

the ideal order (/)O b n for large enough ,b but

would still be coarser for small .b

With b and n as in the previous section, we wish to

show that

1

0 0

7,8

1
(([1,]), ([1,])) (1) 1

2

(,),

TV b bd L C b L Z b n E T ET

n b

Where

121 1

7.8
(,) ([])n b O n b n b n for

any 0 under Conditions 0 1(), ()A D and

12(),B with 12 . The proof uses sharper estimates.

As before, we begin with the formula

0

0 0

(([1,]), ([1,]))

[]
[] 1

[]

TV

bn
b

r n

d L C b L Z b

P T n r
P T r

P T n

Now we observe that

[/2]

0
0

0 00 0

0

[/2] 1

2 2

0 0 0
/2

0

10.5(2)2 2

0

[] []
[] 1

[] []

[]([] [])

4 (max []) / []

[/ 2]

3 (/ 2,)
8 , (1.1)

[0,1]

n

bn b
b

r rn n

n

b bn bn

s n

b b n
n s n

b

b

P T n r P T r
P T r

P T n P T n

P T s P T n s P T n r

n ET P T s P T n

P T n

n b
n ET

P

We have

International Journal of Computer & Organization Trends –Volume 2 Issue 6 November to December 2012

ISSN: 2249-2593 http://www.ijcotjournal.org Page 163

0[/2]

0

0

[/2]

0

0

[/2]

0 0

0

0 02
0 00

1

010.14 10.8

[]

[]

([]([] []

()(1)
[] [])

1

1
[] []

[]

(,) 2() 1 4 ()

6

bn

n

r

n

b bn bn

s

n

b n

s

b b

r sn

P T r

P T n

P T s P T n s P T n r

s r
P T s P T n

n

P T r P T s s r
n P T n

n b r s n K n

0 10.14

2 2

0 0 10.8

(,)
[0,1]

4 1 4 ()

3
() , (1.2)

[0,1]

b

b

ET n b
nP

n ET K n

nP

The approximation in (1.2) is further simplified by

noting that

[/2] [/2]

0 0

0 0

()(1)
[] []

1

n n

b b

r s

s r
P T r P T s

n

0

0

()(1)
[]

1
b

s

s r
P T s

n

[/2]

0 0

0 [/2]

1 2 2

0 0 0

() 1
[] []

1

1 (1 / 2) 2 1 , (1.3)

n

b b

r s n

b b b

s r
P T r P T s

n

n E T T n n ET

and then by observing that

0 0

[/2] 0

1

0 0 0 0

2 2

0

()(1)
[] []

1

1 ([/ 2] (1 / 2))

4 1 (1.4)

b b

r n s

b b b b

b

s r
P T r P T s

n

n ET P T n E T T n

n ET

Combining the contributions of (1.2) –(1.3), we thus

find tha

1

0 0

0 0

7.8

1

010.5(2) 10.14

10.82 2

0

(([1,]), ([1,]))

(1) [] []()(1)

(,)

3
(/ 2,) 2 (,)

[0,1]

24 1 ()
2 4 3 1 (1.5)

[0,1]

TV

b b

r s

b

b

d L C b L Z b

n P T r P T s s r

n b

n b n ET n b
P

n
n ET

P

The quantity 7.8
(,)n b is seen to be of the order

claimed under Conditions 0 1(), ()A D and 12()B ,

provided that () ;S this supplementary

condition can be removed if
 10.8

()n
 is replaced by

 10.11
()n

 in the definition of 7.8
(,)n b , has the

required order without the restriction on the ir

implied by assuming that () .S Finally, a direct

calculation now shows that

0 0

0 0

0 0

[] []()(1)

1
1

2

b b

r s

b b

P T r P T s s r

E T ET

Example 1.0. Consider the point

(0,...,0) nO . For an arbitrary vector r , the

coordinates of the point x O r are equal to the

respective coordinates of the vector
1: (,...)nr x x x and

1(,...,)nr x x . The vector

r such as in the example is called the position vector

or the radius vector of the point x . (Or, in greater

detail: r is the radius-vector of x w.r.t an origin O).

Points are frequently specified by their radius-

vectors. This presupposes the choice of O as the

―standard origin‖. Let us summarize. We have

considered
n and interpreted its elements in two

ways: as points and as vectors. Hence we may say

that we leading with the two copies of :n
n =

{points},
n = {vectors}

Operations with vectors: multiplication by a number,

addition. Operations with points and vectors: adding a

vector to a point (giving a point), subtracting two

points (giving a vector).
n treated in this way is

called an n-dimensional affine space. (An ―abstract‖

affine space is a pair of sets , the set of points and the

set of vectors so that the operations as above are

defined axiomatically). Notice that vectors in an

affine space are also known as ―free vectors‖.

Intuitively, they are not fixed at points and ―float

International Journal of Computer & Organization Trends –Volume 2 Issue 6 November to December 2012

ISSN: 2249-2593 http://www.ijcotjournal.org Page 164

freely‖ in space. From
n considered as an affine

space we can precede in two opposite directions:
n

as an Euclidean space
n as an affine space

n as a manifold.Going to the left means introducing

some extra structure which will make the geometry

richer. Going to the right means forgetting about part

of the affine structure; going further in this direction

will lead us to the so-called ―smooth (or

differentiable) manifolds‖. The theory of differential

forms does not require any extra geometry. So our

natural direction is to the right. The Euclidean

structure, however, is useful for examples and

applications. So let us say a few words about it:

Remark 1.0. Euclidean geometry. In
n

considered as an affine space we can already do a

good deal of geometry. For example, we can consider

lines and planes, and quadric surfaces like an

ellipsoid. However, we cannot discuss such things as

―lengths‖, ―angles‖ or ―areas‖ and ―volumes‖. To be

able to do so, we have to introduce some more

definitions, making
n a Euclidean space. Namely,

we define the length of a vector
1(,...,)na a a to

be

1 2 2: () ... () (1)na a a

After that we can also define distances between

points as follows:

(,) : (2)d A B AB

One can check that the distance so defined possesses

natural properties that we expect: is it always non-

negative and equals zero only for coinciding points;

the distance from A to B is the same as that from B to

A (symmetry); also, for three points, A, B and C, we

have (,) (,) (,)d A B d A C d C B (the ―triangle

inequality‖). To define angles, we first introduce the

scalar product of two vectors

1 1(,) : ... (3)n na b a b a b

Thus (,)a a a . The scalar product is also

denote by dot: . (,)a b a b , and hence is often

referred to as the ―dot product‖ . Now, for nonzero

vectors, we define the angle between them by the

equality

(,)
cos : (4)

a b

a b

The angle itself is defined up to an integral

multiple of 2 . For this definition to be consistent

we have to ensure that the r.h.s. of (4) does not

exceed 1 by the absolute value. This follows from the

inequality
2 22(,) (5)a b a b

known as the Cauchy–Bunyakovsky–Schwarz

inequality (various combinations of these three names

are applied in different books). One of the ways of

proving (5) is to consider the scalar square of the

linear combination ,a tb where t R . As

(,) 0a tb a tb is a quadratic polynomial in t

which is never negative, its discriminant must be less

or equal zero. Writing this explicitly yields (5). The

triangle inequality for distances also follows from the

inequality (5).

Example 1.1. Consider the function () if x x

(the i-th coordinate). The linear function
idx (the

differential of
ix) applied to an arbitrary vector h is

simply
ih .From these examples follows that we can

rewrite df as

1

1
... , (1)n

n

f f
df dx dx

x x

which is the standard form. Once again: the partial

derivatives in (1) are just the coefficients (depending

on x);
1 2, ,...dx dx are linear functions giving on an

arbitrary vector h its coordinates
1 2, ,...,h h

respectively. Hence

1

() 1
()()

... , (2)

hf x

n

n

f
df x h h

x

f
h

x

Theorem 1.7. Suppose we have a parametrized

curve ()t x t passing through
0

nx at 0t t

and with the velocity vector 0()x t Then

0 0 0

(())
() () ()() (1)

df x t
t f x df x

dt

Proof. Indeed, consider a small increment of the

parameter 0 0:t t t t , Where 0t . On

the other hand, we have

0 0 0() () ()() ()f x h f x df x h h h for

an arbitrary vector h , where () 0h when

0h . Combining it together, for the increment of

(())f x t we obtain

International Journal of Computer & Organization Trends –Volume 2 Issue 6 November to December 2012

ISSN: 2249-2593 http://www.ijcotjournal.org Page 165

0 0

0

0

(() ()

()(. ())

(. ()). ()

()(). ()

f x t t f x

df x t t t

t t t t t t

df x t t t

For a certain ()t such that () 0t when

0t (we used the linearity of 0()df x). By the

definition, this means that the derivative of (())f x t

at 0t t is exactly 0()()df x . The statement of the

theorem can be expressed by a simple formula:

1

1

(())
... (2)n

n

df x t f f
x x

dt x x

To calculate the value Of df at a point 0x on a

given vector one can take an arbitrary curve

passing Through 0x at 0t with as the velocity

vector at 0t and calculate the usual derivative of

(())f x t at 0t t .

Theorem 1.8. For functions , :f g U ,

,nU

() (1)

() . . (2)

d f g df dg

d fg df g f dg

Proof. Consider an arbitrary point 0x and an

arbitrary vector stretching from it. Let a curve

()x t be such that 0 0()x t x and 0()x t .

Hence

0()()() ((()) (()))
d

d f g x f x t g x t
dt

at 0t t and

0()()() ((()) (()))
d

d fg x f x t g x t
dt

at 0t t Formulae (1) and (2) then immediately

follow from the corresponding formulae for the usual

derivative Now, almost without change the theory

generalizes to functions taking values in
m instead

of . The only difference is that now the differential

of a map : mF U at a point x will be a linear

function taking vectors in
n to vectors in

m

(instead of) . For an arbitrary vector | ,nh

() () ()()F x h F x dF x h

+ () (3)h h

Where () 0h when 0h . We have

1(,...,)mdF dF dF and

1

1

1 1

11

1

...

....

... (4)

...

n

n

n

nm m

n

F F
dF dx dx

x x

F F

dxx x

dxF F

x x

In this matrix notation we have to write vectors as

vector-columns.

Theorem 1.9. For an arbitrary parametrized curve

()x t in
n , the differential of a map

: mF U (where
nU) maps the velocity

vector ()x t to the velocity vector of the curve

(())F x t in :m

.(())
(())(()) (1)

dF x t
dF x t x t

dt

Proof. By the definition of the velocity vector,
.

() () (). () (2)x t t x t x t t t t

Where () 0t when 0t . By the

definition of the differential,

() () ()() () (3)F x h F x dF x h h h

Where () 0h when 0h . we obtain

.

.

. .

.

(()) ((). ())

() ()(() ())

(() ()). () ()

() ()(() ()

h

F x t t F x x t t t t

F x dF x x t t t t

x t t t t x t t t t

F x dF x x t t t t

For some () 0t when 0t . This

precisely means that
.

() ()dF x x t is the velocity

vector of ()F x . As every vector attached to a point

can be viewed as the velocity vector of some curve

passing through this point, this theorem gives a clear

geometric picture of dF as a linear map on vectors.

International Journal of Computer & Organization Trends –Volume 2 Issue 6 November to December 2012

ISSN: 2249-2593 http://www.ijcotjournal.org Page 166

Theorem 1.10 Suppose we have two maps

:F U V and : ,G V W where

, ,n m pU V W (open domains). Let

: ()F x y F x . Then the differential of the

composite map :GoF U W is the composition

of the differentials of F and :G

()() () () (4)d GoF x dG y odF x

Proof. We can use the description of the differential

.Consider a curve ()x t in
n with the velocity

vector
.

x . Basically, we need to know to which

vector in
p it is taken by ()d GoF . the curve

()(() ((())GoF x t G F x t . By the same theorem,

it equals the image under dG of the Anycast Flow

vector to the curve (())F x t in
m . Applying the

theorem once again, we see that the velocity vector to

the curve (())F x t is the image under dF of the

vector
.

()x t . Hence
. .

()() (())d GoF x dG dF x

for an arbitrary vector
.

x .

Corollary 1.0. If we denote coordinates in
n by

1(,...,)nx x and in
m by

1(,...,)my y , and write

1

1

1

1

... (1)

... , (2)

n

n

n

n

F F
dF dx dx

x x

G G
dG dy dy

y y

Then the chain rule can be expressed as follows:

1

1
() ... , (3)m

m

G G
d GoF dF dF

y y

Where
idF are taken from (1). In other words, to get

()d GoF we have to substitute into (2) the

expression for
i idy dF from (3). This can also be

expressed by the following matrix formula:

1 1 1 1

11 1

1 1

....

() (4)

... ...

m n

np p m m

m n

G G F F

dxy y x x

d GoF

dxG G F F

y y x x

i.e., if dG and dF are expressed by matrices of

partial derivatives, then ()d GoF is expressed by

the product of these matrices. This is often written as

1 11 1

11

1 1

1 1

1

1

........

...

... ...

....

... , (5)

...

mn

p p p p

n m

n

m m

n

z zz z

y yx x

z z z z

x x y y

y y

x x

y y

x x

Or

1

, (6)
im

a i a
i

z z y

x y x

Where it is assumed that the dependence of
my

on
nx is given by the map F , the dependence

of
pz on

my is given by the map ,G and

the dependence of
pz on

nx is given by

the composition GoF .

Definition 1.6. Consider an open domain
nU .

Consider also another copy of
n , denoted for

distinction
n

y , with the standard coordinates

1(...)ny y . A system of coordinates in the open

domain U is given by a map : ,F V U where

n

yV is an open domain of
n

y , such that the

following three conditions are satisfied :

(1) F is smooth;

(2) F is invertible;

(3)
1 :F U V is also smooth

The coordinates of a point x U in this system are

the standard coordinates of
1() n

yF x

In other words,
1 1: (...,) (...,) (1)n nF y y x x y y

Here the variables
1(...,)ny y are the ―new‖

coordinates of the point x

Example 1.2. Consider a curve in
2 specified

in polar coordinates as

() : (), () (1)x t r r t t

We can simply use the chain rule. The map

()t x t can be considered as the composition of

International Journal of Computer & Organization Trends –Volume 2 Issue 6 November to December 2012

ISSN: 2249-2593 http://www.ijcotjournal.org Page 167

the maps ((), ()),(,) (,)t r t t r x r .

Then, by the chain rule, we have
. . .

(2)
dx x dr x d x x

x r
dt r dt dt r

Here
.

r and
.

 are scalar coefficients depending on

t , whence the partial derivatives ,x x
r

 are

vectors depending on point in
2 . We can compare

this with the formula in the ―standard‖ coordinates:
. . .

1 2x e x e y . Consider the vectors

,x x
r

. Explicitly we have

(cos ,sin) (3)

(sin , cos) (4)

x

r

x
r r

From where it follows that these vectors make a basis

at all points except for the origin (where 0r). It is

instructive to sketch a picture, drawing vectors

corresponding to a point as starting from that point.

Notice that ,x x
r

 are, respectively, the

velocity vectors for the curves (,)r x r

0()fixed and 0(,) ()x r r r fixed
. We can conclude that for an arbitrary curve given in

polar coordinates the velocity vector will have

components
. .

(,)r if as a basis we take

: , : :r
x xe e

r

. . .

(5)rx e r e

A characteristic feature of the basis ,re e is that it is

not ―constant‖ but depends on point. Vectors ―stuck

to points‖ when we consider curvilinear coordinates.

Proposition 1.3. The velocity vector has the same

appearance in all coordinate systems.

Proof. Follows directly from the chain rule and

the transformation law for the basis ie .In particular,

the elements of the basis ii
xe

x

 (originally, a

formal notation) can be understood directly as the

velocity vectors of the coordinate lines
1(,...,)i nx x x x (all coordinates but

ix are

fixed). Since we now know how to handle velocities

in arbitrary coordinates, the best way to treat the

differential of a map : n mF is by its action

on the velocity vectors. By definition, we set

0 0 0

() (())
() : () () (1)

dx t dF x t
dF x t t

dt dt

Now 0()dF x is a linear map that takes vectors

attached to a point
0

nx to vectors attached to

the point () mF x

1

1

1 1

11

1

1

...

...

(,...,) , (2)

...

n

n

n

m

nm m

n

F F
dF dx dx

x x

F F

dxx x

e e

dxF F

x x

In particular, for the differential of a function we

always have

1

1
... , (3)n

n

f f
df dx dx

x x

Where
ix are arbitrary coordinates. The form of the

differential does not change when we perform a

change of coordinates.

Example 1.3 Consider a 1-form in
2 given in the

standard coordinates:

A ydx xdy In the polar coordinates we will

have cos , sinx r y r , hence

cos sin

sin cos

dx dr r d

dy dr r d

Substituting into A , we get

2 2 2 2

sin (cos sin)

cos (sin cos)

(sin cos)

A r dr r d

r dr r d

r d r d

Hence
2A r d is the formula for A in the polar

coordinates. In particular, we see that this is again a

1-form, a linear combination of the differentials of

coordinates with functions as coefficients. Secondly,

in a more conceptual way, we can define a 1-form in

a domain U as a linear function on vectors at every

point of U :
1

1() ... , (1)n

n

If
i

ie , where ii
xe

x

. Recall that the

differentials of functions were defined as linear

functions on vectors (at every point), and

() (2)i i i

j jj

x
dx e dx

x

 at

every point x .

International Journal of Computer & Organization Trends –Volume 2 Issue 6 November to December 2012

ISSN: 2249-2593 http://www.ijcotjournal.org Page 168

Theorem 1.9. For arbitrary 1-form and path ,

the integral

 does not change if we change

parametrization of provide the orientation remains

the same.

Proof: Consider
'

(()),
dx

x t
dt

 and

'

'
((())),

dx
x t t

dt
 As

'

'
((())),

dx
x t t

dt
 =

'

' '
((())), . ,

dx dt
x t t

dt dt

Let p be a rational prime and let ().pK We

write for
p or this section. Recall that K has

degree () 1p p over . We wish to show

that .KO Note that is a root of 1,px

and thus is an algebraic integer; since K is a ring

we have that .KO We give a proof without

assuming unique factorization of ideals. We begin

with some norm and trace computations. Let j be an

integer. If j is not divisible by ,p then
j is a

primitive
thp root of unity, and thus its conjugates

are
2 1, ,..., .p

 Therefore

2 1

/ () ... () 1 1j p

K pTr

If p does divide ,j then 1,j so it has only the

one conjugate 1, and / () 1j

KTr p By

linearity of the trace, we find that
2

/ /

1

/

(1) (1) ...

(1)

K K

p

K

Tr Tr

Tr p

We also need to compute the norm of 1 . For

this, we use the factorization

1 2

2 1

... 1 ()

()()...();

p p

p

p

x x x

x x x

Plugging in 1x shows that

2 1(1)(1)...(1)pp

Since the (1)j are the conjugates of (1),

this shows that / (1)KN p The key result

for determining the ring of integers KO is the

following.

LEMMA 1.9

 (1) KO p

Proof. We saw above that p is a multiple of

(1) in ,KO so the inclusion

(1) KO p

is immediate. Suppose now

that the inclusion is strict. Since (1) KO is

an ideal of containing p and p is a maximal

ideal of , we must have (1) KO

Thus we can write 1 (1)

For some .KO That is, 1 is a unit in .KO

COROLLARY 1.1 For any ,KO

/ ((1)) .KTr p

PROOF. We have

/ 1 1

1 1 1 1

1

1 1

((1)) ((1)) ... ((1))

(1) () ... (1) ()

(1) () ... (1) ()

K p

p p

p

p

Tr

Where the i are the complex embeddings of K

(which we are really viewing as automorphisms of

K) with the usual ordering. Furthermore, 1 j is

a multiple of 1 in KO for every 0.j Thus

/ ((1)) (1)K KTr O
Since the trace is

also a rational integer.

PROPOSITION 1.4 Let p be a prime number and

let | ()pK be the
thp cyclotomic field. Then

[] [] / (());K p pO x x Thus

21, ,..., p

p p
 is an integral basis for KO .

PROOF. Let KO and write

2

0 1 2... p

pa a a

 With .ia

Then

2

0 1

2 1

2

(1) (1) () ...

()p p

p

a a

a

By the linearity of the trace and our above

calculations we find that / 0((1))KTr pa

We also have

/ ((1)) ,KTr p so 0a Next consider

the algebraic integer

International Journal of Computer & Organization Trends –Volume 2 Issue 6 November to December 2012

ISSN: 2249-2593 http://www.ijcotjournal.org Page 169

1 3

0 1 2 2() ... ;p

pa a a a

 This is

an algebraic integer since
1 1p is. The same

argument as above shows that 1 ,a and

continuing in this way we find that all of the ia are

in . This completes the proof.

Example 1.4 Let K , then the local ring
()p

is simply the subring of of rational numbers with

denominator relatively prime to p . Note that this

ring
()p is not the ring

p of p -adic integers; to

get
p one must complete

()p . The usefulness of

,K pO comes from the fact that it has a particularly

simple ideal structure. Let a be any proper ideal of

,K pO and consider the ideal Ka O of .KO We

claim that
,() ;K K pa a O O That is, that a is

generated by the elements of a in .Ka O It is

clear from the definition of an ideal that

,() .K K pa a O O To prove the other inclusion,

let be any element of a . Then we can write

/ where KO and .p In

particular, a (since / a and a is an

ideal), so KO and .p so .Ka O

Since
,1/ ,K pO this implies that

,/ () ,K K pa O O as claimed.We can

use this fact to determine all of the ideals of , .K pO

Let a be any ideal of ,K pO and consider the ideal

factorization of Ka O in .KO write it as

n

Ka O p b For some n and some ideal ,b

relatively prime to .p we claim first that

, , .K p K pbO O We now find that

 , , ,() n n

K K p K p K pa a O O p bO p O Since

, .K pbO Thus every ideal of ,K pO has the form

,

n

K pp O for some ;n it follows immediately that

,K pO is noetherian. It is also now clear that ,

n

K pp O

is the unique non-zero prime ideal in ,K pO .

Furthermore, the inclusion , ,/K K p K pO O pO

Since , ,K p KpO O p this map is also

surjection, since the residue class of ,/ K pO

(with KO and p) is the image of
1

 in

/ ,K pO which makes sense since is invertible in

/ .K pO Thus the map is an isomorphism. In

particular, it is now abundantly clear that every non-

zero prime ideal of
,K pO is maximal. To show

that
,K pO is a Dedekind domain, it remains to show

that it is integrally closed in K . So let K be a

root of a polynomial with coefficients in
, ;K pO

write this polynomial as
11 0

1 0

...m mm

m

x x

With i KO and .i K pO Set

0 1 1... .m Multiplying by
m we find that

 is the root of a monic polynomial with

coefficients in .KO Thus ;KO since ,p

we have
,/ K pO . Thus

,K pO is

integrally close in .K

COROLLARY 1.2. Let K be a number field of

degree n and let be in KO then

'

/ /() ()K K KN O N

PROOF. We assume a bit more Galois theory than

usual for this proof. Assume first that /K is

Galois. Let be an element of (/).Gal K It is

clear that /() / () ;K KO O since

() ,K KO O this shows that

' '

/ /(()) ()K K K KN O N O . Taking the

product over all (/),Gal K we have

' '

/ / /(()) ()n

K K K K KN N O N O Since

/ ()KN is a rational integer and KO is a free -

module of rank ,n

// ()K K KO N O Will have order / () ;n

KN

therefore

'

/ / /(()) ()n

K K K K KN N O N O

This completes the proof. In the general case, let L

be the Galois closure of K and set [:] .L K m

F. Concurrent Crawling Algorithm

The concurrent crawling approach

Global State-flow Graph. The first change is the

separation of the state-flow graph from the state

machine. The graph is defined in a global scope, so

that it can be centralized and used by all concurrent

nodes. Upon the start of the crawling process, an

International Journal of Computer & Organization Trends –Volume 2 Issue 6 November to December 2012

ISSN: 2249-2593 http://www.ijcotjournal.org Page 170

initial crawling node is created and its RUN

procedure is called.

Browser Pool. The robot and state machine are

created for each crawling node. Thus, they are placed

in the local scope of the RUN procedure. Generally,

each node needs to acquire a browser instance, and

after the process is finished, the browser is killed.

Creating new browser instances is a process intensive

and time-consuming operation. To optimize, a new

structure is introduced: the BrowserPool, which

creates and maintains browsers in a pool of browsers

to be reused by the crawling nodes. This reduces

start-up and shut-down costs. The BrowserPool can

be queried for a browser instance, and when a node is

finished working, the browser used is released back

to the pool. In addition, the algorithm now takes the

desired number of browsers as input. Increasing the

number of browsers used can decrease the crawling

runtime, but it also comes with some limitations and

tradeoffs.

Forward-Tracking. In the sequential algorithm, after

finishing a crawl path, we need to bring the crawler to

the previous (relevant) state. In the concurrent

algorithm, however, we create a new crawling node

for each path to be examined. Thus, instead of

bringing the crawler back to the desired state

(backtracking), we must take the new node forward to

the desired state, hence, forward-tracking. This is

done after the browser is pointed to the URL. The

first time the RUN procedure is executed, no

forward-tracking is taking place, since the event-path

(i.e., the list of clickable items resulting to the desired

state) is empty, so the initial crawler starts from the

Index state. However, if the event path is not empty,

the clickables are used to take the browser forward to

the desired state. At that point, the CRAWL

procedure is called.

Crawling Procedure. The first part of the CRAWL

procedure is unchanged. To enable concurrent nodes

accessing the candidate clickables in a thread-safe

manner, the body of the for loop is synchronized

around the candidate element to be examined. To

avoid examining a candidate element multiple times

bymultiple nodes, each node first checks the

examined state of the candidate element. If the

element has not been examined previously, the robot

executes an event on the element in the browser and

sets its state as examined. If the state is changed,

before going into the recursive CRAWL call, the

PARTITION procedure is called.

Partition Procedure. The partition procedure, called

on a particular state cs, creates a new crawling node

for every unexamined candidate clickable in cs. The

new crawlers are initialized with two parameters,

namely, (1) the current state cs, and (2) the execution

path from the initial Index state to this state. Every

new node is distributed to the work queue

participating in the concurrent crawling. When a

crawling node is chosen from the work queue, its

corresponding RUN procedure is called in order to

spawn a new crawling thread.

G. Applying Crawljax

The results of applying CRAWLJAX to C1–C6 are

displayed. The key characteristics of the sites under

study, such as the average DOM size and the total

number of candidate clickables. Furthermore, it lists

the key configuration parameters set, most notably

the tags used to identify candidate clickables and the

maximum crawling depth.

H. Accuracy

Experimental Setup. Assessing the correctness of

the crawling process is challenging for two reasons.

First, there is no strict notion of ―correctness‖ with

respect to state equivalence. The state comparison

operator part of our algorithm can be implemented in

different ways: the more states it considers equal, the

smaller and the more abstract the resulting state-flow

graph is. The desirable level of abstraction depends

on the intended use of the crawler (regression testing,

program comprehension, security testing, to name a

few) and the characteristics of the system being

crawled. Second, no other crawlers for AJAX are

available, making it impossible to compare our results

to a ―gold standard.‖ Consequently, an assessment in

terms of precision (percentage of correct states) and

recall (percentage of states recovered) is impossible

to give. To address these concerns, we proceed as

follows. For the cases in which we have full

control—C1 and C2—we inject specific clickable

elements.

—For C1, 16 elements were injected, out of which 10

were on the top-level index page. Furthermore, to

evaluate the state comparison procedure, we

intentionally introduced a number of identical (clone)

states.

—For C2, we focused on two product categories,

CATS and DOGS, from the five available categories.

We annotated 36 elements (product items) by

modifying the JAVASCRIPT method, which turns

the items retrieved from the server into clickables on

the interface.

Subsequently, we manually create a referencemodel,

to which we compare the derived state-flow graph.

To assess the four external sites C3–C6, we inspect a

selection of the states. For each site, we randomly

select ten clickables in advance, by noting their tag

names, attributes, and XPath expressions. After

crawling of each site, we check the presence of these

ten elements among the list of detected clickables. In

order to do the manual inspection of the results, we

run CRAWLJAX with the Mirror plugin enabled.

This post-crawling plugin creates a static mirror,

International Journal of Computer & Organization Trends –Volume 2 Issue 6 November to December 2012

ISSN: 2249-2593 http://www.ijcotjournal.org Page 171

based on the derived state-flow graph, by writing all

DOM states to file and replacing edges with

appropriate hyperlinks.

I. Scalability

Experimental Setup. In order to obtain an

understanding of the scalability of our approach, we

measure the time needed to crawl, as well as a

number of site characteristics that will affect the time

needed. We expect the crawling performance to be

directly proportional to the input size, which is

composed of (1) the average DOM string size, (2)

number of candidate elements, and (3) number of

detected clickables and states, which are the

characteristics that we measure for the six cases. To

test the capability of our method in crawling real sites

and coping with unknown environments, we run

CRAWLJAX on four external cases, C3–C6. We run

CRAWLJAX with depth level 2 on C3 and C5, each

having a huge state space to examine the scalability

of our approach in analyzing tens of thousands of

candidate clickables and finding clickables.

J. Findings.

Concerning the time needed to crawl the internal

sites, we see that it takes CRAWLJAX 14 and 26

seconds to crawl C1 and C2, respectively. The

average DOM size in C2 is five times bigger, and the

number of candidate elements is three times higher.

In addition to this increase in DOM size and in the

number of candidate elements, the C2 site does not

support the browser‘s built-in Back method. Thus, as

discussed in Section 3.6, for every state change on the

browser, CRAWLJAX has to reload the application

and click through to the previous state to go further.

This reloading and clicking through naturally has a

negative effect on the performance. Note that the

performance is also dependent on the CPU and

memory of the machine CRAWLJAX is running on,

as well as the speed of the server and network

properties of the case site. C6, for instance, is slow in

reloading and retrieving updates from its server,

which increases the performance measurement

numbers in our experiment. CRAWLJAX was able to

run smoothly on the external sites. Except a few

minor adjustments, we did not witness any

difficulties. C3 with depth level 2 was crawled

successfully in 83 minutes, resulting in 19,247

examined candidate elements, 1,101 detected

clickables, and 1,071 detected states. For C5,

CRAWLJAX was able to finish the crawl process in

107 minutes on 32,365 candidate elements, resulting

in 1,554 detected clickables, and 1,234 states. As

expected, in both cases, increasing the depth level

from 1 to 2 greatly expands the state space.

K. Concurrent Crawling

In our final experiment, the main goal is to assess the

influence of the concurrent crawling algorithm on the

crawling runtime.

Experimental Object. Our experimental object for

this study is Google ADSENSE11, an AJAX

application developed by Google, which empowers

online publishers to earn revenue by displaying

relevant ads on their Web content. The ADSENSE

interface is built using GWT (Google Web Toolkit)

components and is written in Java. The index page of

ADSENSE. On the top, there are four main tabs

(Home, My ads, Allow & block ads, Performance

reports). On the top left side, there is a box holding

the anchors for the current selected tab. Underneath

the left-menu box, there is a box holding links to

help-related pages. On the right of the left-menu we

can see the main contents,which are loaded by AJAX

calls.

L. Applications of Crawljax

As mentioned in the introduction, we believe that the

crawling and generating capabilities of our approach

have many applications for modern Web applications.

We believe that the crawling techniques that are part

of our solution can serve as a starting point and be

adopted by general search engines to expose the

hidden-web content induced by JAVASCRIPT, in

general, and AJAX, in particular. In their proposal for

making AJAX applications crawlable,15 Google

proposes using URLs containing a special hash

fragment, that is, #!, for identifying dynamic content.

Google then uses this hash fragment to send a request

to the server. The server has to treat this request in a

special way and send an HTML snapshot of the

dynamic content, which is then processed by

Google‘s crawler. In the same proposal, they suggest

using CRAWLJAX for creating a static snapshot for

this purpose. Web developers can use the model

inferred by CRAWLJAX to automatically generate a

static HTML snapshot of their dynamic content,

which then can be served to Google for indexing. The

ability to automatically detect and exercise the

executable elements of an AJAX site and navigate

between the various dynamic states gives us a

powerful Web-analysis and test-automation

mechanism. In the recent past, we have applied

CRAWLJAX in the following Web-testing domains.

(1) Invariant-based testing of AJAX user interfaces

[Mesbah and van Deursen 2009],

(2) Spotting security violations in Web widget

interactions [Bezemer et al. 2009] (3) Regression

testing of dynamic and nondeterministic Web

interfaces [Roest et al. 2010],

(4) Automated cross-browser compatibility testing

[Mesbah and Prasad 2011].

International Journal of Computer & Organization Trends –Volume 2 Issue 6 November to December 2012

ISSN: 2249-2593 http://www.ijcotjournal.org Page 172

M. HTTP Request Origin Identification

The main challenge of detecting the origin widget of

a request is to couple the request to the DOM element

from which it originated. This is not a trivial task,

since HTTP requests do not carry information about

the element that triggered the request. To be able to

analyze HTTP requests, all requests must be

intercepted. For this purpose, we pro- pose to place

an HTTP proxy between the client browser and the

server, which bu_ers all outgoing HTTP requests.

The only way to attach information about DOM

elements to an HTTP request, without a_ecting the

behavior of the web server handling the request, is by

adding data to the re- quest query string (e.g.,

?wid=w23&requestForProxyId=123). This data

should be selected carefully, to ensure it does not

interfere with other parameters being sent to the

server. If the request parameters contain the value of

a unique at- tribute, such as the element's ID, it can be

extracted and used to identify the element in the

DOM. Enforcing all HTTP requests to contain a

value with which the origin widget can be detected

requires having mechanisms for the enforcement of a

unique attribute in each DOM element, and the

attachment of the unique attribute of the originat- ing

element to outgoing requests. First we need to

consider ways HTTP requests can be triggered in

Ajax-based web applications. Static Elements. HTTP

requests triggered by the src attribute of an static

element, for instance in a SCRIPT or IMG element in

the source code of the HTML page, are sent

immediately when the browser parses them. This

leaves us no time to dynamically annotate a unique

value on these elements, as the requests are sent

before we can access the DOM. The solution we

propose is to use the proxy for inter- cepting

responses as well. The responses can be adjusted by

the proxy to ensure that each element with a src

attribute is given a unique identifying attribute. Note

that the attribute is annotated twice: in the URL so

that it reaches the proxy, and as an attribute for easy

identication on the DOM tree using XPath when the

violation validation process is carried out.

Dynamic Elements. The src attribute of an element

that is dynamically created on the client through

JavaScript and added to the DOM tree, can also

trigger an HTTP request. Annotating attributes

through the proxy has limitations for this type of

request, since elements that are added dynamically on

the client-side are missed. During dynamic annotation

these elements are missed as well, because the

request is triggered before the element can be

annotated. Because we assume every element has a

unique attribute in our approach, requests triggered

from dynamically generated elements can be detected

easily as they do not contain a unique attribute. We

believe dynamically generated elements with a src

attribute are rare in modern web applications, and

since this attribute should point to, for instance, a

JavaScript or image, the HTTP request they trigger

should be easy to verify manually by a tester.

Therefore, all requests made from elements which are

not annotated, should be aged as suspicious and

inspected by the tester.

Ajax Calls. HTTP requests sent through an Ajax call,

via the XMLHttpRequest object, are the most

essential form of sending HTTP requests in modern

single-page web appli- cations [2]. These requests are

often triggered by an event, e.g., click, mouseover, on

an element with the corresponding event listener.

Note that this type of elements could also be created

dynamically, and therefore proxy annotation is not

desirable. Hence, we propose to dynamically annotate

such elements. To that end, we annotate a unique

attribute on the element right before an event is red.

Note that this annotation is easiest to implement by

means of aspects, as explained in Section 6. After the

annotation, the attribute (and its value) must be

appended to all HTTP requests that the event triggers.

To that end, we take advantage of a technique known

as Prototype Hijacking[17], in which the Ajax call

responsible for client/server communication can be

subverted using a wrapper function around the

XMLHttpRequest object. Dur- ing the subversion, we

can use the annotated attribute of the element, on

which the event initiating the call was _red, to add a

parameter to the query string of the Ajax HTTP call.

It is possible that the annotated origin element is

removed from the DOM by the time the request is

validated. To avoid this problem, we keep track of the

DOM history. After an event is red, and a DOM

change is occurred, the state is saved in the history

list. Assuming the history size is large enough, a

request can always be coupled to its origin element,

and the state from which it was triggered,

bysearching the DOM history.

N. Trusted Requests

After detecting the origin widget of a request, the

request must be validated to verify whether the

widget was allowed to send this request. To this end,

a method must be denied for specifying which

requests a widget is allowed to make. Our approach

uses an idea often applied in Firewall technology, in

which each application has an allowed list of

URLs[10]. For each widget, we can automatically

create a list of allowed URLs by crawling it in an

isolated environment. This way, every request

intercepted by the proxy can be assigned to that

specific widget. At the end of the crawling process,

the proxy buyer contains all the requests the widget

has triggered. This list can be saved, edited by the

tester, and retrieved during the validation phase of a

request. In addition, it is possible for a tester to

manually ag URLs in the list as suspicious. If during

the validation process a request URL does not exist in

the allowed URL list of its origin widget, or if the

International Journal of Computer & Organization Trends –Volume 2 Issue 6 November to December 2012

ISSN: 2249-2593 http://www.ijcotjournal.org Page 173

URL is aged as suspicious, we assume the widget

does not have permission to trigger the request and

thus an HTTP request violation has occurred.

Assuming a request contains the annotated attribute

of the origin element, Algorithm can be used to

automatically detect the origin widget of the request

and report HTTP request violations. Note that this

approach also works for requests that do not originate

from a widget, but from a non-widget element

instead. By crawling the framework with only an

empty widget, an allowed URL list can be created for

the frame- work. A request which originates from an

element that does not have a widget boundary will be

validated against the allowed URL list of the overall

framework.

O. Framework and Language Contributions

FORWARD facilitates the development of Ajax

pages by treating them as rendered views. The pages

consist of a page data tree, which captures the data of

the page state at a logical level, and a visual layer,

where a page unit tree maps to the page data tree and

renders its data into an html page, typically including

JavaScript and Ajax components also. The page data

tree is populated with data from an SQL statement,

called the page query. SQL has been minimally

extended with (a) SELECT clause nesting and (b)

variability of schemas in SQL's CASE statements so

that it creates nested heterogeneous tables that the

programmer easily maps to the page unit tree. A user

request from the context of a unit leads to the

invocation of a server-side program, which updates

the server state. In this paper, which is focused on the

report part of data-driven pages and applications, we

assume that the server state is captured by the state of

an SQL database and therefore the server state update

is fully captured by respective updates of the tables of

the database, which are expressed in SQL.

Conceptually, the updates indirectly lead to a new

page data tree, which is the result of the page query

on the new server state, and consequently to a new

rendered page. FORWARD makes the following

contributions towards rapid, declarative programming

of Ajax pages:

A minimal SQL extension that is used to create the

page data tree, and a page unit tree that renders the

page data tree. The combination enables the

developer to avoid multiple language programming

(JavaScript, SQL, Java) in order to implement Ajax

pages. Instead the developer declaratively describes

the reported data and their rendering into Ajax pages.

We chose SQL over XQuery/XML because (a) SQL

has a much larger programmer audience and installed

base (b) SQL has a smaller feature set, omitting

operators such as // and * that have created challenges

for efficient query processing and view maintenance

and do not appear to be necessary for our problem,

and (c) existing database research and technology

provide a great leverage for implementation and

optimization, which enables focus on the truly novel

research issues without having to re-express already

solved problems in XML/X- Query or having to re-

implement database server functionality. Our

experience in creating commercial level applications

and prior academic work in the area indicate that if

the application does not interface with external

systems then SQL's expressive power is typically

sufficient.

A FORWARD developer avoids the hassle of

programming JavaScript and Ajax components for

partial updates. Instead he specifies the unit state

using the page data tree, which is a declarative

function expressed in the SQL ex- tension over the

state of the database. For example, a map unit (which

is a wrapper around a Google Maps component) is

used by specifying the points that should be shown on

the map, without bothering to specify which points

are new, which ones are updated, what methods the

component covers for modifications, etc. Roadmap

we present the framework in with a running example.

A naive implementation of the FORWARD's simple

programming model would exhibit the crippling

performance and interface quality problems of pure

server-side applications. Instead FORWARD

achieves the performance and interface quality of

Ajax pages by solving performance optimization

problems that would otherwise need to be hand-

coded by the developer. In particular:

Instead of literally creating the new page data tree,

unit tree and html/JavaScript page from scratch in

each step, FORWARD incrementally computes them

using their prior versions. Since the page data tree is

typically fueled by our extended SQL queries,

FORWARD leverages prior database research on

incremental view maintenance, essentially treating

the page data tree as a view. We extend prior work on

incremental view maintenance to capture (a) nesting,

(b) variability of the output tuples and (c) ordering,

which has been neglected by prior work focusing on

homogeneous sets of tuples.

FORWARD provides an architecture that enables the

use of massive JavaScript/Ajax component libraries

(such as Dojo [30]) as page units into FORWARD's

framework. The basic data tree incremental

maintenance algorithm is modified to account for the

fact that a component may not over methods to

implement each possible data tree change. Rather a

best-effort approach is enabled for wrap- ping data

tree changes into component method calls. The net

effect is that FORWARD's ease-of-development is

accomplished at an acceptable performance penalty

over hand-crafted programs. As a data point, revising

an existing review and re-rendering the page takes 42

ms in FORWARD, which compares favorably to

International Journal of Computer & Organization Trends –Volume 2 Issue 6 November to December 2012

ISSN: 2249-2593 http://www.ijcotjournal.org Page 174

WAN network latency (50-100 ms and above), and

the average human reaction time of 200 ms.

IV. CHARACTERIZING COMPLEXITY

Our analysis of our measurement dataset is two-

pronged. First, in this section, we analyze web pages

with respect to various complexity metrics. Next, we

analyze the impact of these metrics on performance.

Note that our focus is on capturing the complexity of

web pages as visible to browsers on client devices;

we do not intend to capture the complexity of server-

side infrastructure of websites [43]. We consider two

high-level notions of web page complexity. Content

complexity metrics capture the number and size of

objects fetched to load the web page and also the

different MIME types (e.g., image, javascript, CSS,

text) across which these objects are spread. Now,

loading www.foo.com may require fetching content

not only from other internal servers such as

images.foo.com and news.foo.com, but also involve

third-party services such as CDNs (e.g., Akamai),

analytics providers (e.g., Google analytics), and

social network plugins (e.g., Facebook). Service

complexity metrics capture the number and

contributions of the various servers and

administrative origins involved in loading a web

page. We begin with the content-level metrics before

moving on to service-level metrics. In each case, we

present a breakdown of the metrics across different

popularity rank ranges (e.g., top 1–1000 vs. 10000–

20000) and across different categories of websites

(e.g., Shopping vs. News). Here, we only show

results for one of the vantage points as the results are

(expectedly) similar across vantage points.

A. Content Complexity

Number of objects: We begin by looking, at the total

number of object requests required, i.e., number of

HTTP GETs issued, to load a web page. Across all

the rank ranges, loading the base web page requires

more than 40 objects to be fetched in the median

case. We also see that a non-trivial fraction (20%) of

websites request more than 100–125 objects on their

landing web page, across the rank ranges. While the

top 1– 400 sites load more objects, the distributions

for the different rank ranges are qualitatively and

quantitatively similar; even the lower rank websites

have a large number of requests. Next, we divide the

sites by their categories. For clarity, we only focus on

the top-two-level categories. To ensure that our

results are statistically meaningful, Median number of

requests for objects of different MIME-types across

different rank ranges. The categories that have at least

50 websites in our dataset. The breakdown across the

categories shows a pronounced difference between

categories; the median number of objects requested

on News sites is nearly 3× the median for Business

sites. We suspect that this is an artifact of News sites

tending to cram in more content on their landing

pages compared to other sites to give readers quick

snippets of information across different news topics.

Types of objects: Having considered the total number

of object requests, we next consider their breakdown

by content MIME types. For brevity, only the median

number of requests for the four most popular content

types across websites of different rank ranges. The

first order observation again is that the different rank

ranges are qualitatively similar in their distribution,

with higher ranked websites having only slightly

more objects of each type. However, we find several

interesting patterns in the prevalence of different

types of content. While it should not come as a

surprise that many websites use these different

content types, the magnitude of these fractions is

surprising. For example, we see that, across all rank

ranges, more than 50% of sites fetch at least 6

Javascript ob- jects. Similarly, more than 50% of the

sites have at least 2 CSS objects. The median value

for Flash is small; many websites keep their landing

pages simple and avoid rich Flash content. These

results are roughly consistent with recent independent

measurements [31]. The corresponding breakdown

for the number of objects requested of various content

types across different categories of websites. Again,

we see the News category being dominant across

different content types. News sites load a larger

number of objects overall compared to other site

categories. Hence, a natural follow-up question is

whether News sites issue requests for a

proportionately higher number of objects across all

content types. Therefore, for each website, we

normalize the number of objects of each content type

by the total number of objects for that site. The

distribution of the median values of the normalized

fraction of objects of various content types (not

shown) presents a slightly different picture than that

seen with absolute counts. Most categories have a

very similar normalized contribution from all content

types in terms of the median value. The only

significant difference we observe is in the case of

Flash objects. Kids and Teens sites have a

significantly greater fraction of Flash objects than

sites in other categories.

Bytes downloaded: The above results show the

number of objects requested across different content

types, but do not tell us the contribution of these

content types to the total number of bytes

downloaded. Again, for brevity, we summarize the

full distribution with the median values for different

website categories. Surprisingly, we find that

Javascript objects contribute a sizeable fraction of the

total number of bytes downloaded (the median

fraction of bytes is over 25% across all categories).

Less surprising is that images contribute a similar

fraction as well. For websites in the Kids and Teens

category, like in the case of number of objects, the

contribution of Flash is significantly greater than in

International Journal of Computer & Organization Trends –Volume 2 Issue 6 November to December 2012

ISSN: 2249-2593 http://www.ijcotjournal.org Page 175

other categories. As in the case of the number of

objects, we see no significant difference across

different rank ranges. Fraction of objects accounted

for by Flash objects, normalized per category.

B. Service Complexity

Anecdotal evidence suggests that the seemingly

simple task of loading a webpage today requires the

client-side browser to connect to multiple servers

distributed across several administrative domains.

However, there is no systematic understanding of

how many different services are involved and what

they contribute to the overall task. To this end, we

introduce several service complexity metrics. Number

of distinct servers: the distribution across websites of

the number of distinct webservers that a client

contacts to render the base web page of each website.

We identify a server by its fully qualified domain

name, e.g., bar.foo.com. Across all five rank ranges,

close to 25–55% of the websites require a client to

contact at least 10 distinct servers. Thus, even loading

simple content like the base page of websites requires

a client to open multiple HTTP/TCP connections to

many distinct servers. News sites have the most

number of distinct servers as well. Number of non-

origin services: Not all the servers contacted in

loading a web page may be under the web page

provider‘s control. For example, a typical website

today uses content distribution networks (e.g.,

Akamai, Limelight) to distribute static content,

analytics services (e.g., google-analytics) to track

user activity, and advertisement services (e.g.,

doubleclick) to monetize visits. Identifying non-

origins, however, is slightly tricky. The subtle issue at

hand is that some providers use multiple origins to

serve content. For example, yahoo.com also owns

yimg.com and uses both domains to serve content.

Even though their top-level domains are different, we

do not want to count yimg.com as a non-origin for

yahoo.com because they are owned by the same

entity. To this end, we use the following heuristic.

We start by using the two level domain identifier to

identify an origin; e.g., x.foo.com and y.foo.com are

clustered to the same logical origin foo.com. Next,

we consider all two-level domains involved in

loading the base page of www.foo.com, and identify

all potential non-origin domains (i.e., two-level

domain not equal to foo.com). We then do an

additional check and mark domains as belonging to

different origins only if the authoritative name servers

of the two domains do not match [33]. Because

yimg.com and yahoo.com share the same

authoritative name servers, we avoid classifying

yimg.com as having a different origin from

yahoo.com.

C. Authors and Affiliations

Dr Akash Singh is working with IBM Corporation
as an IT Architect and has been designing Mission

Critical System and Service Solutions; He has
published papers in IEEE and other International
Conferences and Journals.

He joined IBM in Jul 2003 as a IT Architect which
conducts research and design of High Performance
Smart Grid Services and Systems and design mission
critical architecture for High Performance Computing
Platform and Computational Intelligence and High
Speed Communication systems. He is a member of
IEEE (Institute for Electrical and Electronics
Engineers), the AAAI (Association for the
Advancement of Artificial Intelligence) and the
AACR (American Association for Cancer Research).
He is the recipient of numerous awards from World
Congress in Computer Science, Computer
Engineering and Applied Computing 2010, 2011, and
IP Multimedia System 2008 and Billing and Roaming
2008. He is active research in the field of Artificial
Intelligence and advancement in Medical Systems. He
is in Industry for 18 Years where he performed
various role to provide the Leadership in Information
Technology and Cutting edge Technology.

V. REFERENCES

[1] Dynamics and Control of Large Electric Power Systems. Ilic,
M. and Zaborszky, J. John Wiley & Sons, Inc. © 2000, p. 756.

[2] Modeling and Evaluation of Intrusion Tolerant Systems Based

on Dynamic Diversity Backups. Meng, K. et al. Proceedings of the
2009 International Symposium on Information Processing

(ISIP‘09). Huangshan, P. R. China, August 21-23, 2009, pp. 101–

104
[3] Characterizing Intrusion Tolerant Systems Using A State

Transition Model. Gong, F. et al., April 24, 2010.

[4] Energy Assurance Daily, September 27, 2007. U.S. Department
of Energy, Office of Electricity Delivery and Energy Reliability,

Infrastructure Security and Energy Restoration Division. April 25,

2010.

[5] CENTIBOTS Large Scale Robot Teams. Konoledge, Kurt et al.

Artificial Intelligence Center, SRI International, Menlo Park, CA
2003.

[6] Handling Communication Restrictions and Team Formation in

Congestion Games, Agogino, A. and Tumer, K. Journal of
Autonomous Agents and Multi Agent Systems, 13(1):97–115,

2006.

[7] Robotics and Autonomous Systems Research, School of
Mechanical, Industrial and Manufacturing Engineering, College of

Engineering, Oregon State University

[8] D. Dietrich, D. Bruckner, G. Zucker, and P. Palensky,
―Communication and computation in buildings: A short

introduction and overview,‖ IEEE Trans. Ind. Electron., vol. 57,

no. 11, pp. 3577–3584, Nov. 2010.
[9] V. C. Gungor and F. C. Lambert, ―A survey on communication

networks for electric system automation,‖ Comput. Networks, vol.

50, pp. 877–897, May 2006.
[10] S. Paudyal, C. Canizares, and K. Bhattacharya, ―Optimal

operation of distribution feeders in smart grids,‖ IEEE Trans. Ind.

Electron., vol. 58, no. 10, pp. 4495–4503, Oct. 2011.
[11] D. M. Laverty, D. J. Morrow, R. Best, and P. A. Crossley,

―Telecommunications for smart grid: Backhaul solutions for the

distribution network,‖ in Proc. IEEE Power and Energy Society
General Meeting, Jul. 25–29, 2010, pp. 1–6.

[12] L. Wenpeng, D. Sharp, and S. Lancashire, ―Smart grid

communication network capacity planning for power utilities,‖ in
Proc. IEEE PES, Transmission Distrib. Conf. Expo., Apr. 19–22,

2010, pp. 1–4.

[13] Y. Peizhong, A. Iwayemi, and C. Zhou, ―Developing ZigBee
deployment

guideline under WiFi interference for smart grid applications,‖

IEEE Trans. Smart Grid, vol. 2, no. 1, pp. 110–120, Mar. 2011.

International Journal of Computer & Organization Trends –Volume 2 Issue 6 November to December 2012

ISSN: 2249-2593 http://www.ijcotjournal.org Page 176

[14] C. Gezer and C. Buratti, ―A ZigBee smart energy

implementation for energy efficient buildings,‖ in Proc. IEEE 73rd
Veh. Technol. Conf. (VTC Spring), May 15–18, 2011, pp. 1–5.

[15] R. P. Lewis, P. Igic, and Z. Zhongfu, ―Assessment of

communication methods for smart electricity metering in the
U.K.,‖ in Proc. IEEE PES/IAS Conf. Sustainable Alternative

Energy (SAE), Sep. 2009, pp. 1–4.

[16] A. Yarali, ―Wireless mesh networking technology for
commercial and industrial customers,‖ in Proc. Elect. Comput.

Eng., CCECE,May 1–4, 2008, pp. 000047–000052.

[17] M. Y. Zhai, ―Transmission characteristics of low-voltage
distribution networks in China under the smart grids environment,‖

IEEE Trans. Power Delivery, vol. 26, no. 1, pp. 173–180, Jan.

2011.
[18] V. Paruchuri, A. Durresi, and M. Ramesh, ―Securing

powerline communications,‖ in Proc. IEEE Int. Symp. Power Line

Commun. Appl., (ISPLC), Apr. 2–4, 2008, pp. 64–69.
[19] Q.Yang, J. A. Barria, and T. C. Green, ―Communication

infrastructures for distributed control of power distribution

networks,‖ IEEE Trans. Ind. Inform., vol. 7, no. 2, pp. 316–327,
May 2011.

[20] T. Sauter and M. Lobashov, ―End-to-end communication

architecture for smart grids,‖ IEEE Trans. Ind. Electron., vol. 58,
no. 4, pp. 1218–1228, Apr. 2011.

[21] K. Moslehi and R. Kumar, ―Smart grid—A reliability

perspective,‖ Innovative Smart Grid Technologies (ISGT), pp. 1–8,
Jan. 19–21, 2010.

[22] Southern Company Services, Inc., ―Comments request for
information on smart grid communications requirements,‖ Jul.

2010

[23] R. Bo and F. Li, ―Probabilistic LMP forecasting considering

load uncertainty,‖ IEEE Trans. Power Syst., vol. 24, pp. 1279–

1289, Aug. 2009.

[24] Power Line Communications, H. Ferreira, L. Lampe, J.

Newbury, and T. Swart (Editors), Eds. New York: Wiley, 2010.
[25] G. Bumiller, ―Single frequency network technology for fast ad

hoc communication networks over power lines,‖ WiKu-

Wissenschaftsverlag Dr. Stein 2010.
[31] G. Bumiller, L. Lampe, and H. Hrasnica, ―Power line

communications for large-scale control and automation systems,‖

IEEE Commun. Mag., vol. 48, no. 4, pp. 106–113, Apr. 2010.
[32] M. Biagi and L. Lampe, ―Location assisted routing techniques

for power line communication in smart grids,‖ in Proc. IEEE Int.

Conf. Smart Grid Commun., 2010, pp. 274–278.
[33] J. Sanchez, P. Ruiz, and R. Marin-Perez, ―Beacon-less

geographic routing made partical: Challenges, design guidelines

and protocols,‖ IEEE Commun. Mag., vol. 47, no. 8, pp. 85–91,
Aug. 2009.

[34] N. Bressan, L. Bazzaco, N. Bui, P. Casari, L. Vangelista, and

M. Zorzi, ―The deployment of a smart monitoring system using
wireless sensors and actuators networks,‖ in Proc. IEEE Int. Conf.

Smart Grid Commun. (SmartGridComm), 2010, pp. 49–54.

[35] S. Dawson-Haggerty, A. Tavakoli, and D. Culler, ―Hydro: A
hybrid routing protocol for low-power and lossy networks,‖ in

Proc. IEEE Int. Conf. Smart Grid Commun. (SmartGridComm),

2010, pp. 268–273.
[36] S. Goldfisher and S. J. Tanabe, ―IEEE 1901 access system: An

overview of its uniqueness and motivation,‖ IEEE Commun. Mag.,
vol. 48, no. 10, pp. 150–157, Oct. 2010.

[37] V. C. Gungor, D. Sahin, T. Kocak, and S. Ergüt, ―Smart grid

communications and networking,‖ Türk Telekom, Tech. Rep.
11316-01, Apr 2011.

