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I.  INTRODUCTION  

Over the last few years, the web is establishing 

increased importance in society with the rise of social 

networking sites and the semantic web, facilitated and 

driven by the popularity of client-side scripting 

commonly known as AJAX. These allow extended 

functionality and more interactivity in web 

applications. Engineering practices dictate that we 

need to be able to model these applications. However, 

languages to model web applications have fallen 

behind, with most existing web modelling languages 

still solely focused on the hypertext structure of web 

sites, with little regard for user interaction or common 

web-specific concepts. This paper provides an 

overview of technologies in use in today‘s web 

applications, along with some concepts we propose 

are necessary to model these. We present a brief 

survey of existing web modelling languages including 

WebML, UWE, W2000 and OOWS, along with a 

discussion of their capability to describe these new 

modeling approaches. Finally, we discuss the 

possibilities of extending an existing language to 

handle these new concepts. Keywords: web 

engineering, models, interactivity, AJAX, RIAs, 

events.  

 

The World Wide Web started out in the early 1990s 

as an implementation of a globally distributed 

hypertext system. Primitive pieces of software called 

web browsers allowed users to render hypertext into 

visually pleasing representations that could be 

navigated by keyboard or mouse. These early web 

sites were generally static pages, and were typically 

modeled with languages focused on the hypertext 

structure and navigation of the web site (Garzotto et 

al. 1993). The full integration of hypertext with 

relational databases allowed the creation of data-

intensive websites, which also necessitated new 

modelling concepts and languages (Merialdo et al. 

2003). Currently, the most popular modelling 

languages for web applications areWebML (Ceri et 

al. 2000) and UWE (Koch & Kraus 2002). Both of 

these languages represent web applications using 

conceptual models (data structure of the application 

domain), navigational models, and presentation 

models. As such, the ability to express the 

interactivity of the application is generally restricted 

to the navigational models, which allow designers to 

visually represent the components, links and pages of 

the application. These languages are excellent at 

describing older web applications; however recently 

the increased use of interactivity, client-side scripting, 

and web-specific concepts such as cookies and 

sessions have left existing languages struggling to 

keep up with these Rich Internet Applications (RIAs: 

Preciado et al. 2005). In this paper we aim to review 

these existing languages and identify where they are 

falling short, and how they could be improved. This 

paper is organised as follows. Section 2 is an 

overview of some of the features possible with rich 

scripting support. To model these new features, we 

propose in Section 3 some new modelling concepts 

for interactive web applications. We present a brief 

survey of the existing modelling languages WebML 

and UWE in Sections 4 and 5, and discuss their 

ability to model these new concepts. We briefly 

mention W2000, OOWS and other potential 

languages in Section 6; a summary of our language 

evaluations are presented in Table 2. In the final 

section, we discuss our findings, provide an overview 

of related work, and highlight future work of this 

research project. 2 New Features Arguably, the most 

important recent feature of the web is the ability to 

run scripts on the client (generally through 

Javascript). Combined with the ability to access and 

modify client-side Document Object Models 

(DOM:W3C Group 2004) of the browser, and the 

ability to compose asynchronous background requests 

to the web, these concepts together are commonly 

referred to as AJAX (Garrett 2005). AJAX allows 

applications to provide rich client-side interfaces, and 

allows the browser to communicate with the web 

without forcing page refreshes; both fundamental 

features of RIAs. Technologies like AJAX support 

thin client applications that can take full advantage of 

the computer power of the clients. These applications 

reduce the total cost of ownership (TCO) to 

organisations as they 

are deployed and maintained on directly manageable 

servers, and aim to be platform-independent on the 

client side. To achieve this, AJAX has had to 

overcome limitations of the underlaying 

HTTP/HTML protocols, such as synchronous and 

stateless request processing, and the pull model 

limitation where application state changes are always 

initiated by the client1. This has resulted in rich 

applications that use the web browser as a virtual 

machine. The impact of these technologies has been 

significant; new services such as Google Docs 
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(Google Inc. 2006) are implementing collaborative 

software solutions directly on the web, based on the 

software as a service philosophy, and to some degree 

competing with traditional desktop software such as 

Microsoft Office. RIAs can also be developed in 

environments such as Flash, which are provided as a 

plugin to existing web browsers, but can reduce 

accessibility2. One popular example of AJAX is to 

provide an auto-compliable destination address text 

field in an e-mail web application. As the user enters 

characters into this field, the client contacts the server 

for addresses containing these characters, displaying 

a list of suggested addresses. This improves usability, 

potentially reduces the overall bandwidth of network 

communication, and improves interactivity and 

responsiveness. An investigation of some of the most 

popular AJAX-based websites on the web allows us 

to identify some of the features that these new 

technology provides to web applications. This has 

allowed us to develop a comprehensive selection of 

use cases for AJAX technologies, which we omit 

from this paper for brevity. Without going into detail, 

and removing features that are already addressed in 

existing modeling languages, new application 

features that require support include: 

 

1. Storing data on the client and/or server, both 

volatile and persistent3; 

2. Allowing automatic user authentication based on 

cookies4; 

3. Allowing form validation to occur on the server,on 

the client before submission, or in real-time during 

form entry; 

4. Providing different output formats for resources, 

including HTML, XML, WML, and Flash, possibly 

based on the user-agent of the visitor; 

5. Providing web services and data feeds, and 

integration with external services and feeds, both on 

the server and the client; 

6. Preventing the user from corrupting the state of a 

web application, for example by using browser 

navigation buttons; 

7. Providing more natural user actions such as 

dragand- drop, keyboard shortcuts, and interactive 

maps; 

8. Describing visual effects of transitions between 

application states5; 

9. Having scheduled events on either the client or the 

server; 

10. Allowing web applications to be used offline6; 

11. Distributing functionality between the client and 

the server, based on client functionality, determined 

at runtime. 

 

These new features are distributed over both the 

clients and servers of web applications. Existing 

languages based solely on replacing the entire client-

side DOM on each request are clearly no longer 

appropriate, as scripting permits modifying the DOM 

at runtime. We require a more dynamic language, 

which can be extended to handle these new features. 

 

Recently, many new web trends have appeared under 

the Web 2.0 umbrella, changing the web 

significantly, from read-only static pages to dynamic 

user-created content and rich interaction. Many Web 

2.0 sites rely heavily on AJAX (Asynchronous 

JAVASCRIPT and XML) [8], a prominent enabling 

technology in which a clever combination of 

JAVASCRIPT and Document Object Model (DOM) 

manipulation, along with asynchronous client/server 

delta communication [16] is used to achieve a high 

level of user interactivity on the web. With this new 

change comes a whole set of new challenges, mainly 

due to the fact that AJAX shatters the metaphor of a 

web ‗page‘ upon which many classic web 

technologies are based. One of these challenges is 

testing such applications [6, 12, 14]. With the ever-

increasing demands on the quality of Web 2.0 

applications, new techniques and models need to be 

developed to test this new class of software. How to 

automate such a testing technique is the question that 

we address in this paper. In order to detect a fault, a 

testing method should meet the following conditions 

[18, 20]: reach the fault-execution, which causes the 

fault to be executed, trigger the error creation, which 

causes the fault execution to generate an incorrect 

intermediate state, and propagate the error, which 

enables the incorrect intermediate state to propagate 

to the output and cause a detectable output error. 

Meeting these reach/trigger/propagate conditions is 

more difficult for AJAX applications compared to 

classical web applications. During the past years, the 

general approach in testing web applications has been 

to request a response from the server (via a hypertext 

link) and to analyze the resulting HTML. This testing 

approach based on the page-sequence paradigm has 

serious limitations meeting even the first (reach) 

condition on AJAX sites. Recent tools such as 

Selenium1 use a capture/replay style for testing 

AJAX applications. Although such tools are capable 

of executing the fault, they demand a substantial 

amount of manual effort on the part of the tester. 

Static analysis techniques have limitations in 

revealing faults which are due to the complex run-

time behavior of modern rich web applications. It is 

this dynamic run-time interaction that is believed [10] 

to make testing such applications a challenging task. 

On the other hand, when applying dynamic analysis 

on this new domain of web, the main difficulty lies in 

detecting the various doorways to different dynamic 

states and providing proper interface mechanisms for 

input values. In this paper, we discuss challenges of 

testing AJAX and propose an automated testing 

technique for finding faults in AJAX user interfaces. 

We extend our AJAX crawler, CRAWLJAX 

(Sections 4–5), to infer a state-flow graph for all 

(client-side) user interface states. We identify AJAX-

specific faults that can occur in such states and 
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generic and application-specific invariants that can 

serve as oracle to detect such faults (Section 6). From 

the inferred graph, we automatically generate test 

cases (Section 7) that cover the paths discovered 

during the crawling process. In addition, we use our 

open source tool called ATUSA (Section 8), 

implementing the testing technique, to conduct a 

number of case studies (Section 9) to discuss (Section 

10) and evaluate the effectiveness of our approach. 

 

A. Interface Model 

A web application‘s interface is most obviously 

characterized by the variety of UI widgets displayed 

on each page, which we represent by elements of the 

set Widgets. Web applications typically distinguish 

several basic widget classes such as text fields, radio 

buttons, drop-down list boxes etc.  

 

(Classes := {ctext, cradio, ccheck, cselect1, 

cselectn}), which we identify through the relation 

class : Widgets → Classes.  

 

For the purpose of input evaluation, it will be helpful 

to specify the ranges of values that users can 

enter/select in widgets. We specify this in the relation 

range: Widgets →P(S). Depending on the class of the 

widget w, range(w) will be: 

• the generic set S for text fields, which allow any 

input;  

• some fixed subset Sw →S for drop-down list 

boxes,which allow a 1-of-n selection; 

• the power set P(Sw) of some fixed subset Sw →S 

for multi-select boxes, which allow an m-of-n 

selection; 

• some string sw →S for individual check boxes and 

radio buttons, which are either undefined or have one 

particular value. 

 

In applications based on our model, the placement of 

widgets on web pages (from the set Pages) is 

governed by a series of hierarchically nested layout 

containers (Containers) that define visual alignment 

and semantic cohesion of widgets. The nesting 

relationships between widgets and containers can be 

expressed in the relation container: (Widgets→ 

Containers) → (Containers->Pages) that indicates in 

which container or page s_→Containers → Pages a 

widget or container s→Widgets -> Containers is 

directly contained. To reason about transitive 

containment, we also define a convenience relation 

page: (Widgets→Containers) → Pages that identifies 

which page a widget is placed on by recursive 

application of the container relation: p = page(s) : → 

(p → Pages→p = container(s)) →c → Containers : (c 

= container(s) → p = page(c))  

 

 

B. Data Model 

In our formal model, the variables holding the web 

application‘s data are represented by elements of the 

set Variables. Variables may have different types—in 

most applications, we find Boolean, integer, floating-

point and string values or sets  

 

(Types := {P(B),P(Z),P(R),P(S)},respectively).  

We express variables‘ types by the relationtype : 

Variables → Types. 

 

To store the entered content, each widget must be 

bound to a variable in the application‘s data model. 

This binding is modeled by the relation binding : 

Widgets → Variables. Note that several widgets can 

be bound to the same variable (e.g. a group of check 

boxes whose combined state is stored as a set of 

string values). 

 

C. Evaluation Aspects 

Input evaluations are characterized by several criteria 

that together constitute particular behavior rules. In 

this paper, we will discuss input evaluation for the 

purpose of deciding validity, visibility, and 

availability of widgets, i.e. for interface responses 

such as highlighting violating widgets, hiding 

invisible widgets, and disabling (e.g. ―graying out‖) 

unavailable widgets, respectively. 

 

At the core of each rule is an expression e → 

Expressions that describes the actual evaluation of 

certain values in order to arrive at a decision for one 

of the above purposes. Our model allows expressions 

to consist of arbitrarily nestable terms. These can 

trivially be literals (out of the universal set L := B → 

R → S) or variables from the data model, but also 

comparisons, arithmetic, boolean or string operations, 

which can be distinguished by their operator op(e), so 

Expressions → (L → Variables) (for the sake of 

conciseness, we we will not go into the details of 

expressions‘ concrete structure). Ultimately, an 

expression must resolve to a boolean value indicating 

the outcome of the decision. Of course, a rule for any 

purpose must relate to certain subjects on which the 

respective reaction is effected. These may not only be 

individual widgets, but also groups of widgets 

contained directly or transitively in a particular 

container or page, so we define Subjects := Widgets 

→ Containers → Pages. Note that the subject widgets 

do not necessarily correspond to the expression‘s 

parameters (business requirements might e.g. suggest 

that only one of several evaluated widgets should be 

highlighted as invalid if the validation fails). For the 

purpose of input validation, we must consider several 

additional characteristics. First, we can distinguish 

different levels of validation, which we will describe 

as Levels := {lexist, ltech, ldomain}. The most basic 

level is checking for the existence of any input in a 

required field. Next, the technical check concerns 
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whether a particular input can be converted sensibly 

to the given data type. Finally, performing any 

domain-specific validation of the input is only 

sensible if the previous two validation levels were 

satisfied. In practice, not all validation rules would 

typically be evaluated at the same time—from our 

experience from several industrial projects, we rather 

identified four common validation triggers  

 

(Triggers := {tblurWidget, tleavePage, tsaveData, 

tcommitData}):  

 

Validation may occur upon a widget‘s ―blurring‖ (i.e. 

losing focus) when the cursor is moved to another 

widget; upon leaving a page in order to jump to the 

next or previous page of the dialog; upon saving the 

data entered so far as a draft version, in order to 

prevent data loss or continue working on the dialog at 

a later time; and finally upon committing all entered 

data in order to proceed to the next task in a business 

process. By staging the validation through assigning 

rules to appropriate triggers, developers can strike a 

balance between business requirements and usability 

considerations, ensuring data integrity while 

maintaining users‘ flexibility in working with the 

application. In a similar vein, experience shows that 

typically not all rule violations are equally serious: 

Depending on the business semantics of each rule, 

developers may choose to assign different severity 

levels to it. We therefore distinguish  

 

Severities := {sinfo, swarning, serror} (with the 

natural order sinfo < swarning < serror),  

 

and define different behavior for different severities. 

 

D. Evaluation Rules 

Having introduced all aspects characterizing input 

evaluation, we can now define the constituent 

elements of the rules for different purposes: Rules 

determining visibility and availability of widgets are 

fully described by the deciding expression and the set 

of affected subjects, while validation rules require all 

of the aspects described above:  

 

Rvisibility : → Expressions×P(Subjects) 

Ravailability : → Expressions×P(Subjects) 

Rvalidation: → Expressions×P(Subjects) × Levels × 

Triggers × Severities  

 

While the visibility and availability rules, as well as 

the existence and domain validation rules, need to be 

specified by the application designer, the necessary 

technical validation checks can be inferred from the 

interface and data model. To facilitate an integrated 

display of all validation, we derive the subset of 

Rvalidation comprising the technical validation rules 

as  

{(λ, w, ltech, tblurWidget, serror) | →w → Widgets},  

based on the assumption that type or range violations 

should be detected as early as possible, and reported 

as errors. To access particular components of the 

rules‘ tuples, our following discussion will assume 

the existence of the convenience functions 

expression, subjects, level, trigger, and severity that 

return the respective components of a rule. Since we 

will often be interested in all rules pertaining to a 

certain subject, we also define the abbreviation Rs p 

to denote all rules for a purpose p that affect a subject 

s. Summing up, we can describe the static, design-

time specification of input evaluation for a web 

application as a tuple Aspec := (Widgets, class, range, 

Containers, Pages, container, binding, Variables, 

type, Rvisibility , Ravailability, Rvalidation). 

 

E. User Interface Behavior 

Last but not least, we must define how the user 

interface reacts to the various conditions that arise 

from input evaluation; namely validation results, 

visibility and availability of widgets, and navigation 

options. These will be covered in the following 

subsections. 

1) Issue Notifications: We suggest that validation 

issues be displayed in two ways: On top of each page, 

the interface displays a concise list of human-

readable explanations for all violations that were 

identified on the current and other pages. In case 

several rules are violated for a particular set of 

subjects, we display only the most severe notification 

to reduce clutter, as indicated by the function 

issueDisp : Rvalidation → B:issueDisp(r) : → r → 

Issues → _r_ → Issues : (subjects(r_) → subjects(r) 

→ severity(r_) > severity(r)) 

 

To further aid the user in identifying the invalid input, 

we highlight the respective widget in a color 

corresponding to the severity (e.g. red for errors, 

orange for warnings etc.). Two relationships 

influence this coloring scheme: Firstly, if the subject 

of a rule is not an individual widget, but rather a 

container, the issue is assumed to apply to all directly 

and transitively contain widgets, which are all colored 

accordingly. Secondly, if a subject is affected by 

several issues (through multiple rules or inclusion in 

affected containers), it will be colored according to 

the most severe issue. To indicate this, the partial 

relation highlight: Subjects →_ Severities indicates 

which severity (if any) applies to a particular subject: 

highlight(s) = v: → v = max ({v | v = 

highlight(container(s))} → {v | →r → Rs validation : 

(issueDisp(r) → v = severity(r)}))  

 

We assume here that the relation max: P(Severities) 

→ Severities returns the maximum element from a set 

of severities. 

2) Visibility: In the previous section, we have already 

often relied on an indication of whether a particular 

interface component is currently visible. For any 
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given subject, this state depends both on any explicit 

visibility rules, and on the visibility of the 

surrounding containers, as the relation isVisible : 

Subjects → B indicates: isVisible(s) : → 

(isVisible(container(s)) → s → Pages) → r → 

Rvisibility(s): isSatisfied(expression(r)) 

 

In analogy to validation rules, where just one rule 

violation suffices to consider an input invalid, we 

require that all of a widget‘s applicable visibility rules 

must be satisfied for it to be visible. 

3) Availability: In some use cases, developers may 

not want to render a widget invisible, thus hiding it 

from the interface model and removing its input from 

the data model, but would only like to prevent users 

from editing the widget‘s contents, even though it 

remains part of the interface and data model. This 

deactivation can be accomplished by ―graying out‖ 

the widget or otherwise preventing it from gaining the 

input focus, while still remaining visible. In our 

model, availability rules are stated and evaluated just 

like visibility rules, as the relation isAvailable : 

Subjects → B indicates: isAvailable(s) : → 

(isAvailable(container(s)) → s → Pages) → r → 

Ravailability(s): isSatisfied(expression(r)) 

 

Note that while visibility affects the data model and is 

used in quite a few of the above relations, availability 

is a pure interface reaction that does not affect how 

data is evaluated or stored. 

4) Navigation Opportunities: When considering the 

availability of widgets, the navigation buttons on each 

page (typically, for navigating forward and backward 

in a dialog wizard, saving a draft of the current data, 

or committing it for further processing) require 

special treatment: The user should be prevented from 

saving a draft, let alone committing all input, but 

possibly even leaving a page, when the model still 

violates any validation rules. Since the availability of 

the corresponding buttons does not depend directly 

on the widget contents, but on the outcome of all 

validations in the respective scope, this behavior 

cannot be specified by means of regular availability 

rules. Instead, our model contains built-in ―meta‖ 

rules governing navigation opportunities. In the 

following predicates, we distinguish between 

validation rules that must be satisfied for saving a 

draft, and a possibly more restrictive set that must be 

satisfied for committing the input for further 

processing: commitEnabled : → r → Issues : 

(trigger(r) → commitBlocks → severity(r) = serror) 

saveEnabled : → r → Issues : (trigger(r) → 

saveBlocks → severity(r) = serror) 

leaveEnabled(from) : → r → Issues : (trigger(r) → 

leaveBlocks → severity(r) = serror →s → subjects(r): 

from = page(s)) 

 

F. AJAX Testing Challenges 

In AJAX applications, the state of the user interface is 

determined dynamically, through event-driven 

changes in the browser‘s DOM that are only visible 

after executing the corresponding JAVASCRIPT 

code. The resulting challenges can be explained 

through the reach/trigger/propagate conditions as 

follows. Reach. The event-driven nature of AJAX 

presents the first serious testing difficulty, as the 

event model of the browser must be manipulated 

instead of just constructing and sending appropriate 

URLs to the server. Thus, simulating user events on 

AJAX interfaces requires an environment equipped 

with all the necessary technologies, e.g., 

JAVASCRIPT, DOM, and the XMLHttpRequest 

object used for asynchronous communication. One 

way to reach the fault-execution automatically for 

AJAX is by adopting a web crawler, capable of 

detecting and firing events on clickable elements on 

the web interface. Such a crawler should be able to 

exercise all user interface events of an AJAX site, 

crawl through different UI states and infer a model of 

the navigational paths and states. We proposed such a 

crawler for AJAX, discussed in our previous work 

[14], Trigger. Once we are able to derive different 

dynamic states of an AJAX application, possible 

faults can be triggered by generating UI events. In 

addition input values can cause faulty states. Thus, it 

is important to identify input data entry points, which 

are primarily comprised of DOM forms. In addition, 

executing different sequences of events can also 

trigger an incorrect state. Therefore, we should be 

able to generate and execute different event 

sequences. Propagate. In AJAX, any response to a 

client-side event is injected into the single-page 

interface and therefore, faults propagate to and are 

manifested at the DOM level. Hence, access to the 

dynamic run-time DOM is a necessity to be able to 

analyze and detect the propagated errors. Automating 

the process of assessing the correctness of test case 

output is a challenging task, known as the oracle 

problem [24]. Ideally a tester acts as an oracle who 

knows the expected output, in terms of DOM tree, 

elements and their attributes, after each state change. 

When the state space is huge, it becomes practically 

impossible. In practice, a baseline version, also 

known as the Gold Standard [5], of the application is 

used to generate the expected behavior. Oracles used 

in the web testing literature are mainly in the form of 

HTML comparators [22] and validators [2].  

 

G. Deriving AJAX States 

Here, we briefly outline our AJAX crawling 

technique and tool called CRAWLJAX [14]. 

CRAWLJAX can exercise client side code, and 

identify clickable elements that change the state 

within the browser‘s dynamically built DOM. From 

these state changes, we infer a state-flow graph, 

which captures the states of the user interface, and the 
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possible event-based transitions between them. We 

define an AJAX UI state change as a change on the 

DOM tree caused either by server-side state changes 

propagated to the client, or client-side events handled 

by the AJAX engine. We model such changes by 

recording the paths (events) to these DOM changes to 

be able to navigate between the different states. 

Inferring the State Machine. The state-flow graph is 

created incrementally. Initially, it only contains the 

root state and new states are created and added as the 

application is crawled and state changes are analyzed. 

The following components participate in the 

construction of the graph: CRAWLJAX uses an 

embedded browser interface (with different 

implementations: IE, Mozilla) supporting 

technologies required by AJAX; A robot is used to 

simulate user input (e.g., click, mouseOver, text 

input) on the embedded browser; The finite state 

machine is a data component maintaining the state-

flow graph, as well as a pointer to the current state; 

The controller has access to the browser‘s DOM and 

analyzes and detects state changes. It also controls the 

robot‘s actions and is responsible for updating the 

state machine when relevant changes occur on the 

DOM. Detecting Clickables. CRAWLJAX 

implements an algorithm which makes use of a set of 

candidate elements, which are all exposed to an event 

type (e.g., click, mouseOver). In automatic mode, the 

candidate clickables are labeled as such based on 

their HTML tag element name and attribute 

constraints. For instance, all elements with a tag div, 

a, and span having attribute class="menuitem" are 

considered as candidate clickable. For each candidate 

element, the crawler fires a click on the element (or 

other event types, e.g., mouseOver), in the embedded 

browser. Creating States. After firing an event on a 

candidate clickable, the algorithm compares the 

resulting DOM tree with the way as it was just before 

the event fired, in order to determine whether the 

event results in a state change. If a change is detected 

according to the Levenshtein edit distance, a new 

state is created and added to the state-flow graph of 

the state machine. Furthermore, a new edge is created 

on the graph between the state before the event and 

the current state. Processing Document Tree Deltas. 

After a new state has been detected, the crawling 

procedure is recursively called to find new possible 

states in the partial changes made to the DOM tree. 

CRAWLJAX computes the differences between the 

previous document tree and the current one, by means 

of an enhanced Diff algorithm to detect AJAX par- 

212 trial updates which may be due to a server 

request call that injects new elements into the DOM. 

Navigating the States. Upon completion of the 

recursive call, the browser should be put back into the 

previous state. A dynamically changed DOM state 

does not register itself with the browser history 

engine automatically, so triggering the ‗Back‘ 

function of the browser is usually insufficient. To 

deal with this AJAX crawling problem, we save 

information about the elements and the order in 

which their execution results in reaching a given 

state. We then can reload the application and follow 

and execute the elements from the initial state to the 

desired state. CRAWLJAX adopts XPath to provide a 

reliable, and persistent element identification 

mechanism. For each state changing element, it 

reverse engineers the XPath expression of that 

element which returns its exact location on the DOM. 

This expression is saved in the state machine and 

used to find the element after a reload. Note that 

because of side effects of the element execution and 

server-side state, there is no guarantee that we reach 

the exact same state when we traverse a path a second 

time. It is, however, as close as we can get. Data 

Entry Points in order to provide input values on 

AJAX web applications, we have adopted a reverse 

engineering process, similar to [3, 10], to extract all 

exposed data entry points. To this end, we have 

extended our crawler with the capability of detecting 

DOM forms on each newly detected state (this 

extension is also shown in Algorithm 1). For each 

new state, we extract all form elements from the 

DOM tree. For each form, a hashcode is calculated on 

the attributes (if available) and the HTML structure of 

the input fields of the form. With this hashcode, 

custom values are associated and stored in a database, 

which are used for all forms with the same code. If no 

custom data fields are available yet, all data, 

including input fields, their default values, and 

options are extracted from the DOM form. Since in 

AJAX forms are usually sent to the server through 

JAVASCRIPT functions, the action attribute of the 

form does not always correspond to the server-side 

entry URL. Also, any element (e.g., A, DIV) could be 

used to trigger the right JAVASCRIPT function to 

submit the form. In this case, the crawler tries to 

identify the element that is responsible for form 

submission. Note that the tester can always verify the 

submit element and change it in the database, if 

necessary. Once all necessary data is gathered, the 

form is inserted automatically into the database. 

Every input form provides thus a data entry point and 

the tester can later alter the database with additional 

desired input values for each form. If the crawler does 

find a match in the database, the input values are used 

to fill the DOM form and submit it. Upon submission, 

the resulting state is analyzed recursively by the 

crawler and if a valid state change occurs the state-

flow graph is updated accordingly. Testing AJAX 

States through Invariants with access to different 

dynamic DOM states we can check the user interface 

against different constraints. We propose to express 

those as invariants on the DOM tree, which we thus 

can check automatically in any state. We distinguish 

between invariants on the DOM-tree, between DOM-

tree states, and application-specific invariants. Each 

invariant is based on a fault model [5], representing 

AJAX specific faults that are likely to occur and 

which can be captured through the given invariant. 
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II. PROPOSED APPROACH 

The goal of the proposed approach is to statically 

check web application invocations for correctness and 

detect errors. There are three basic steps to the 

approach (A) identify generated invocations, (B) 

compute interfaces and domain constraints, and (C) 

check that each invocation matches an interface. A. 

Identify Invocation Related Information The goal of 

this step is to identify invocation related information 

in each component of the web application. The 

information to be identified is: (a) the set of argument 

names that will be included in the invocation, (b) 

potential values for each argument, (c) domain 

information for each argument, and (d) the request 

method of the invocation. The general process of this 

step is that the approach computes the possible 

HTML pages that each component can generate. 

During this process, domain and value information is 

identified by tracking the source of each substring in 

the computed set of pages. Finally, the computed 

pages and substring source information are combined 

to identify the invocation information. 1) Compute 

Possible HTML Pages: The approach analyzes a web 

application to compute the HTML pages each 

component can generate. Prior work by the author [4] 

is extended, to compute these pages in such a way as 

to preserve domain information about each 

invocation. The approach computes the fixed point 

solution to the data-flow equations and at the end of 

the computation, the fragment associated with the 

root method of each component contains the set of 

possible HTML pages that could be generated by 

executing the component. 2) Identify Domain and 

Value Information: The approach identifies domain 

and value information for each argument in an 

invocation. The key insight for this part of the 

approach is that the source of the substrings used to 

define invocations in an HTML page can provide 

useful information about the domain and possible 

values of each argument. For example, if a substring 

used to define the value of an invocation originates 

from a call to StringBuilder.append(int), this indicates 

that the argument‘s domain is of type integer. To 

identify this type of information, strings from certain 

types of sources are identified and annotated using a 

process similar to static tainting. Then the strings and 

their corresponding annotations are tracked as the 

approach computes the fixed point solution to the 

equations.  The mechanism for identifying and 

tracking string sources starts with the resolve 

function, which analyzes a node n in an application 

and computes a conservative approximation of the 

string values that could be generated at that node. The 

general intuition is that when the resolve function 

analyzes a string source that can indicate domain or 

value information, a special domain and value (DV) 

function is used to complete the analysis. The DV 

function returns a finite state automaton (FSA) 

defined as the quintuple (S, S0, F) whose accepted 

language is the possible values that could be 

generated by the expression. In addition, the DV 

function also defines two domain type, where T is a 

basic type of character, integer, float, long, double, or 

string; and V : S that maps each transition to a 

symbol in or a special symbol  that denotes any value. 

D is used to track the inferred domain of a substring 

and V is used to track possible values. A DV function 

is defined for each general type of string source. For 

the purpose of the description of the DV functions 

below, e refers to any transition (S) defined by and 

the function L(e) returns the symbol associated with 

the transition e. Functions that return a string 

variable: Substrings originating from these types of 

functions can have any value and a domain of string. 

This is represented as V (e) and D(e) string. String 

constants: The string constant provides a value for the 

argument and a domain of string. This is represented 

as V (e) = L(e) and D(e) = string. Member of a 

collection: For example, a string variable defined by a 

specific member of a list of strings. More broadly, of 

the form v = collection hTi[x] where v is the string 

variable, collection contains objects of type T, and x 

denotes the index of the collection that defines v. In 

this case, a domain can be provided based on the type 

of object contained in the collection. This is 

represented as D(e) = T, and V (e) = collection[x] if 

the value is resolvable or V (e)  otherwise. 

Conversion of a basic type to a string: For example, 

Integer.toString(). More broadly any function 

convert(X)! S where X is a basic type and S is a 

string type. This operation implies that the string 

should be a string representation of type X. This is 

represented as D(e) = X, and V (e) if X is defined by 

a variable or V (e) = L(e) otherwise. Append a basic 

type to a string: For example, a call to 

StringBuilder.append(int). More broadly, 

append(S,X) ! S0 where S is a string type, X is a 

basic type, and S0 is the string representation of the 

concatenation of the two arguments. In this case, the 

domain of the substring that was appended to S 

should be X. This is represented as D(eX) = X. V 

(eX) if X is defined by a variable or V (eX) = L(eX) 

otherwise. The subscripts denote the subset of 

transitions defined by the FSA of the string 

representation of X. 

 

3) Combining Information: The final part of 

identifying invocation related information is to 

combine the information identified by computing the 

HTML pages and the domain and value tracking. The 

key insight for this step is that substrings of the 

HTML pages that syntactically define an invocation‘s 

value will also have annotations from the DV 

functions. To identify this information, a custom 

parser is used to parse each of the computed HTML 

pages and recognize HTML tags while maintaining 

and recording any annotations. Example: Using the 

equations listed in Figure 3, the Out[exitNode] of 

servlet OrderStatus is equal to {{2, 5–12, 14–17, 22}, 

{2, 5–12, 19–22}. The analysis performs resolve on 
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each of the nodes in each of the sets that comprise 

Out[exitNode]. Nodes 2, 5, 7–12, 14, 16, 17, 19, 20, 

and 22 involve constants, so resolve returns the 

values of the constants and the domain information is 

any string (*). Nodes 6 and 15 originate from special 

string sources. The variable oid is defined by a 

function that returns strings and can be of any value 

(*), and the variable quant is an append of a basic 

type, so it is marked as type int. After computing the 

resolve function for each of the nodes, the final value 

of fragments[service] is comprised of two web pages, 

which differ only in that one traverses the true branch 

at line 13 and therefore includes an argument for 

quant and a different value for task The approach 

then parses the HTML to identify invocations. By 

examining the annotations associated with the 

substring that defines each argument‘s value, the 

value for arguments oid and quant are identified. The 

<select> tag has three different options that can each 

supply a different value. So three copies are made of 

each of the two web form based invocations. Each 

copy is assigned one of the three possible values for 

the shipto argument. The final result is the 

identification of six invocations originating from 

OrderStatus. Each tuple in the lists -the name, domain 

type, and values of the identified argument.  

 

A. Identify Interfaces 

This step of the proposed approach identifies 

interface information for each component of a web 

application. The proposed approach extends prior 

work in interface analysis [5] to also identify the 

HTTP request method for each interface. The specific 

mechanism for specifying HTTP request methods 

depends on the framework. In the Java Enterprise 

Edition (JEE) framework, the name of the entry 

method first accessed specifies its expected request 

method. For example, the doPost or doGet method 

indicates that the POST or GET request methods, 

respectively, will be used to decode arguments. The 

proposed approach builds a call graph of the 

component and marks all methods that are reachable 

from the specially named root methods as having the 

request method of the originating method. Example: 

ProcessOrder can accept two interfaces due to the 

branch taken at line 17: (1) {oid, task, shipto, other} 

and (2) {oid, task, shipto, other, quant}. From the 

implementation of ProcessOrder it is possible to infer 

domain information for some of the parameters. From 

this information, the first interface is determined to 

have an IDC of 

int(shipto).(shipto=1_shipto=2).task=‖purchase‖; and 

the second interface has an IDC of 

int(shipto).(shipto=1_shipto=2).task=‖modify‖.int(qu

ant).  

Unless otherwise specified, the domain of a 

parameter is a string. Lastly, by traversing the call 

graph of ProcessOrder all parameters (and therefore, 

all interfaces) are identified as having originated from 

a method that expects a POST request. 

 

B. Verify Invocations 

The third step of the approach checks each invocation 

to ensure that it matches an interface of the 

invocation‘s target. An invocation matches an 

interface if the following three conditions hold: (1) 

the request method of the invocation is equal to the 

request method of the interface; (2) the set of the 

interface‘s parameter names and the invocation‘s 

argument names are equal; and (3) the domains and 

values of the invocation satisfy an IDC of the 

interface. For the third condition, domain and value 

constraints are checked. The domain of an argument 

is considered to match the domain of a parameter if 

both are of the same type or if the value of the 

argument can be successfully converted to the 

corresponding parameter‘s domain type. For 

example, if the parameter domain constraint is Integer 

and the argument value is ―5,‖ then the constraint 

would be satisfied. Example: Consider the interfaces 

identified and the invocations. Each of the six 

invocations is checked to see if it matches either of 

the two interfaces. Only invocation 2 represents a 

correct invocation and the rest will be identified as 

errors. 

 

C. Evaluation 

The evaluation measures the precision of the reported 

results. The proposed approach was implemented as a 

prototype tool, WAIVE+. The subjects used in the 

evaluation are four Java Enterprise Edition (JEE) 

based web applications: Bookstore, Daffodil, 

Filelister, and JWMA. These applications range in 

size from 8,600 to 29,000 lines of code. All of the 

applications are available as open source and are 

implemented using a mix of static HTML, JavaScript, 

Java servlets, and regular Java code. To address the 

research questions, WAIVE+ was run on the four 

applications. For each application the reported 

invocation errors were inspected. Table II shows the 

results of inspecting the reported invocations. Each 

invocation error was classified as either a confirmed 

error or a false positive. Invocations in both 

classifications were also further classified based on 

whether the error reported was due to a violation of 

one of the correctness properties, the invocation did 

not match an interface because of an incorrectly 

specified request method (R.M.), the argument names 

did not match the parameter names of any interface of 

the target (N.), and the value and domain information 

of an invocation did not match the interface domain 

constraint (IDC). The table also reports the total 

number of invocations identified for each application 

(# Invk.). As the results in Table II show, WAIVE+ 

identified 69 erroneous invocations and had 20 false 

positives. Prior approaches can only detect errors 

related to names, so the comparable total of errors for 
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WAIVE was 33 erroneous invocations and 19 false 

positives. These results indicate that the new domain 

information checks resulted in the discovery of 36 

additional errors and 1 false positive. Overall, the 

results are very encouraging. The approach identified 

36 new errors that had been previously undetectable 

while only producing one additional false positive. 

 

III. CONCURRENT AJAX CRAWLING 

 

The algorithm and its implementation for crawling 

AJAX, as just described, is sequential, depth-first, 

and single-threaded. Since we crawl the Web 

application dynamically, the crawling runtime is 

determined by the following factors. 

(1) The speed at which the Web server responds to 

HTTP requests. 

(2) Network latency. 

(3) The crawler‘s internal processes (e.g., analyzing 

the DOM, firing events, updating the state machine). 

(4) The speed of the browser in handling the events 

and request/response pairs, modifying the DOM, and 

rendering the user interface. 

We have no influence on the first two factors and 

already have many optimization heuristics for the 

third step. Therefore, we focus on the last factor, the 

browser. Since the algorithm has to wait some 

considerable amount of time for the browser to finish 

its tasks after each event, our hypothesis is that we 

can decrease the total runtime by adopting concurrent 

crawling through multiple browsers. 

 

A. Multi-threaded, Multi-Browser Crawling 

The idea is to maintain a single state machine and 

split the original controller into a new controller and 

multiple crawling nodes. The controller is the single 

main thread monitoring the total crawl procedure. In 

this new setting, each crawling node is responsible 

for deriving its corresponding robot and browser 

instances to crawl a specific path. Compared with 

Figure 3, the new architecture is capable of having 

multiple crawler instances, running from a single 

controller. All the crawlers share the same state 

machine. The state machine makes sure every crawler 

can read and update the state machine in a 

synchronized way. This way, the operation of 

discovering new states can be executed in parallel. 

 

B. Partition Function 

To divide the work over the crawlers in a multi-

threaded manner, a partition function must be 

designed. The performance of a concurrent approach 

is determined by the quality of its partition function 

[Garavel et al. 2001]. A partition function can be 

either static or dynamic. With a static partition 

function, the division of work is known in advance, 

before executing the code. When a dynamic partition 

function is used, the decision of which thread will 

execute a given node is made at runtime. Our 

algorithm infers the state-flow graph of an AJAX 

application dynamically and incrementally. Thus, due 

to this dynamic nature, we adopt a dynamic partition 

function. The task of our dynamic partition function 

is to distribute the work equally over all the 

participating crawling nodes. While crawling an 

AJAX application, we define work as bringing the 

browser back into a given state and exploring the first 

unexplored candidate state from that state. Our 

proposed partition function operates as follows. After 

the discovery of a new state, if there are still 

unexplored candidate clickables left in the previous 

state, that state is assigned to another thread for 

further exploration. The processor chosen will be the 

one with the least amount of work left. Visualizes our 

partition function for concurrent crawling of a simple 

Web application. In the Index state, two candidate 

clickables are detected that can lead: S 1 and S 11. 

The initial thread continues with the exploration of 

the states S 1, S 2, S 3, S 4, and finishes in S 5, in a 

depth-first manner. Simultaneously, a new thread is 

branched off to explore state S 11. This new thread 

(thread #2) first reloads the browser to Index and then 

goes into S 11. In state S 2 and S 6, this same 

branching mechanism happens, which results in a 

total of five threads. Now that the partition function 

has been introduced, the original sequential crawling 

algorithm (Algorithm 1) can be changed into a 

concurrent version. 

 

We consider the following Ajax Complexity field 

equations defined over an open bounded piece of 

network and /or feature space 
dR . They 

describe the dynamics of the mean anycast of each of 

p node populations. 

|

1

( ) ( , ) ( , ) [( ( ( , ), ) )]
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We give an interpretation of the various parameters 

and functions that appear in (1),  is finite piece of 

nodes and/or feature space and is represented as an 

open bounded set of 
dR . The vector r  and r  

represent points in   . The function : (0,1)S R  

is the normalized sigmoid function: 

 

 
1

( ) (2)
1 z

S z
e




  

It describes the relation between the input rate iv  of 

population i  as a function of the packets potential, 

for example, [ ( )].i i i i iV v S V h    We note V  

the p   dimensional vector 1( ,..., ).pV V The p  
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function , 1,..., ,i i p   represent the initial 

conditions, see below. We note   the  p   

dimensional vector 
1( ,..., ).p   The p  function 

, 1,..., ,ext

iI i p  represent external factors from 

other network areas. We note 
extI  the p   

dimensional vector 1( ,..., ).ext ext

pI I The p p  

matrix of functions 
, 1,...,{ }ij i j pJ J   represents the 

connectivity between populations i  and ,j  see 

below. The p  real values , 1,..., ,ih i p  determine 

the threshold of activity for each population, that is, 

the value of the nodes potential corresponding to 50% 

of the maximal activity. The p real positive values 

, 1,..., ,i i p   determine the slopes of the sigmoids 

at the origin. Finally the p real positive values 

, 1,..., ,il i p   determine the speed at which each 

anycast node potential decreases exponentially 

toward its real value. We also introduce the function 

: ,p pS R R  defined by 

1 1 1( ) [ ( ( )),..., ( ))],p pS x S x h S h     and the 

diagonal p p  matrix 0 1( ,..., ).pL diag l l Is the 

intrinsic dynamics of the population given by the 

linear response of data transfer. ( )i

d
l

dt
  is replaced 

by 
2( )i

d
l

dt
  to use the alpha function response. We 

use ( )i

d
l

dt
  for simplicity although our analysis 

applies to more general intrinsic dynamics. For the 

sake, of generality, the propagation delays are not 

assumed to be identical for all populations, hence 

they are described by a matrix ( , )r r  whose 

element ( , )ij r r is the propagation delay between 

population j  at r  and population i  at .r  The 

reason for this assumption is that it is still unclear 

from anycast if propagation delays are independent of 

the populations. We assume for technical reasons that 

  is continuous, that is 
20( , ).p pC R 

   

Moreover packet data indicate that   is not a 

symmetric function i.e., ( , ) ( , ),ij ijr r r r   thus no 

assumption is made about this symmetry unless 

otherwise stated. In order to compute the righthand 

side of (1), we need to know the node potential factor 

V  on interval [ ,0].T  The value of T  is obtained 

by considering the maximal delay: 

 ,
, ( , )

max ( , ) (3)m i j
i j r r

r r 


   

Hence we choose mT   

 

C. Mathematical Framework 

A convenient functional setting for the non-delayed 

packet field equations is to use the space 
2( , )pF L R   which is a Hilbert space endowed 

with the usual inner product: 

 

1

, ( ) ( ) (1)
p

i iF
i

V U V r U r dr




   

To give a meaning to (1), we defined the history 

space 
0([ ,0], )mC C F   with 

[ ,0]sup ( ) ,
mt t F    which is the Banach 

phase space associated with equation (3). Using the 

notation ( ) ( ), [ ,0],t mV V t        we write 

(1) as  
.

0 1

0

( ) ( ) ( ) ( ), (2)
,

ext

tV t L V t L S V I t

V C


    


 

  

Where  

 
1 : ,

(., ) ( , (., ))

L C F

J r r r dr  





  
  

Is the linear continuous operator satisfying 

2 21 ( , )
.p pL R

L J 
  Notice that most of the papers 

on this subject assume   infinite, hence requiring 

.m      

 

 

Proposition 1.0  If the following assumptions are 

satisfied. 

1. 
2 2( , ),p pJ L R     

2. The external current 
0( , ),extI C R F   

3. 
2

0 2( , ),sup .p p

mC R  

 
     

Then for any ,C  there exists a unique solution 

1 0([0, ), ) ([ , , )mV C F C F      to (3) 

Notice that this result gives existence on ,R  finite-

time explosion is impossible for this delayed 

differential equation. Nevertheless, a particular 

solution could grow indefinitely, we now prove that 

this cannot happen. 

 

D. Boundedness of Solutions 

A valid model of neural networks should only feature 

bounded packet node potentials.  
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Theorem 1.0 All the trajectories are ultimately 

bounded by the same constant R  if 

max ( ) .ext

t R F
I I t
    

Proof :Let us defined :f R C R   as 

2

0 1

1
( , ) (0) ( ) ( ), ( )

2

def
ext F

t t t F

d V
f t V L V L S V I t V t

dt
    

  

We note 
1,...mini p il l   

 
2

( , ) ( ) ( ) ( )t F F F
f t V l V t p J I V t    

  

Thus,  if 

 

2.
( ) 2 , ( , ) 0

2

def def
F

tF

p J I lR
V t R f t V

l


 
      

  

Let us show that the open route of F  of center 0 and 

radius , ,RR B  is stable under the dynamics of 

equation. We know that ( )V t  is defined for all 

0t s  and that 0f   on ,RB  the boundary of 

RB . We consider three cases for the initial condition 

0.V If 0 C
V R  and set 

sup{ | [0, ], ( ) }.RT t s t V s B     Suppose that 

,T R  then ( )V T  is defined and belongs to ,RB  

the closure of ,RB  because  RB is closed, in effect to 

,RB  we also have 

2
| ( , ) 0t T TF

d
V f T V

dt
      because 

( ) .RV T B  Thus we deduce that for 0   and 

small enough, ( ) RV T B   which contradicts the 

definition of T. Thus T R  and RB is stable. 

 Because f<0 on , (0)R RB V B   implies 

that 0, ( ) Rt V t B   . Finally we consider the 

case (0) RV CB . Suppose that   

0, ( ) ,Rt V t B    then 
2

0, 2 ,
F

d
t V

dt
     

thus ( )
F

V t  is monotonically decreasing and 

reaches the value of R in finite time when ( )V t  

reaches .RB  This contradicts our assumption.  Thus  

0 | ( ) .RT V T B     

 

Proposition 1.1 : Let s  and t   be measured simple 

functions on .X  for ,E M  define 

 

( ) (1)
E

E s d  
  

Then 


 is a measure on M .  

( ) (2)
X X X

s t d s d td      
  

Proof : If s  and if 1 2, ,...E E  are disjoint members 

of M whose union is ,E  the countable additivity of 

  shows that  

1 1 1

1 1 1

( ) ( ) ( )

( ) ( )

n n

i i i i r

i i r

n

i i r r

r i r

E A E A E

A E E

    

  



  

 

  

   

  

  

 
  

Also,
( ) 0,  

 so that 


 is not identically . 

Next, let  s  be as before, let 1,..., m   be the 

distinct values of  t,and let { : ( ) }j jB x t x    If 

,ij i jE A B   the

( ) ( ) ( )
ij

i j ij
E

s t d E        

and ( ) ( )
ij ij

i ij j ij
E E

sd td E E           

Thus (2) holds with 
ijE  in place of X . Since  X is 

the disjoint union of the sets 

(1 ,1 ),ijE i n j m     the first half of our 

proposition implies that (2) holds. 

 

 

Theorem 1.1: If K  is a compact set in the plane 

whose complement is connected, if f  is a 

continuous complex function on K  which is 

holomorphic in the interior of , and if 0,   then 

there exists a polynomial P  such that 

( ) ( )f z P z    for all z K .  If the interior of 

K is empty, then part of the hypothesis is vacuously 

satisfied, and the conclusion holds for every 

( )f C K . Note that  K need to be connected. 

Proof: By Tietze‘s theorem, f  can be extended to a 

continuous function in the plane, with compact 

support. We fix one such extension and denote it 

again by f . For any 0,   let ( )   be the 

supremum of the numbers 2 1( ) ( )f z f z  Where 

1z  and 2z  are subject to the condition 2 1z z   . 

Since f  is uniformly continous, we have 
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0
lim ( ) 0 (1)


 


  From now on,   will 

be fixed. We shall prove that there is a polynomial 

P  such that  

  

 ( ) ( ) 10,000 ( ) ( ) (2)f z P z z K      

By (1),   this proves the theorem. Our first objective 

is the construction of a function 
' 2( ),cC R  such 

that for all z   

( ) ( ) ( ), (3)
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Where X  is the set of all points in the support of   

whose distance from the complement of K  does not 

 . (Thus  X contains no point which is ―far within‖ 

K .) We construct  as the convolution of f  with a 

smoothing function A. Put ( ) 0a r   if ,r  put  
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( ) ( ) (7)A z a z
  

For all complex z . It is clear that 
' 2( )cA C R . We 

claim that  
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The constants are so adjusted in (6) that (8) holds.  

(Compute the integral in polar coordinates), (9) holds 

simply because A  has compact support. To compute 

(10), express A  in polar coordinates, and note that 

0,A


 


  

 

' ,A a
r

  
  

Now define 

2 2

( ) ( ) ( ) ( ) (11)

R R

z f z Ad d A z f d d           

  

Since f  and A  have compact support, so does  . 

Since  
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And ( ) 0A    if ,    (3) follows from (8). 

The difference quotients of A  converge boundedly 

to the corresponding partial derivatives, since 
' 2( )cA C R . Hence the last expression in (11) may 

be differentiated under the integral sign, and we 

obtain 

2

2

2

( )( ) ( )( ) ( )

( )( )( )

[ ( ) ( )]( )( ) (13)

R

R

R

z A z f d d

f z A d d

f z f z A d d

   

   

   

   

  

   







   

The last equality depends on (9). Now (10) and (13) 

give (4). If we write (13) with x  and 
y  in place 

of ,  we see that   has continuous partial 

derivatives, if we can show that 0   in ,G  

where G  is the set of all z K  whose distance from 

the complement of K  exceeds .  We shall do this 

by showing that  

 ( ) ( ) ( ); (14)z f z z G    

Note that 0f   in G , since f  is holomorphic 

there. Now if ,z G  then z   is in the interior of 

K  for all   with .   The mean value property 

for harmonic functions therefore gives, by the first 

equation in (11), 

2

2

0 0

0

( ) ( ) ( )

2 ( ) ( ) ( ) ( ) (15)

i

R

z a r rdr f z re d

f z a r rdr f z A f z

 








  

  

 

 

  

For all z G  , we have now proved (3), (4), and (5) 

The definition of X  shows that X is compact and 

that X  can be covered by finitely many open discs 

1,..., ,nD D  of radius 2 ,  whose centers are not in 

.K  Since 
2S K  is connected, the center of each 

jD  can be joined to   by a polygonal path in 

2S K . It follows that each jD contains a compact 

connected set ,jE  of diameter at least 2 ,  so that 

2

jS E  is connected and so that .jK E     
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with 2r  . There are functions 
2( )j jg H S E   

and constants 
jb  so that the inequalities. 

 

2

2

50
( , ) , (16)

1 4,000
( , ) (17)

j

j

Q z

Q z
z z







 



 
 

   

Hold for 
jz E  and ,jD   if  

2( , ) ( ) ( ) ( ) (18)j j j jQ z g z b g z      

Let   be the complement of 1 ... .nE E   Then 

 is an open set which contains .K  Put 

1 1X X D   and 

1 1( ) ( ... ),j j jX X D X X       for 

2 ,j n    

Define  

( , ) ( , ) ( , ) (19)j jR z Q z X z    

  

And 

1
( ) ( )( ) ( , ) (20)

( )

X

F z R z d d

z

   




 





  

Since,  

1

1
( ) ( )( ) ( , ) , (21)

i

j

j X

F z Q z d d   


  

  

(18) shows that F  is a finite linear combination of 

the functions jg  and 
2

jg . Hence ( ).F H 
 
By 

(20), (4), and (5) we have  

2 ( )
( ) ( ) | ( , )

1
| ( ) (22)

X

F z z R z

d d z
z

 




  


 

 



  

Observe that the inequalities (16) and (17) are valid 

with R  in place of jQ  if X   and .z   Now 

fix  .z   , put ,iz e     and estimate the 

integrand in (22) by (16) if 4 ,   by (17) if 

4 .    The integral in (22) is then seen to be less 

than the sum of 

4

0

50 1
2 808 (23)d



   
 

 
  

 
   

And  

2

24

4,000
2 2,000 . (24)d




   





   

Hence (22) yields 

( ) ( ) 6,000 ( ) ( ) (25)F z z z    

  

Since ( ), ,F H K    and 
2S K  is 

connected, Runge‘s theorem shows that F  can be 

uniformly approximated on K  by polynomials. 

Hence (3) and (25) show that (2) can be satisfied. 

This completes the proof. 

 

Lemma 1.0 : Suppose 
' 2( ),cf C R  the space of all 

continuously differentiable functions in the plane, 

with compact support. Put  

1
(1)

2
i

x y

  
   

  
  

Then the following ―Cauchy formula‖ holds: 

2

1 ( )( )
( )

( ) (2)

R

f
f z d d

z

i


 

 

  


 



 


  

Proof: This may be deduced from Green‘s theorem. 

However, here is a simple direct proof: 

Put ( , ) ( ), 0,ir f z re r      real 

 If ,iz re     the chain rule gives 

1
( )( ) ( , ) (3)

2

i i
f e r

r r

  


  
     

  

The right side of (2) is therefore equal to the limit, as 

0,   of 

 

2

0

1
(4)

2

i
d dr

r r





 




   
  

  
 

 

 

 

 

For each 0,r   is periodic in ,  with period 2

. The integral of /    is therefore 0, and (4) 

becomes 

2 2

0 0

1 1
( , ) (5)

2 2
d dr d

r

 




    

 

 
 

  
  

As 0, ( , ) ( )f z      uniformly.  This 

gives (2)  

 

If X a   and  1,... nX k X X  , then 

X X X a      , and so A  satisfies the 

condition ( ) . Conversely, 
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,

( )( ) ( ),
nA

c X d X c d X finite sums   

   

  



 

  


  

and so if A  satisfies ( ) , then the subspace 

generated by the monomials ,X a  , is an ideal. 

The proposition gives a classification of the 

monomial ideals in  1,... nk X X : they are in one to 

one correspondence with the subsets A  of 
n  

satisfying ( ) . For example, the monomial ideals in 

 k X  are exactly the ideals ( ), 1nX n  , and the 

zero ideal (corresponding to the empty set A ). We 

write |X A    for the ideal corresponding to 

A  (subspace generated by the ,X a  ). 

 

LEMMA 1.1.  Let S  be a subset of 
n . The the 

ideal a  generated by ,X S   is the monomial 

ideal corresponding to   

 | ,
df

n nA some S           

Thus, a monomial is in a  if and only if it is divisible 

by one of the , |X S   

PROOF.   Clearly A  satisfies   , and 

|a X A   . Conversely, if A  , then 

n    for some S , and 

X X X a     . The last statement follows 

from the fact that | nX X      . Let 

nA   satisfy   . From the geometry of  A , it 

is clear that there is a finite set of elements 

 1,... sS     of A such that  

 2| ,n

i iA some S          

(The 'i s  are the corners of A ) Moreover, 

|
df

a X A    is generated by the monomials 

,i

iX S
   . 

 

DEFINITION 1.0.   For a nonzero ideal a  in 

 1 ,..., nk X X , we let ( ( ))LT a  be the ideal 

generated by  

 ( ) |LT f f a   

 

LEMMA 1.2   Let a  be a nonzero ideal in  

 1 ,..., nk X X ; then ( ( ))LT a is a monomial ideal, 

and it equals 1( ( ),..., ( ))nLT g LT g  for some 

1,..., ng g a . 

PROOF.   Since  ( ( ))LT a  can also be described as 

the ideal generated by the leading monomials (rather 

than the leading terms) of elements of a . 

 

THEOREM 1.2.  Every ideal a  in  1 ,..., nk X X

is finitely generated; more precisely, 

1( ,..., )sa g g  where 1,..., sg g are any elements 

of a  whose leading terms generate ( )LT a   

PROOF.   Let f a . On applying the division 

algorithm, we find 

 1 1 1... , , ,...,s s i nf a g a g r a r k X X    

 , where either 0r   or no monomial occurring in it 

is divisible by any ( )iLT g . But 

i i
r f a g a   , and therefore 

1( ) ( ) ( ( ),..., ( ))sLT r LT a LT g LT g  , implies 

that every monomial occurring in r  is divisible by 

one in ( )iLT g . Thus 0r  , and 1( ,..., )sg g g . 

 

DEFINITION 1.1.   A finite subset 

 1,| ..., sS g g  of an ideal a  is a standard (

..

( )Gr obner bases for a  if 

1( ( ),..., ( )) ( )sLT g LT g LT a . In other words, S 

is a standard basis if the leading term of every 

element of a is divisible by at least one of the leading 

terms of the ig . 

 

THEOREM 1.3  The ring 1[ ,..., ]nk X X  is 

Noetherian i.e., every ideal is finitely generated. 

 

PROOF. For  1,n   [ ]k X  is a principal ideal 

domain, which means that every ideal is generated by 

single element. We shall prove the theorem by 

induction on n . Note that the obvious map 

1 1 1[ ,... ][ ] [ ,... ]n n nk X X X k X X   is an 

isomorphism – this simply says that every polynomial 

f  in n  variables 1,... nX X  can be expressed 

uniquely as a polynomial in nX  with coefficients in 

1[ ,..., ]nk X X : 

1 0 1 1 1 1( ,... ) ( ,... ) ... ( ,... )r

n n n r nf X X a X X X a X X   

  

Thus the next lemma will complete the proof 
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LEMMA 1.3.  If A  is Noetherian, then so also is 

[ ]A X   

PROOF.          For a polynomial 

 
1

0 1 0( ) ... , , 0,r r

r if X a X a X a a A a     

  

r  is called the degree of f , and 0a  is its leading 

coefficient. We call 0 the leading coefficient of the 

polynomial 0.  Let a  be an ideal in [ ]A X . The 

leading coefficients of the polynomials in a  form an 

ideal 
'a  in A ,  and since A  is Noetherian, 

'a will 

be finitely generated. Let 1,..., mg g  be elements of 

a  whose leading coefficients generate 
'a , and let r

be the maximum degree of ig . Now let ,f a  and 

suppose f  has degree s r , say, ...sf aX   

Then 
'a a  , and so we can write 

, ,i ii

i i

a b a b A

a leading coefficient of g

 




  

Now 

, deg( ),
is r

i i i if b g X r g


  has degree 

deg( )f  . By continuing in this way, we find that 

1mod( ,... )t mf f g g  With tf  a 

polynomial of degree t r . For each d r , let da  

be the subset of A  consisting of 0 and the leading 

coefficients of all polynomials in a  of degree ;d  it 

is again an ideal in  A . Let ,1 ,,...,
dd d mg g  be 

polynomials of degree d  whose leading coefficients 

generate da . Then the same argument as above 

shows that any polynomial df  in a  of degree d  can 

be written 1 ,1 ,mod( ,... )
dd d d d mf f g g  

With 1df   of degree 1d  . On applying this 

remark repeatedly we find that 

1 01,1 1, 0,1 0,( ,... ,... ,... )
rt r r m mf g g g g
   Hence 

       

1 01 1,1 1, 0,1 0,( ,... ,... ,..., ,..., )
rt m r r m mf g g g g g g
   

 and so the polynomials 
01 0,,..., mg g  generate a   

 

One of the great successes of category theory in 

computer science has been the development of a 

―unified theory‖ of the constructions underlying 

denotational semantics. In the untyped  -calculus,  

any term may appear in the function position of an 

application. This means that a model D of the  -

calculus must have the property that given a term t  

whose interpretation is ,d D  Also, the 

interpretation of a functional abstraction like x . x  

is most conveniently defined as a function from 

Dto D  , which must then be regarded as an element 

of D. Let  : D D D    be the function that 

picks out elements of D to  represent elements of 

 D D  and  : D D D    be the function 

that maps elements of D to functions of D.  Since 

( )f  is intended to represent the function f  as an 

element of D, it makes sense to require that 

( ( )) ,f f    that is, 
 D D

o id 


   

Furthermore, we often want to view every element of 

D as representing some function from D to D and 

require that elements representing the same function 

be equal – that is   

( ( ))

D

d d

or

o id

 

 





  

The latter condition is called extensionality. These 

conditions together imply that and   are 

inverses--- that is, D is isomorphic to the space of 

functions from D to D  that can be the interpretations 

of functional abstractions:  D D D   .Let us 

suppose we are working with the untyped 

calculus  , we need a solution ot the equation 

 ,D A D D    where A is some 

predetermined domain containing interpretations for 

elements of C.  Each element of D corresponds to 

either an element of A or an element of  ,D D  

with a tag. This equation can be solved by finding 

least fixed points of the function 

 ( )F X A X X    from domains to domains -

-- that is, finding domains X  such that 

 ,X A X X    and such that for any domain 

Y also satisfying this equation, there is an embedding 

of X to Y  --- a pair of maps 

R

f

f

X Y   

Such that   
R

X

R

Y

f o f id

f o f id




  

Where f g  means that f approximates g  in 

some ordering representing their information content. 

The key shift of perspective from the domain-

theoretic to the more general category-theoretic 

approach lies in considering F not as a function on 
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domains, but as a functor on a category of domains. 

Instead of a least fixed point of the function, F. 

 

Definition 1.3: Let K be a category and :F K K  

as a functor. A fixed point of F is a pair (A,a), where 

A is a K-object and : ( )a F A A  is an 

isomorphism. A prefixed point of F is a pair (A,a), 

where A is a K-object and a is any arrow from F(A) 

to A 

Definition 1.4 : An chain  in a category K  is a 

diagram of the following form: 

1 2

1 2 .....
of f f

oD D D       

Recall that a cocone   of an chain   is a K-

object X and a collection of K –arrows 

 : | 0i iD X i    such that 1i i io f    for 

all 0i  . We sometimes write : X   as a 

reminder of the arrangement of 's  components 

Similarly, a colimit : X  is a cocone with the 

property that if 
': X   is also a cocone then 

there exists a unique mediating arrow 
':k X X  

such that for all 0,, i ii v k o  . Colimits of 

chains  are sometimes referred to as 

limco its . Dually, an 
op chain   in K is a 

diagram of the following form: 

1 2

1 2 .....
of f f

oD D D    
 
A cone : X   

of an 
op chain    is a K-object X and a 

collection of K-arrows  : | 0i iD i   such that for 

all 10, i i ii f o    . An  
op -limit of an 

op chain     is a cone : X   with the 

property that if 
': X  is also a cone, then there 

exists a unique mediating arrow 
':k X X  such 

that for all 0, i ii ok    . We write k  (or just 

 ) for the distinguish initial object of K, when it has 

one, and A  for the unique arrow from   to 

each K-object A. It is also convenient to write 

1 2

1 2 .....
f f

D D    to denote all of   except 

oD  and 0f . By analogy,  
 is  | 1i i  . For the 

images of   and   under F we write  

1 2( ) ( ) ( )

1 2( ) ( ) ( ) ( ) .....
oF f F f F f

oF F D F D F D      

and  ( ) ( ) | 0iF F i     

We write 
iF  for the i-fold iterated composition of F 

– that is, 

1 2( ) , ( ) ( ), ( ) ( ( ))oF f f F f F f F f F F f  

 ,etc. With these definitions we can state that every 

monitonic function on a complete lattice has a least 

fixed point: 

 

Lemma 1.4. Let K  be a category with initial object 

  and let :F K K  be a functor. Define the 

chain   by 
2

! ( ) (! ( )) (! ( ))
2

( ) ( ) .........
F F F F F

F F
     

        

If both : D 
 
and ( ) : ( ) ( )F F F D  

are colimits, then (D,d) is an intial F-algebra, where

: ( )d F D D
 
 is the mediating arrow from 

( )F 
 
 to the cocone 



 
 

 

 

Theorem 1.4 Let a DAG G given in which each node 

is a random variable, and let a discrete conditional 

probability distribution of each node given values of 

its parents in G be specified. Then the product of 

these conditional distributions yields a joint 

probability distribution P of the variables, and (G,P) 

satisfies the Markov condition. 

 

Proof. Order the nodes according to an ancestral 

ordering. Let 1 2, ,........ nX X X be the resultant 

ordering. Next define.  

 

1 2 1 1

2 2 1 1

( , ,.... ) ( | ) ( | )...

.. ( | ) ( | ),

n n n n nP x x x P x pa P x Pa

P x pa P x pa

 
 

Where iPA is the set of parents of iX of in G and 

( | )i iP x pa is the specified conditional probability 

distribution. First we show this does indeed yield a 

joint probability distribution. Clearly, 

1 20 ( , ,... ) 1nP x x x   for all values of the 

variables. Therefore, to show we have a joint 

distribution, as the variables range through all their 

possible values, is equal to one. To that end, 

Specified conditional distributions are the conditional 

distributions they notationally represent in the joint 

distribution. Finally, we show the Markov condition 

is satisfied. To do this, we need show for 1 k n   

that  

whenever 

( ) 0, ( | ) 0

( | ) 0

( | , ) ( | ),

k k k

k k

k k k k k

P pa if P nd pa

and P x pa

then P x nd pa P x pa

 




 

Where kND is the set of nondescendents of kX of in 

G. Since k kPA ND , we need only show 
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( | ) ( | )k k k kP x nd P x pa . First for a given k , 

order the nodes so that all and only nondescendents 

of kX precede kX in the ordering. Note that this 

ordering depends on k , whereas the ordering in the 

first part of the proof does not. Clearly then 

 

 

 

1 2 1

1 2

, ,....

, ,....

k k

k k k n

ND X X X

Let

D X X X



 





 

follows 
kd    

 

 

We define the 
thm cyclotomic field to be the field 

  / ( ( ))mQ x x
 
Where ( )m x is the 

thm

cyclotomic polynomial.   / ( ( ))mQ x x  ( )m x  

has degree ( )m over Q since ( )m x has degree 

( )m . The roots of ( )m x  are just the primitive 

thm roots of unity, so the complex embeddings of 

  / ( ( ))mQ x x are simply the ( )m maps  

 : / ( ( )) ,

1 , ( , ) 1,

( ) ,

k m

k

k m

Q x x C

k m k m where

x



 



 





  

m being our fixed choice of primitive 
thm root of 

unity. Note that ( )k

m mQ  for every ;k it follows 

that ( ) ( )k

m mQ Q  for all k relatively prime to 

m . In particular, the images of the i coincide, so 

  / ( ( ))mQ x x is Galois over Q . This means that 

we can write ( )mQ  for   / ( ( ))mQ x x without 

much fear of ambiguity; we will do so from now on, 

the identification being .m x  One advantage of 

this is that one can easily talk about cyclotomic fields 

being extensions of one another,or intersections or 

compositums; all of these things take place 

considering them as subfield of .C  We now 

investigate some basic properties of cyclotomic 

fields. The first issue is whether or not they are all 

distinct; to determine this, we need to know which 

roots of unity lie in ( )mQ  .Note, for example, that if 

m is odd, then m is a 2 thm root of unity. We will 

show that this is the only way in which one can 

obtain any non-
thm roots of unity. 

 

LEMMA 1.5   If m divides n , then ( )mQ   is 

contained in ( )nQ   

PROOF. Since ,
n

m
m  we have ( ),m nQ  so 

the result is clear 

 

LEMMA 1.6   If m and n are relatively prime, then  

  ( , ) ( )m n nmQ Q    

and 

           ( ) ( )m nQ Q Q    

(Recall the ( , )m nQ    is the compositum of 

( ) ( ) )m nQ and Q   

 

PROOF. One checks easily that m n  is a primitive 

thmn root of unity, so that  

( ) ( , )mn m nQ Q    

    ( , ) : ( ) : ( :

( ) ( ) ( );

m n m nQ Q Q Q Q Q

m n mn

   

  



 
 

Since  ( ) : ( );mnQ Q mn  this implies that 

( , ) ( )m n nmQ Q  
 
We know that ( , )m nQ   has 

degree ( )mn
 
over  Q , so we must have  

  ( , ) : ( ) ( )m n mQ Q n     

and 

 ( , ) : ( ) ( )m n mQ Q m     

 

 ( ) : ( ) ( ) ( )m m nQ Q Q m      

And thus that ( ) ( )m nQ Q Q    

 

PROPOSITION 1.2 For any m and n  

 

 ,
( , ) ( )m n m n

Q Q    

And  

( , )( ) ( ) ( );m n m nQ Q Q     

here  ,m n and  ,m n denote the least common 

multiple and the greatest common divisor of m and 

,n respectively. 

 

PROOF.    Write 1 1

1 1...... ....k ke fe f

k km p p and p p

where the ip are distinct primes. (We allow i ie or f

to be zero) 
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1 2
1 2

1 2
1 2

1 1
1 12

1 1
1 1

max( ) max( )1, ,1
1 1

( ) ( ) ( )... ( )

( ) ( ) ( )... ( )

( , ) ( )........ ( ) ( )... ( )

( ) ( )... ( ) ( )

( )....... (

e e ek
k

f f fk
k

e e f fk k
k

e f e fk k
k k

e ef k fk

m p p p

n p p p

m n p pp p

p p p p

p p

Q Q Q Q

and

Q Q Q Q

Thus

Q Q Q Q Q

Q Q Q Q

Q Q

   

   

     

   

 











 

max( ) max( )1, ,1
1 1........

,

)

( )

( );

e ef k fkp p

m n

Q

Q









 

 

An entirely similar computation shows that 

( , )( ) ( ) ( )m n m nQ Q Q   
 

 

Mutual information measures the information 

transferred when ix  is sent and iy  is received, and is 

defined as 

2

( )

( , ) log (1)
( )

i

i
i i

i

x
P

y
I x y bits

P x
  

In a noise-free channel, each iy is uniquely connected 

to the corresponding ix  , and so they constitute an 

input –output pair ( , )i ix y  for which 

 
2

1
( ) 1 ( , ) log

( )
i

i j
j

i

x
P and I x y

y P x
  bits; 

that is, the transferred information is equal to the self-

information that corresponds to the input ix
 
In a very 

noisy channel, the output iy and input ix would be 

completely uncorrelated, and so ( ) ( )i
i

j

x
P P x

y
  

and also ( , ) 0;i jI x y  that is, there is no 

transference of information. In general, a given 

channel will operate between these two extremes. The 

mutual information is defined between the input and 

the output of a given channel. An average of the 

calculation of the mutual information for all input-

output pairs of a given channel is the average mutual 

information: 

2

. .

(

( , ) ( , ) ( , ) ( , ) log
( )

i

j

i j i j i j

i j i j i

x
P

y
I X Y P x y I x y P x y

P x

 
 

   
 
 

 
 

bits per symbol . This calculation is done over the 

input and output alphabets. The average mutual 

information. The following expressions are useful for 

modifying the mutual information expression: 

( , ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

ji
i j j i

j i

j
j i

ii

i
i j

ji

yx
P x y P P y P P x

y x

y
P y P P x

x

x
P x P P y

y

 









 

Then 

.

2

.

2

.

2

.

2

2

( , ) ( , )

1
( , ) log

( )

1
( , ) log

( )

1
( , ) log

( )

1
( ) ( ) log

( )

1
( ) log ( )

( )

( , ) ( ) ( )

i j

i j

i j

i j i

i j
ii j

j

i j

i j i

i
j

ji i

i

i i

I X Y P x y

P x y
P x

P x y
x

P
y

P x y
P x

x
P P y

y P x

P x H X
P x

XI X Y H X H
Y



 
  

 

 
 

  
 
 

 
 
 

 
  

 



 













 

Where 
2,

1
( ) ( , ) log

( )
i ji j

i

j

XH P x y
Y x

P
y

  

is usually called the equivocation. In a sense, the 

equivocation can be seen as the information lost in 

the noisy channel, and is a function of the backward 

conditional probability. The observation of an output 

symbol jy provides ( ) ( )XH X H
Y

  bits of 

information. This difference is the mutual 

information of the channel. Mutual Information: 

Properties Since 

( ) ( ) ( ) ( )ji
j i

j i

yx
P P y P P x

y x
  

The mutual information fits the condition 

( , ) ( , )I X Y I Y X  

And by interchanging input and output it is also true 

that 

( , ) ( ) ( )YI X Y H Y H
X

   

Where 

2

1
( ) ( ) log

( )
j

j j

H Y P y
P y
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This last entropy is usually called the noise entropy. 

Thus, the information transferred through the channel 

is the difference between the output entropy and the 

noise entropy. Alternatively, it can be said that the 

channel mutual information is the difference between 

the number of bits needed for determining a given 

input symbol before knowing the corresponding 

output symbol, and the number of bits needed for 

determining a given input symbol after knowing the 

corresponding output symbol 

( , ) ( ) ( )XI X Y H X H
Y

   

As the channel mutual information expression is a 

difference between two quantities, it seems that this 

parameter can adopt negative values. However, and is 

spite of the fact that for some , ( / )j jy H X y  can be 

larger than ( )H X , this is not possible for the 

average value calculated over all the outputs: 

2 2

, ,

( )
( , )

( , ) log ( , ) log
( ) ( ) ( )

i

j i j

i j i j

i j i ji i j

x
P

y P x y
P x y P x y

P x P x P y
 

 

Then 

,

( ) ( )
( , ) ( , ) 0

( , )

i j

i j

i j i j

P x P y
I X Y P x y

P x y
    

Because this expression is of the form 

2

1

log ( ) 0
M

i
i

i i

Q
P

P

  

The above expression can be applied due to the factor 

( ) ( ),i jP x P y which is the product of two 

probabilities, so that it behaves as the quantity iQ , 

which in this expression is a dummy variable that fits 

the condition 1ii
Q  . It can be concluded that 

the average mutual information is a non-negative 

number. It can also be equal to zero, when the input 

and the output are independent of each other. A 

related entropy called the joint entropy is defined as 

2

,

2

,

2

,

1
( , ) ( , ) log

( , )

( ) ( )
( , ) log

( , )

1
( , ) log

( ) ( )

i j

i j i j

i j

i j

i j i j

i j

i j i j

H X Y P x y
P x y

P x P y
P x y

P x y

P x y
P x P y













 

 

Theorem 1.5: Entropies of the binary erasure channel 

(BEC) The BEC is defined with an alphabet of two 

inputs and three outputs, with symbol probabilities.  

1 2( ) ( ) 1 ,P x and P x    and transition 

probabilities 

 
3 2

2 1

3

1

1

2

3

2

( ) 1 ( ) 0,

( ) 0

( )

( ) 1

y y
P p and P

x x

y
and P

x

y
and P p

x

y
and P p

x

  





 

 

 

Lemma 1.7. Given an arbitrary restricted time-

discrete, amplitude-continuous channel whose 

restrictions are determined by sets nF and whose 

density functions exhibit no dependence on the state

s , let n be a fixed positive integer, and ( )p x an 

arbitrary probability density function on Euclidean n-

space. ( | )p y x for the density 

1 1( ,..., | ,... )n n np y y x x and nF for F
. 

For any 

real number a, let 

( | )
( , ) : log (1)

( )

p y x
A x y a

p y

 
  
 

 

Then for each positive integer u , there is a code 

( , , )u n  such that 

   ( , ) (2)aue P X Y A P X F     

 

Where 

 

 

( , ) ... ( , ) , ( , ) ( ) ( | )

... ( )

A

F

P X Y A p x y dxdy p x y p x p y x

and

P X F p x dx

  

 

 

 
 

Proof: A sequence 
(1)x F such that 

 
 

1

(1)| 1

: ( , ) ;

x

x

P Y A X x

where A y x y A





   


 

Choose the decoding set 1B to be (1)x
A . Having 

chosen 
(1) ( 1),........, kx x 

and 1 1,..., kB B  , select 

kx F such that 

( )

1
( )

1

| 1 ;k

k
k

ix
i

P Y A B X x 




 
     

 


 

 

Set ( )

1

1
k

k

k ix i
B A B




  , If the process does not 

terminate in a finite number of steps, then the 

sequences 
( )ix and decoding sets , 1,2,..., ,iB i u

form the desired code. Thus assume that the process 

terminates after t  steps. (Conceivably 0t  ). We 

will show t u  by showing that  

   ( , )ate P X Y A P X F      . We 

proceed as follows.  
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Let 

 

1

( , )

. ( 0, ).

( , ) ( , )

( ) ( | )

( ) ( | ) ( )

x

x

t

jj

x y A

x y A

x y B A x

B B If t take B Then

P X Y A p x y dx dy

p x p y x dy dx

p x p y x dy dx p x








 

  

 



 



 

  



 
 

E. Algorithms 

Ideals.    Let A be a ring. Recall that an ideal a in A 

is a subset such that a is subgroup of A regarded as a 

group under addition; 

 
,a a r A ra A   

   
The ideal generated by a subset S of A is the 

intersection of all ideals A containing a ----- it is easy 

to verify that this is in fact an ideal, and that it consist 

of all finite sums of the form i i
r s  with 

,i ir A s S  . When  1,....., mS s s , we shall 

write 1( ,....., )ms s for the ideal it generates. 

Let a and b be ideals in A. The set 

 | ,a b a a b b    is an ideal, denoted by a b

. The ideal generated by   | ,ab a a b b  is 

denoted by ab . Note that ab a b  . Clearly ab

consists of all finite sums i i
a b  with ia a  and 

ib b , and if 1( ,..., )ma a a  and 1( ,..., )nb b b , 

then 1 1( ,..., ,..., )i j m nab a b a b a b .Let a  be an 

ideal of A. The set of cosets of a in A forms a ring 

/A a , and a a a  is a homomorphism 

: /A A a  . The map 
1( )b b  is a one to 

one correspondence between the ideals of /A a  and 

the ideals of A  containing a An ideal p  if prime if 

p A  and ab p a p    or b p . Thus p  

is prime if and only if /A p  is nonzero and has the 

property that  0, 0 0,ab b a      i.e., 

/A p is an integral domain. An ideal m  is maximal 

if |m A  and there does not exist an ideal n  

contained strictly between m and A . Thus m is 

maximal if and only if /A m  has no proper nonzero 

ideals, and so is a field. Note that m  maximal   

m prime. The ideals of A B  are all of the form 

a b , with a  and b  ideals in A  and B . To see 

this, note that if c  is an ideal in  A B  and 

( , )a b c , then ( ,0) ( , )(1,0)a a b c   and 

(0, ) ( , )(0,1)b a b c  . This shows that 

c a b   with  

 | ( , )a a a b c some b b  
  

and  

  
 | ( , )b b a b c some a a  

 
 

Let A  be a ring. An A -algebra is a ring B  together 

with a homomorphism :Bi A B . A 

homomorphism of A -algebra B C  is a 

homomorphism of rings : B C   such that 

( ( )) ( )B Ci a i a   for all . An  A -algebra 

B is said to be finitely generated ( or of finite-type 

over A) if there exist elements 1,..., nx x B  such 

that every element of B can be expressed as a 

polynomial in the ix  with coefficients in ( )i A , i.e., 

such that the homomorphism  1,..., nA X X B  

sending iX  to  ix is surjective.  A ring 

homomorphism A B  is finite, and B  is finitely 

generated as an A-module. Let k  be a field, and let 

A be a k -algebra. If 1 0  in A , then the map 

k A  is injective, we can identify k with its 

image, i.e., we can regard k as a subring of A  . If 

1=0 in a ring R, the R is the zero ring, i.e.,  0R  . 

Polynomial rings.  Let  k  be a field. A monomial in 

1,..., nX X  is an expression of the form 

1

1 ... ,naa

n jX X a N  . The total degree of the 

monomial is ia . We sometimes abbreviate it by 

1, ( ,..., ) n

nX a a   
. 

The elements of the 

polynomial ring  1,..., nk X X  are finite sums

1

1 1.... 1 ....... , ,n

n n

aa

a a n a a jc X X c k a  
   

With the obvious notions of equality, addition and 

multiplication. Thus the monomials from basis for  

 1,..., nk X X  as a k -vector space. The ring 

 1,..., nk X X is an integral domain, and the only 

units in it are the nonzero constant polynomials. A 

polynomial 1( ,..., )nf X X  is irreducible if it is 

nonconstant and has only the obvious factorizations, 

i.e., f gh g   or h  is constant. Division in 

 k X . The division algorithm allows us to divide a 

nonzero polynomial into another: let f  and g  be 

polynomials in  k X with 0;g   then there exist 

unique polynomials  ,q r k X  such that 

a A
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f qg r   with either 0r   or deg r  < deg g . 

Moreover, there is an algorithm for deciding whether 

( )f g , namely, find r and check whether it is 

zero. Moreover, the Euclidean algorithm allows to 

pass from finite set of generators for an ideal in 

 k X to a single generator by successively replacing 

each pair of generators with their greatest common 

divisor. 

 

 (Pure) lexicographic ordering (lex). Here 

monomials are ordered by lexicographic(dictionary) 

order. More precisely, let 1( ,... )na a   and 

1( ,... )nb b   be two elements of 
n ; then  

   and  X X  (lexicographic ordering) if, 

in the vector difference    , the left most 

nonzero entry is positive. For example,  

 
2 3 4 3 2 4 3 2;XY Y Z X Y Z X Y Z  . Note that 

this isn‘t quite how the dictionary would order them: 

it would put XXXYYZZZZ  after XXXYYZ . 

Graded reverse lexicographic order (grevlex). Here 

monomials are ordered by total degree, with ties 

broken by reverse lexicographic ordering. Thus, 

   if i ia b  , or i ia b   and in 

   the right most nonzero entry is negative. For 

example:  
4 4 7 5 5 4X Y Z X Y Z  (total degree greater) 

5 2 4 3 5 4 2,XY Z X YZ X YZ X YZ 
. 

 

Orderings on  1,... nk X X  . Fix an ordering on the 

monomials in  1,... nk X X . Then we can write an 

element f  of  1,... nk X X  in a canonical fashion, 

by re-ordering its elements in decreasing order. For 

example, we would write 
2 2 3 2 24 4 5 7f XY Z Z X X Z   

  
as 

3 2 2 2 25 7 4 4 ( )f X X Z XY Z Z lex    
  

or 
2 2 2 3 24 7 5 4 ( )f XY Z X Z X Z grevlex   

  

Let  1,..., na X k X X

   , in decreasing 

order: 

0 1

0 1 0 1 0..., ..., 0f a X X
 

         

  

Then we define. 

 The multidegree of 
f

 to be multdeg(
f

)= 

0 ;  

 The leading coefficient of 
f

to be LC(
f

)=

0
a ; 

 The leading monomial of  
f

to be LM(
f

) 

= 0X


; 

 The leading term of 
f

to be LT(
f

) = 

0

0
a X



   

For the polynomial 
24 ...,f XY Z   the 

multidegree is (1,2,1), the leading coefficient is 4, the 

leading monomial is 
2XY Z , and the leading term is  

24XY Z . The division algorithm in  1,... nk X X . 

Fix a monomial ordering in 
2 . Suppose given a 

polynomial f  and an ordered set 1( ,... )sg g  of 

polynomials; the division algorithm then constructs 

polynomials 1,... sa a  and r   such that 

1 1 ... s sf a g a g r      Where either 0r   or 

no monomial in r  is divisible by any of 

1( ),..., ( )sLT g LT g   Step 1: If 1( ) | ( )LT g LT f , 

divide 1g  into f  to get 

 1 1 1 1

1

( )
, ,...,

( )
n

LT f
f a g h a k X X

LT g
   

 

If 1( ) | ( )LT g LT h , repeat the process until  

1 1 1f a g f    (different 1a ) with 1( )LT f  not 

divisible by 1( )LT g . Now divide 2g  into 1f , and 

so on, until 1 1 1... s sf a g a g r      With 

1( )LT r  not divisible by any 1( ),... ( )sLT g LT g   

Step 2: Rewrite 1 1 2( )r LT r r  , and repeat Step 1 

with 2r  for f : 

1 1 1 3... ( )s sf a g a g LT r r       (different 

'ia s  )   Monomial ideals. In general, an ideal a  

will contain a polynomial without containing the 

individual terms of the polynomial; for example, the 

ideal 
2 3( )a Y X   contains 

2 3Y X but not 
2Y  

or 
3X . 

 

DEFINITION 1.5. An ideal a  is monomial if 

c X a X a 

     

 all   with 0c  .  

PROPOSITION 1.3. Let a be a monomial ideal, and 

let  |A X a  . Then A satisfies the 

condition , ( )nA           
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And a  is the k -subspace of  1,..., nk X X  

generated by the ,X A  . Conversely, of A  is a 

subset of 
n  satisfying   , then the k-subspace  

a  of  1,..., nk X X  generated by  |X A   is 

a monomial ideal. 

 

PROOF.  It is clear from its definition that a 

monomial ideal a  is the  k -subspace of 

 1,..., nk X X
  

generated by the set of monomials it contains. If 

X a 
 and 

 1,..., nX k X X 
 . 

   

If a permutation is chosen uniformly and at random 

from the !n  possible permutations in ,nS  then the 

counts 
( )n

jC  of cycles of length j  are dependent 

random variables. The joint distribution of 
( ) ( ) ( )

1( ,..., )n n n

nC C C  follows from Cauchy‘s 

formula, and is given by 

( )

1 1

1 1 1
[ ] ( , ) 1 ( ) , (1.1)

! !

j

nn
cn

j

j j j

P C c N n c jc n
n j c 

 
    

 
 

  

for 
nc  .  

 

Lemma1.7 For nonnegative integers 

1,...,

[ ]( )

11 1

,

1
( ) 1 (1.4)

j

j

n

m
n n n

mn

j j

jj j

m m

E C jm n
j  

     
             

 

  

Proof.   This can be established directly by exploiting 

cancellation of the form 
[ ] !/ 1/ ( )!jm

j j j jc c c m    

when ,j jc m  which occurs between the 

ingredients in Cauchy‘s formula and the falling 

factorials in the moments. Write jm jm . 

Then, with the first sum indexed by 

1( ,... ) n

nc c c    and the last sum indexed by  

1( ,..., ) n

nd d d    via the correspondence 

,j j jd c m   we have  

[ ] [ ]( ) ( )

1 1

[ ]

: 1 1

11 1

( ) [ ] ( )

( )
1

!

1 1
1

( )!

j j

j

j

j j

j j

n n
m mn n

j j

cj j

m
nn

j

j c
c c m for all j j j j

n nn

jm d
d jj j j

E C P C c c

c
jc n

j c

jd n m
j j d

 

  

 

 
  

 

 
  

 

 
   

 

 

  

  

  

This last sum simplifies to the indicator 1( ),m n  

corresponding to the fact that if 0,n m   then 

0jd   for ,j n m   and a random permutation 

in n mS   must have some cycle structure 

1( ,..., )n md d  . The moments of 
( )n

jC   follow 

immediately as 

 ( ) [ ]( ) 1 (1.2)n r r

jE C j jr n    

We note for future reference that (1.4) can also be 

written in the form  

[ ] [ ]( )

11 1

( ) 1 , (1.3)j j

n n n
m mn

j j j

jj j

E C E Z jm n
 

     
      

    
 

  

Where the jZ  are independent Poisson-distribution 

random variables that satisfy ( ) 1/jE Z j   

 

The marginal distribution of cycle counts provides a 

formula for the joint distribution of the cycle counts 

,n

jC  we find the distribution of 
n

jC  using a 

combinatorial approach combined with the inclusion-

exclusion formula. 

 

Lemma  1.8.   For 1 ,j n   

 
[ / ]

( )

0

[ ] ( 1) (1.1)
! !

k ln j k
n l

j

l

j j
P C k

k l

 



     

Proof.     Consider the set I  of all possible cycles of 

length ,j  formed with elements chosen from 

 1,2,... ,n  so that 
[ ]/j jI n . For each ,I   

consider the ―property‖ G  of having ;  that is,  

G is the set of permutations nS   such that   is 

one of the cycles of .  We then have 

( )!,G n j   since the elements of  1,2,...,n  

not in   must be permuted among themselves. To 

use the inclusion-exclusion formula we need to 

calculate the term ,rS  which is the sum of the 

probabilities of the r -fold intersection of properties, 

summing over all sets of r distinct properties. There 

are two cases to consider. If the r properties are 

indexed by r cycles having no elements in common, 

then the intersection specifies how rj  elements are 
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moved by the permutation, and there are 

( )!1( )n rj rj n   permutations in the intersection. 

There are 
[ ] / ( !)rj rn j r  such intersections. For the 

other case, some two distinct properties name some 

element in common, so no permutation can have both 

these properties, and the r -fold intersection is empty. 

Thus 

[ ]

( )!1( )

1 1
1( )

! ! !

r

rj

r r

S n rj rj n

n
rj n

j r n j r

  

  
  

Finally, the inclusion-exclusion series for the number 

of permutations having exactly k  properties is 

,

0

( 1)l

k l

l

k l
S

l




 
  

 
   

Which simplifies to (1.1) Returning to the original 

hat-check problem, we substitute j=1 in (1.1) to 

obtain the distribution of the number of fixed points 

of a random permutation. For 0,1,..., ,k n   

( )

1

0

1 1
[ ] ( 1) , (1.2)

! !

n k
n l

l

P C k
k l





     

and the moments of 
( )

1

nC  follow from (1.2) with 

1.j   In particular, for  2,n   the mean and 

variance of 
( )

1

nC are both equal to 1. The joint 

distribution of 
( ) ( )

1( ,..., )n n

bC C  for any 1 b n   

has an expression similar to (1.7); this too can be 

derived by inclusion-exclusion. For any 

1( ,..., ) b

bc c c    with ,im ic   

1

( ) ( )

1

...

01 1

[( ,..., ) ]

1 1 1 1
( 1) (1.3)

! !

i i

b

i

n n

b

c lb b
l l

l withi ii i
il n m

P C C c

i c i l

 

 

 



     
     

     


 

  

The joint moments of the first b  counts 
( ) ( )

1 ,...,n n

bC C  can be obtained directly from (1.2) 

and (1.3) by setting 1 ... 0b nm m      

 

The limit distribution of cycle counts 

It follows immediately from Lemma 1.2 that for each 

fixed ,j  as ,n  

( ) 1/[ ] , 0,1,2,...,
!

k
n j

j

j
P C k e k

k


     

So that 
( )n

jC converges in distribution to a random 

variable jZ  having a Poisson distribution with mean 

1/ ;j  we use the notation 
( )n

j d jC Z  where 

(1/ )j oZ P j   to describe this. Infact, the limit 

random variables are independent. 

 

Theorem 1.6   The process of cycle counts converges 

in distribution to a Poisson process of   with 

intensity 
1j . That is, as ,n   

( ) ( )

1 2 1 2( , ,...) ( , ,...) (1.1)n n

dC C Z Z

  

Where the , 1,2,...,jZ j   are independent Poisson-

distributed random variables with  
1

( )jE Z
j

   

Proof.  To establish the converges in distribution one 

shows that for each fixed 1,b   as ,n   

 
( ) ( )

1 1[( ,..., ) ] [( ,..., ) ]n n

b bP C C c P Z Z c     

 

Error rates 

The proof of Theorem says nothing about the rate of 

convergence. Elementary analysis can be used to 

estimate this rate when 1b  . Using properties of 

alternating series with decreasing terms, for 

0,1,..., ,k n   

( )

1 1

1 1 1
( ) [ ] [ ]

! ( 1)! ( 2)!

1

!( 1)!

nP C k P Z k
k n k n k

k n k

    
   


 

   

 

It follows that  
1 1

( )

1 1

0

2 2 1
[ ] [ ] (1.11)

( 1)! 2 ( 1)!

n nn
n

k

n
P C k P Z k

n n n

 




    

  
   

Since 
1

1

1 1 1
[ ] (1 ...) ,

( 1)! 2 ( 2)( 3) ( 1)!

e
P Z n

n n n n n



     
    

  

We see from (1.11) that the total variation distance 

between the distribution 
( )

1( )nL C  of 
( )

1

nC  and the 

distribution 1( )L Z  of 1Z
 

 

Establish the asymptotics of 
( )( )n

nA C     under 

conditions 0( )A  and 01( ),B  where 

 
'

( ) ( )

1 1

( ) 0 ,

i i

n n

n ij

i n r j r

A C C
    

  
 

and 
''( / ) 1 ( )g

i i idr r O i     as ,i   for 

some 
' 0.g    We start with the expression 
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'

'
( ) 0

0

0

1

1

[ ( ) ]
[ ( )]

[ ( ) ]

1 (1 ) (1.1)

i i

n m
n

m

i

i n i
r j r

P T Z n
P A C

P T Z n

E
ir



 

  






 
  

 


  

  

'

0

1 1

1

1 '

1,2,7

[ ( ) ]

exp [log(1 ) ]

1 ( ( )) (1.2)

n

i

P T Z n

d
i d i d

n

O n n


 



 







 
   

 



   

and 

  

'

0

1 1

1

1

1,2,7

[ ( ) ]

exp [log(1 ) ]

1 ( ( )) (1.3)

n

i

P T Z n

d
i d i d

n

O n n


 



 







 
   

 



  

Where 
 
'

1,2,7
( )n  refers to the quantity derived from 

'Z . It thus follows that 
( ) (1 )[ ( )]n d

nP A C Kn    

for a constant K , depending on Z  and the 
'

ir  and 

computable explicitly from (1.1) – (1.3), if 

Conditions 0( )A  and 01( )B  are satisfied and if 

'

( )g

i O i    from some 
' 0,g   since, under these 

circumstances, both 
 

1 '

1,2,7
( )n n  and  

 
1

1,2,7
( )n n  tend to zero as .n  In particular, 

for polynomials and square free polynomials, the 

relative error in this asymptotic approximation is of 

order 
1n
 if 

' 1.g    

 

For 0 / 8b n   and 0 ,n n  with 0n   

 7,7

( ( [1, ]), ( [1, ]))

( ( [1, ]), ( [1, ]))

( , ),

TV

TV

d L C b L Z b

d L C b L Z b

n b





 

  

Where  7,7
( , ) ( / )n b O b n   under Conditions 

0 1( ), ( )A D  and 11( )B
 
Since, by the Conditioning 

Relation, 

0 0( [1, ] | ( ) ) ( [1, ] | ( ) ),b bL C b T C l L Z b T Z l  
 

  

It follows by direct calculation that 

0 0

0

0

( ( [1, ]), ( [1, ]))

( ( ( )), ( ( )))

max [ ( ) ]

[ ( ) ]
1 (1.4)

[ ( ) ]

TV

TV b b

b
A

r A

bn

n

d L C b L Z b

d L T C L T Z

P T Z r

P T Z n r

P T Z n





 

  
 

 



 

  

Suppressing the argument Z  from now on, we thus 

obtain  

( ( [1, ]), ( [1, ]))TVd L C b L Z b
 

 

0

0 0

[ ]
[ ] 1

[ ]

bn
b

r n

P T n r
P T r

P T n 

  
   

 
  

[ /2]

0
0

/2 0 0

[ ]
[ ]

[ ]

n

b
b

r n r b

P T r
P T r

P T n 


  


   

0

0

[ ]( [ ] [ ]
n

b bn bn

s

P T s P T n s P T n r
 

 
       
 


 
[ /2]

0 0

/2 0

[ ] [ ]
n

b b

r n r

P T r P T r
 

      

 [ /2]

0

0 0

[ /2]

0 0

0 [ /2] 1

[ ] [ ]
[ ]

[ ]

[ ] [ ] [ ] / [ ]

n
bn bn

b

s n

n n

b bn n

s s n

P T n s P T n r
P T s

P T n

P T r P T s P T n s P T n



  

    
 



     



 

 The first sum is at most 
1

02 ;bn ET
the third is 

bound by 

 

0 0
/2

10.5(1)

( max [ ]) / [ ]

2 ( / 2, ) 3
,

[0,1]

b n
n s n

P T s P T n

n b n

n P





 
 


  

 

 

[ /2] [ /2]
2

0 010.8
0 0

10.8 0

3 1
4 ( ) [ ] [ ]

[0,1] 2

12 ( )

[0,1]

n n

b b

r s

b

n
n n P T r P T s r s

P

n ET

P n












 

 



  



 

  

Hence we may take 

 

 

 

10.81

07,7

10.5(1)

6 ( )
( , ) 2 ( ) 1

[0,1]

6
( / 2, ) (1.5)

[0,1]

b

n
n b n ET Z P

P

n b
P
















  

  
  



  

 

Required order under Conditions 0 1( ), ( )A D  and 

11( ),B  if ( ) .S    If not,    10.8
n

 can be 
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replaced by 
   10.11

n
in the above, which has the 

required order, without the restriction on the ir  

implied by ( )S   . Examining the Conditions  

0 1( ), ( )A D  and 11( ),B it is perhaps surprising to find 

that 11( )B  is required instead of just 01( );B  that is, 

that we should need 1

2
( )a

ill
l O i 


   to hold 

for some 1 1a  . A first observation is that a similar 

problem arises with the rate of decay of 1i  as well. 

For this reason, 1n  is replaced by 1n


. This makes it 

possible to replace condition 1( )A  by the weaker 

pair of conditions 0( )A and 1( )D in the eventual 

assumptions needed for 
   7,7

,n b  to be of order 

( / );O b n   the decay rate requirement of order 
1i  

 

is shifted from 1i  itself to its first difference. This is 

needed to obtain the right approximation error for the 

random mappings example. However, since all the 

classical applications make far more stringent 

assumptions about the 1, 2,i l   than are made in 

11( )B . The critical point of the proof is seen where 

the initial estimate of the difference
( ) ( )[ ] [ 1]m m

bn bnP T s P T s    . The factor 

 10.10
( ),n  which should be small, contains a far tail 

element from 1n


 of the form 1 1( ) ( ),n u n   which 

is only small if 1 1,a   being otherwise of order 

11( )aO n  
 for any 0,   since 2 1a   is in any 

case assumed. For / 2,s n  this gives rise to a 

contribution of order  11
( )

aO n   
 in the estimate of 

the difference [ ] [ 1],bn bnP T s P T s     which, 

in the remainder of the proof, is translated into a 

contribution of order 11
( )

aO tn   
for differences of 

the form [ ] [ 1],bn bnP T s P T s     finally 

leading to a contribution of order 1abn  
 for any 

0   in  7.7
( , ).n b  Some improvement would 

seem to be possible, defining the function g  by 

   ( ) 1 1 ,
w s w s t

g w
  

    differences that are of the 

form [ ] [ ]bn bnP T s P T s t     can be directly 

estimated, at a cost of only a single contribution of 

the form 1 1( ) ( ).n u n   Then, iterating the cycle, 

in which one estimate of a difference in point 

probabilities is improved to an estimate of smaller 

order, a bound of the form  

112[ ] [ ] ( )a

bn bnP T s P T s t O n t n          

for any 0   could perhaps be attained, leading to a 

final error estimate in order  11( )aO bn n    for 

any 0  , to replace 
 7.7

( , ).n b  This would be of 

the ideal order ( / )O b n for large enough ,b  but 

would still be coarser for small .b   

 

 

With b and n  as in the previous section, we wish to 

show that  

 

1

0 0

7,8

1
( ( [1, ]), ( [1, ])) ( 1) 1

2

( , ),

TV b bd L C b L Z b n E T ET

n b





   



  

Where 
 

121 1

7.8
( , ) ( [ ])n b O n b n b n        for 

any 0   under Conditions 0 1( ), ( )A D  and 

12( ),B with 12 . The proof uses sharper estimates. 

As before, we begin with the formula  

 

0

0 0

( ( [1, ]), ( [1, ]))

[ ]
[ ] 1

[ ]

TV

bn
b

r n

d L C b L Z b

P T n r
P T r

P T n 

  
   

 


 

  

Now we observe that  
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0
0
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0
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2 2
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0

10.5(2)2 2

0
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4 ( max [ ]) / [ ]
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[0,1]

n
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b
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n

b bn bn

s n

b b n
n s n
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b

P T n r P T r
P T r

P T n P T n

P T s P T n s P T n r
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n b
n ET
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We have   
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0[ /2]

0

0

[ /2]

0

0

[ /2]

0 0

0

0 02
0 00

1

010.14 10.8

[ ]

[ ]

( [ ]( [ ] [ ]

( )(1 )
[ ] [ ] )

1

1
[ ] [ ]

[ ]

( , ) 2( ) 1 4 ( )

6

bn

n

r

n

b bn bn

s

n

b n

s

b b

r sn

P T r

P T n

P T s P T n s P T n r

s r
P T s P T n

n

P T r P T s s r
n P T n

n b r s n K n



   



 

 

 

 





 
       

 

  
   

 

   


    









 

 

  



0 10.14
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0 0 10.8

( , )
[0,1]

4 1 4 ( )
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( ) , (1.2)
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b

b

ET n b
nP

n ET K n
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The approximation in (1.2) is further simplified by 

noting that  

[ /2] [ /2]

0 0

0 0

( )(1 )
[ ] [ ]

1

n n

b b

r s

s r
P T r P T s

n



 

  
  

 
   

0

0
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1
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n
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n
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and then by observing that  

 

0 0

[ /2] 0

1

0 0 0 0

2 2

0
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1

1 ( [ / 2] ( 1 / 2 ))

4 1 (1.4)
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n
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Combining the contributions of (1.2) –(1.3), we thus 

find tha
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The quantity  7.8
( , )n b is seen to be of the order 

claimed under Conditions 0 1( ), ( )A D  and 12( )B , 

provided that ( ) ;S    this supplementary 

condition can be removed if 
 10.8

( )n
 is replaced by 

 10.11
( )n

   in the definition of  7.8
( , )n b , has the 

required order without the restriction on the ir  

implied by assuming that ( ) .S   Finally, a direct 

calculation now shows that 

0 0

0 0

0 0

[ ] [ ]( )(1 )

1
1

2

b b

r s

b b

P T r P T s s r

E T ET





  

 
    

 

  

 

 
 

Example 1.0.  Consider the point 

(0,...,0) nO   . For an arbitrary vector r , the 

coordinates of the point x O r   are equal to the 

respective coordinates of the vector 
1: ( ,... )nr x x x  and 

1( ,..., )nr x x . The vector 

r such as in the example is called the position vector 

or the radius vector of the point x  . (Or, in greater 

detail: r  is the radius-vector of x  w.r.t an origin O). 

Points are frequently specified by their radius-

vectors. This presupposes the choice of O as the 

―standard origin‖.   Let us summarize. We have 

considered 
n  and interpreted its elements in two 

ways: as points and as vectors. Hence we may say 

that we leading with the two copies of  :n  
n = 

{points},      
n = {vectors}  

Operations with vectors: multiplication by a number, 

addition. Operations with points and vectors: adding a 

vector to a point (giving a point), subtracting two 

points (giving a vector). 
n treated in this way is 

called an n-dimensional affine space. (An ―abstract‖ 

affine space is a pair of sets , the set of points and the 

set of vectors so that the operations as above are 

defined axiomatically). Notice that vectors in an 

affine space are also known as ―free vectors‖. 

Intuitively, they are not fixed at points and ―float 
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freely‖ in space. From 
n considered as an affine 

space we can precede in two opposite directions: 
n  

as an Euclidean space   
n as an affine space   

n as a manifold.Going to the left means introducing 

some extra structure which will make the geometry 

richer. Going to the right means forgetting about part 

of the affine structure; going further in this direction 

will lead us to the so-called ―smooth (or 

differentiable) manifolds‖. The theory of differential 

forms does not require any extra geometry. So our 

natural direction is to the right. The Euclidean 

structure, however, is useful for examples and 

applications. So let us say a few words about it: 

 

Remark 1.0.  Euclidean geometry.  In 
n  

considered as an affine space we can already do a 

good deal of geometry. For example, we can consider 

lines and planes, and quadric surfaces like an 

ellipsoid. However, we cannot discuss such things as 

―lengths‖, ―angles‖ or ―areas‖ and ―volumes‖. To be 

able to do so, we have to introduce some more 

definitions, making 
n a Euclidean space. Namely, 

we define the length of a vector 
1( ,..., )na a a  to 

be  

1 2 2: ( ) ... ( ) (1)na a a     

After that we can also define distances between 

points as follows: 

( , ) : (2)d A B AB


  

One can check that the distance so defined possesses 

natural properties that we expect: is it always non-

negative and equals zero only for coinciding points; 

the distance from A to B is the same as that from B to 

A (symmetry); also, for three points, A, B and C, we 

have ( , ) ( , ) ( , )d A B d A C d C B   (the ―triangle 

inequality‖). To define angles, we first introduce the 

scalar product of two vectors 

 
1 1( , ) : ... (3)n na b a b a b     

Thus ( , )a a a  . The scalar product is also 

denote by dot: . ( , )a b a b , and hence is often 

referred to as the ―dot product‖ . Now, for nonzero 

vectors, we define the angle between them by the 

equality 

( , )
cos : (4)

a b

a b
    

The angle itself is defined up to an integral 

multiple of 2  . For this definition to be consistent 

we have to ensure that the r.h.s. of (4) does not 

exceed 1 by the absolute value. This follows from the 

inequality 
2 22( , ) (5)a b a b   

known as the Cauchy–Bunyakovsky–Schwarz 

inequality (various combinations of these three names 

are applied in different books). One of the ways of 

proving (5) is to consider the scalar square of the 

linear combination ,a tb  where t R . As  

( , ) 0a tb a tb    is a quadratic polynomial in t  

which is never negative, its discriminant must be less 

or equal zero. Writing this explicitly yields (5). The 

triangle inequality for distances also follows from the 

inequality (5). 

 

Example 1.1.    Consider the function ( ) if x x  

(the i-th coordinate). The linear function 
idx  (the 

differential of 
ix  ) applied to an arbitrary vector h  is 

simply 
ih .From these examples follows that we can 

rewrite df  as 

1

1
... , (1)n

n

f f
df dx dx

x x

 
  
 

  

which is the standard form. Once again: the partial 

derivatives in (1) are just the coefficients (depending 

on x ); 
1 2, ,...dx dx  are linear functions giving on an 

arbitrary vector h  its coordinates 
1 2, ,...,h h  

respectively. Hence 

  

1

( ) 1
( )( )

... , (2)

hf x

n

n

f
df x h h

x

f
h

x


   







 

 

Theorem   1.7.     Suppose we have a parametrized 

curve ( )t x t  passing through 
0

nx   at 0t t  

and with the velocity vector 0( )x t   Then  

0 0 0

( ( ))
( ) ( ) ( )( ) (1)

df x t
t f x df x

dt
   

  

 

Proof.  Indeed, consider a small increment of the 

parameter 0 0:t t t t , Where 0t  . On 

the other hand, we have  

0 0 0( ) ( ) ( )( ) ( )f x h f x df x h h h      for 

an arbitrary vector h , where ( ) 0h   when

0h  . Combining it together, for the increment of 

( ( ))f x t   we obtain 
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0 0

0

0

( ( ) ( )

( )( . ( ) )

( . ( ) ). ( )

( )( ). ( )

f x t t f x

df x t t t

t t t t t t

df x t t t

 

    

 

  

    

        

    

     

For a certain ( )t   such that ( ) 0t   when 

0t   (we used the linearity of 0( )df x ). By the 

definition, this means that the derivative of ( ( ))f x t  

at 0t t  is exactly 0( )( )df x  . The statement of the 

theorem can be expressed by a simple formula: 

1

1

( ( ))
... (2)n

n

df x t f f
x x

dt x x

 
  
 

  

 

To calculate the value Of df  at a point 0x  on a 

given vector   one can take an arbitrary curve 

passing Through 0x  at 0t  with   as the velocity 

vector at 0t and calculate the usual derivative of 

( ( ))f x t  at 0t t . 

 

Theorem 1.8.  For functions , :f g U   ,

,nU     

 
( ) (1)

( ) . . (2)

d f g df dg

d fg df g f dg

  

 
   

 

Proof. Consider an arbitrary point 0x  and an 

arbitrary vector   stretching from it. Let a curve 

( )x t  be such that 0 0( )x t x  and 0( )x t  .  

Hence 

0( )( )( ) ( ( ( )) ( ( )))
d

d f g x f x t g x t
dt

     

at 0t t  and  

0( )( )( ) ( ( ( )) ( ( )))
d

d fg x f x t g x t
dt

    

at 0t t  Formulae (1) and (2) then immediately 

follow from the corresponding formulae for the usual 

derivative Now, almost without change the theory 

generalizes to functions taking values in  
m  instead 

of  . The only difference is that now the differential 

of a map : mF U    at a point x  will be a linear 

function taking vectors in 
n  to vectors in 

m

(instead of  ) . For an arbitrary vector | ,nh    

 

( ) ( ) ( )( )F x h F x dF x h     

+ ( ) (3)h h   

Where ( ) 0h    when  0h . We have  

1( ,..., )mdF dF dF  and  

1

1

1 1

11

1

...

....

... ... ... ... (4)

...

n

n

n

nm m

n

F F
dF dx dx

x x

F F

dxx x

dxF F

x x

 
  
 

  
     

   
      
 
  

  

 

In this matrix notation we have to write vectors as 

vector-columns. 

 

Theorem 1.9. For an arbitrary parametrized curve 

( )x t  in 
n , the differential of a   map 

: mF U    (where 
nU   ) maps the velocity 

vector ( )x t  to the velocity vector of the curve 

( ( ))F x t  in :m   

.( ( ))
( ( ))( ( )) (1)

dF x t
dF x t x t

dt
     

 

Proof.  By the definition of the velocity vector, 
.

( ) ( ) ( ). ( ) (2)x t t x t x t t t t      

  

Where ( ) 0t    when 0t  . By the 

definition of the differential,  

( ) ( ) ( )( ) ( ) (3)F x h F x dF x h h h   

  

Where ( ) 0h   when 0h . we obtain  

.

.

. .

.

( ( )) ( ( ). ( ) )

( ) ( )( ( ) ( ) )

( ( ) ( ) ). ( ) ( )

( ) ( )( ( ) ( )

h

F x t t F x x t t t t

F x dF x x t t t t

x t t t t x t t t t

F x dF x x t t t t





  



       

      

       

     



   

 

For some ( ) 0t    when 0t  . This 

precisely means that 
.

( ) ( )dF x x t  is the velocity 

vector of ( )F x . As every vector attached to a point 

can be viewed as the velocity vector of some curve 

passing through this point, this theorem gives a clear 

geometric picture of dF  as a linear map on vectors. 
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Theorem 1.10 Suppose we have two maps 

:F U V  and : ,G V W  where 

, ,n m pU V W      (open domains). Let 

: ( )F x y F x . Then the differential of the 

composite map :GoF U W  is the composition 

of the differentials of F  and :G   

( )( ) ( ) ( ) (4)d GoF x dG y odF x   

 

Proof.   We can use the description of the differential 

.Consider a curve ( )x t  in 
n  with the velocity 

vector 
.

x . Basically, we need to know to which 

vector in  
p it is taken by ( )d GoF . the curve 

( )( ( ) ( ( ( ))GoF x t G F x t . By the same theorem, 

it equals the image under dG  of the Anycast Flow 

vector to the curve ( ( ))F x t  in 
m . Applying the 

theorem once again, we see that the velocity vector to 

the curve ( ( ))F x t is the image under dF of the 

vector 
.

( )x t . Hence 
. .

( )( ) ( ( ))d GoF x dG dF x   

for an arbitrary vector 
.

x  . 

 

Corollary 1.0.    If we denote coordinates in 
n by 

1( ,..., )nx x  and in 
m by 

1( ,..., )my y , and write 

1

1

1

1

... (1)

... , (2)

n

n

n

n

F F
dF dx dx

x x

G G
dG dy dy

y y

 
  
 

 
  
 

  

Then the chain rule can be expressed as follows: 

1

1
( ) ... , (3)m

m

G G
d GoF dF dF

y y

 
  
 

  

Where 
idF  are taken from (1). In other words, to get 

( )d GoF  we have to substitute into (2) the 

expression for 
i idy dF  from (3). This can also be 

expressed by the following matrix formula: 

  

1 1 1 1

11 1

1 1

.... ....

( ) ... ... ... ... ... ... ... (4)

... ...

m n

np p m m

m n

G G F F

dxy y x x

d GoF

dxG G F F

y y x x

     
         
    
          

       

 

 

i.e., if dG  and dF  are expressed by matrices of 

partial derivatives, then ( )d GoF  is expressed by 

the product of these matrices. This is often written as  

 

1 11 1

11

1 1

1 1

1

1

........

... ... ... ... ... ...

... ...

....

... ... ... , (5)

...

mn

p p p p

n m

n

m m

n

z zz z

y yx x

z z z z

x x y y

y y

x x

y y

x x

    
        
  
  

     
         

  
 
  

 
 
  

 
  

 

Or 

1

, (6)
im

a i a
i

z z y

x y x

 



  


  
   

Where it is assumed that the dependence of 
my  

on 
nx  is given by the map F , the dependence 

of 
pz  on 

my  is given by the map ,G  and 

the dependence of  
pz on 

nx is given by 

the composition GoF .  

 

Definition 1.6.  Consider an open domain 
nU   . 

Consider also another copy of 
n , denoted for 

distinction 
n

y , with the standard coordinates 

1( ... )ny y . A system of coordinates in the open 

domain U  is given by a map : ,F V U  where 

n

yV    is an open domain of 
n

y , such that the 

following three conditions are satisfied :  

(1) F  is smooth; 

(2) F  is invertible; 

(3) 
1 :F U V   is also smooth 

 

The coordinates of a point x U  in this system are 

the standard coordinates of 
1( ) n

yF x   

In other words,  
1 1: ( ..., ) ( ..., ) (1)n nF y y x x y y   

Here the variables 
1( ..., )ny y  are the ―new‖ 

coordinates of the point x   

 

Example  1.2.     Consider a curve in 
2  specified 

in polar coordinates as  

( ) : ( ), ( ) (1)x t r r t t     

We can simply use the chain rule. The map 

( )t x t  can be considered as the composition of 
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the maps  ( ( ), ( )),( , ) ( , )t r t t r x r    . 

Then, by the chain rule, we have  
. . .

(2)
dx x dr x d x x

x r
dt r dt dt r




 

   
    

   
   

Here 
.

r  and 
.

  are scalar coefficients depending on 

t , whence the partial derivatives ,x x
r 

 
 

  are 

vectors depending on point in 
2 . We can compare 

this with the formula in the ―standard‖ coordinates: 
. . .

1 2x e x e y  . Consider the vectors   

,x x
r 

 
 

. Explicitly we have  

(cos ,sin ) (3)

( sin , cos ) (4)

x

r

x
r r

 

 








 



  

From where it follows that these vectors make a basis 

at all points except for the origin (where 0r  ). It is 

instructive to sketch a picture, drawing vectors 

corresponding to a point as starting from that point. 

Notice that  ,x x
r 

 
 

 are, respectively, the 

velocity vectors for the curves ( , )r x r    

0( )fixed   and 0( , ) ( )x r r r fixed  
. We can conclude that for an arbitrary curve given in 

polar coordinates the velocity vector will have 

components 
. .

( , )r   if as a basis we take 

: , : :r
x xe e

r  
  
 

  

. . .

(5)rx e r e      

A characteristic feature of the basis ,re e  is that it is 

not ―constant‖ but depends on point. Vectors ―stuck 

to points‖ when we consider curvilinear coordinates. 

 

Proposition  1.3.   The velocity vector has the same 

appearance in all coordinate systems. 

Proof.        Follows directly from the chain rule and 

the transformation law for the basis ie .In particular, 

the elements of the basis ii
xe

x



 (originally, a 

formal notation) can be understood directly as the 

velocity vectors of the coordinate lines 
1( ,..., )i nx x x x   (all coordinates but 

ix  are 

fixed). Since we now know how to handle velocities 

in arbitrary coordinates, the best way to treat the 

differential of a map : n mF    is by its action 

on the velocity vectors. By definition, we set 

0 0 0

( ) ( ( ))
( ) : ( ) ( ) (1)

dx t dF x t
dF x t t

dt dt
   

Now 0( )dF x  is a linear map that takes vectors 

attached to a point 
0

nx   to vectors attached to 

the point ( ) mF x    

1

1

1 1

11

1

1

...

...

( ,..., ) ... ... ... ... , (2)

...

n

n

n

m

nm m

n

F F
dF dx dx

x x

F F

dxx x

e e

dxF F

x x

 
  
 

  
     
  
      
 
  

  

In particular, for the differential of a function we 

always have  

1

1
... , (3)n

n

f f
df dx dx

x x

 
  
 

  

Where 
ix  are arbitrary coordinates. The form of the 

differential does not change when we perform a 

change of coordinates. 

 

Example  1.3   Consider a 1-form in 
2  given in the 

standard coordinates: 

 

A ydx xdy     In the polar coordinates we will 

have cos , sinx r y r   , hence 

cos sin

sin cos

dx dr r d

dy dr r d

  

  

 

 
  

Substituting into A , we get 

2 2 2 2

sin (cos sin )

cos (sin cos )

(sin cos )

A r dr r d

r dr r d

r d r d

   

   

   

  

 

  

  

Hence  
2A r d  is the formula for A  in the polar 

coordinates. In particular, we see that this is again a 

1-form, a linear combination of the differentials of 

coordinates with functions as coefficients. Secondly, 

in a more conceptual way, we can define a 1-form in 

a domain U  as a linear function on vectors at every 

point of U : 
1

1( ) ... , (1)n

n         

If 
i

ie  , where ii
xe

x



. Recall that the 

differentials of functions were defined as linear 

functions on vectors (at every point), and  

( ) (2)i i i

j jj

x
dx e dx

x


 
  

 
    at 

every point x .  



International Journal of Computer & Organization Trends –Volume 2 Issue 6 November to December 2012 

ISSN: 2249-2593                                  http://www.ijcotjournal.org                              Page 168 

 

Theorem  1.9.   For arbitrary 1-form   and path  , 

the integral 



  does not change if we change 

parametrization of   provide the orientation remains 

the same. 

Proof: Consider 
'

( ( )),
dx

x t
dt

  and  

'

'
( ( ( ))),

dx
x t t

dt
  As 

'

'
( ( ( ))),

dx
x t t

dt
 =

'

' '
( ( ( ))), . ,

dx dt
x t t

dt dt
   

 

 

 

Let p  be a rational prime and let ( ).pK    We 

write   for 
p  or this section. Recall that K  has 

degree ( ) 1p p    over .  We wish to show 

that  .KO    Note that   is a root of 1,px   

and thus is an algebraic integer; since K  is a ring 

we have that   .KO   We give a proof without 

assuming unique factorization of ideals. We begin 

with some norm and trace computations. Let j  be an 

integer. If j is not divisible by ,p  then 
j  is a 

primitive 
thp  root of unity, and thus its conjugates 

are 
2 1, ,..., .p   

 Therefore 

 
2 1

/ ( ) ... ( ) 1 1j p

K pTr            

  

If p  does divide ,j  then 1,j   so it has only the 

one conjugate 1, and  / ( ) 1j

KTr p    By 

linearity of the trace, we find that  
2

/ /

1

/

(1 ) (1 ) ...

(1 )

K K

p

K

Tr Tr

Tr p

 

 

   

  

 



 

We also need to compute the norm of 1  . For 

this, we use the factorization  

 

1 2

2 1

... 1 ( )

( )( )...( );

p p

p

p

x x x

x x x  

 



    

   
  

Plugging in 1x   shows that  

 
2 1(1 )(1 )...(1 )pp          

Since the (1 )j  are the conjugates of (1 ),

this shows that  / (1 )KN p   The key result 

for determining the ring of integers KO  is the 

following. 

 

LEMMA 1.9 

  (1 ) KO p      

Proof.  We saw above that p  is a multiple of 

(1 )  in ,KO  so the inclusion 

(1 ) KO p   
 
is immediate.  Suppose now 

that the inclusion is strict. Since (1 ) KO  is 

an ideal of   containing p  and p is a maximal 

ideal of  , we must have  (1 ) KO   
 

Thus we can write  1 (1 )     

For some .KO   That is, 1   is a unit in .KO   

 

COROLLARY 1.1   For any ,KO   

/ ((1 ) ) .KTr p      

PROOF.       We have  

 

/ 1 1

1 1 1 1

1

1 1

((1 ) ) ((1 ) ) ... ((1 ) )

(1 ) ( ) ... (1 ) ( )

(1 ) ( ) ... (1 ) ( )

K p

p p

p

p

Tr        

       

     



 





     

    

    



 

Where the i  are the complex embeddings of K  

(which we are really viewing as automorphisms of 

K ) with the usual ordering.  Furthermore, 1 j  is 

a multiple of 1   in KO  for every 0.j   Thus 

/ ( (1 )) (1 )K KTr O      
Since the trace is 

also a rational integer. 

 

PROPOSITION 1.4  Let p  be a prime number and 

let | ( )pK    be the 
thp  cyclotomic field. Then  

[ ] [ ] / ( ( ));K p pO x x     Thus 

21, ,..., p

p p  
 is an integral basis for KO . 

PROOF.    Let   KO   and write 

2

0 1 2... p

pa a a   

      With .ia   

Then 

 

2

0 1

2 1

2

(1 ) (1 ) ( ) ...

( )p p

p

a a

a

    

  



     

 
  

By the linearity of the trace and our above 

calculations we find that  / 0( (1 ))KTr pa    

We also have  

/ ( (1 )) ,KTr p    so 0a    Next consider 

the algebraic integer  
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1 3

0 1 2 2( ) ... ;p

pa a a a    

      This is 

an algebraic integer since 
1 1p    is. The same 

argument as above shows that 1 ,a   and 

continuing in this way we find that all of the ia  are 

in  . This completes the proof. 

  

Example 1.4   Let K   , then the local ring 
( )p  

is simply the subring of   of rational numbers with 

denominator relatively prime to p . Note that this 

ring   
( )p is not the ring 

p of p -adic integers; to 

get  
p one must complete 

( )p . The usefulness of 

,K pO  comes from the fact that it has a particularly 

simple ideal structure. Let a be any proper ideal of 

,K pO  and consider the ideal Ka O  of .KO  We 

claim that 
,( ) ;K K pa a O O     That is, that a  is 

generated by the elements of a  in .Ka O  It is 

clear from the definition of an ideal that 

,( ) .K K pa a O O   To prove the other inclusion, 

let   be any element of a . Then we can write 

/    where KO   and .p   In 

particular, a   (since / a    and a  is an 

ideal), so KO   and .p   so .Ka O    

Since 
,1/ ,K pO   this implies that 

,/ ( ) ,K K pa O O      as claimed.We can 

use this fact to determine all of the ideals of , .K pO  

Let a  be any ideal of ,K pO and consider the ideal 

factorization of Ka O in .KO  write it as 

n

Ka O p b   For some n  and some ideal ,b  

relatively prime to .p  we claim first that 

, , .K p K pbO O  We now find that 

  , , ,( ) n n

K K p K p K pa a O O p bO p O      Since 

, .K pbO  Thus every ideal of ,K pO  has the form 

,

n

K pp O  for some ;n  it follows immediately that 

,K pO is noetherian. It is also now clear that ,

n

K pp O

is the unique non-zero prime ideal in ,K pO . 

Furthermore, the inclusion , ,/K K p K pO O pO  

Since , ,K p KpO O p   this map is also 

surjection, since the residue class of ,/ K pO    

(with KO   and p  ) is the image of 
1 

 in 

/ ,K pO  which makes sense since   is invertible in 

/ .K pO  Thus the map is an isomorphism. In 

particular, it is now abundantly clear that every non-

zero prime ideal of 
,K pO is maximal.  To show 

that 
,K pO is a Dedekind domain, it remains to show 

that it is integrally closed in K . So let K   be a 

root of a polynomial with coefficients in  
, ;K pO  

write this polynomial as  
11 0

1 0

...m mm

m

x x
 

 





    

With i KO   and .i K pO   Set 

0 1 1... .m      Multiplying by 
m  we find that 

  is the root of a monic polynomial with 

coefficients in .KO  Thus ;KO   since ,p   

we have 
,/ K pO    . Thus  

,K pO is 

integrally close in .K   

 

COROLLARY 1.2.   Let K  be a number field of 

degree n  and let   be in KO  then 

'

/ /( ) ( )K K KN O N     

PROOF.  We assume a bit more Galois theory than 

usual for this proof. Assume first that /K   is 

Galois. Let   be an element of ( / ).Gal K   It is 

clear that /( ) / ( ) ;K KO O      since 

( ) ,K KO O   this shows that 

' '

/ /( ( ) ) ( )K K K KN O N O    . Taking the 

product over all ( / ),Gal K    we have 

' '

/ / /( ( ) ) ( )n

K K K K KN N O N O     Since 

/ ( )KN   is a rational integer and KO  is a free -

module of rank ,n    

// ( )K K KO N O   Will have order / ( ) ;n

KN   

therefore 

 
'

/ / /( ( ) ) ( )n

K K K K KN N O N O     

This completes the proof.  In the general case, let L  

be the Galois closure of K  and set [ : ] .L K m   

 

F. Concurrent Crawling Algorithm 

The concurrent crawling approach  

 

Global State-flow Graph. The first change is the 

separation of the state-flow graph from the state 

machine. The graph is defined in a global scope, so 

that it can be centralized and used by all concurrent 

nodes. Upon the start of the crawling process, an 
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initial crawling node is created and its RUN 

procedure is called.  

 

 

Browser Pool. The robot and state machine are 

created for each crawling node. Thus, they are placed 

in the local scope of the RUN procedure. Generally, 

each node needs to acquire a browser instance, and 

after the process is finished, the browser is killed. 

Creating new browser instances is a process intensive 

and time-consuming operation. To optimize, a new 

structure is introduced: the BrowserPool, which 

creates and maintains browsers in a pool of browsers 

to be reused by the crawling nodes. This reduces 

start-up and shut-down costs. The BrowserPool can 

be queried for a browser instance, and when a node is 

finished working, the browser used is released back 

to the pool. In addition, the algorithm now takes the 

desired number of browsers as input. Increasing the 

number of browsers used can decrease the crawling 

runtime, but it also comes with some limitations and 

tradeoffs. 

 

Forward-Tracking. In the sequential algorithm, after 

finishing a crawl path, we need to bring the crawler to 

the previous (relevant) state. In the concurrent 

algorithm, however, we create a new crawling node 

for each path to be examined. Thus, instead of 

bringing the crawler back to the desired state 

(backtracking), we must take the new node forward to 

the desired state, hence, forward-tracking. This is 

done after the browser is pointed to the URL. The 

first time the RUN procedure is executed, no 

forward-tracking is taking place, since the event-path 

(i.e., the list of clickable items resulting to the desired 

state) is empty, so the initial crawler starts from the 

Index state. However, if the event path is not empty, 

the clickables are used to take the browser forward to 

the desired state. At that point, the CRAWL 

procedure is called.  

 

Crawling Procedure. The first part of the CRAWL 

procedure is unchanged. To enable concurrent nodes 

accessing the candidate clickables in a thread-safe 

manner, the body of the for loop is synchronized 

around the candidate element to be examined. To 

avoid examining a candidate element multiple times 

bymultiple nodes, each node first checks the 

examined state of the candidate element. If the 

element has not been examined previously, the robot 

executes an event on the element in the browser and 

sets its state as examined. If the state is changed, 

before going into the recursive CRAWL call, the 

PARTITION procedure is called.  

 

Partition Procedure. The partition procedure, called 

on a particular state cs, creates a new crawling node 

for every unexamined candidate clickable in cs. The 

new crawlers are initialized with two parameters, 

namely, (1) the current state cs, and (2) the execution 

path from the initial Index state to this state. Every 

new node is distributed to the work queue 

participating in the concurrent crawling. When a 

crawling node is chosen from the work queue, its 

corresponding RUN procedure is called in order to 

spawn a new crawling thread. 

 

G. Applying Crawljax 

The results of applying CRAWLJAX to C1–C6 are 

displayed. The key characteristics of the sites under 

study, such as the average DOM size and the total 

number of candidate clickables. Furthermore, it lists 

the key configuration parameters set, most notably 

the tags used to identify candidate clickables and the 

maximum crawling depth.  

 

H. Accuracy 

Experimental Setup. Assessing the correctness of 

the crawling process is challenging for two reasons. 

First, there is no strict notion of ―correctness‖ with 

respect to state equivalence. The state comparison 

operator part of our algorithm can be implemented in 

different ways: the more states it considers equal, the 

smaller and the more abstract the resulting state-flow 

graph is. The desirable level of abstraction depends 

on the intended use of the crawler (regression testing, 

program comprehension, security testing, to name a 

few) and the characteristics of the system being 

crawled. Second, no other crawlers for AJAX are 

available, making it impossible to compare our results 

to a ―gold standard.‖ Consequently, an assessment in 

terms of precision (percentage of correct states) and 

recall (percentage of states recovered) is impossible 

to give. To address these concerns, we proceed as 

follows. For the cases in which we have full 

control—C1 and C2—we inject specific clickable 

elements. 

—For C1, 16 elements were injected, out of which 10 

were on the top-level index page. Furthermore, to 

evaluate the state comparison procedure, we 

intentionally introduced a number of identical (clone) 

states. 

—For C2, we focused on two product categories, 

CATS and DOGS, from the five available categories. 

We annotated 36 elements (product items) by 

modifying the JAVASCRIPT method, which turns 

the items retrieved from the server into clickables on 

the interface. 

Subsequently, we manually create a referencemodel, 

to which we compare the derived state-flow graph. 

To assess the four external sites C3–C6, we inspect a 

selection of the states. For each site, we randomly 

select ten clickables in advance, by noting their tag 

names, attributes, and XPath expressions. After 

crawling of each site, we check the presence of these 

ten elements among the list of detected clickables. In 

order to do the manual inspection of the results, we 

run CRAWLJAX with the Mirror plugin enabled. 

This post-crawling plugin creates a static mirror, 
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based on the derived state-flow graph, by writing all 

DOM states to file and replacing edges with 

appropriate hyperlinks. 

  

I. Scalability 

Experimental Setup. In order to obtain an 

understanding of the scalability of our approach, we 

measure the time needed to crawl, as well as a 

number of site characteristics that will affect the time 

needed. We expect the crawling performance to be 

directly proportional to the input size, which is 

composed of (1) the average DOM string size, (2) 

number of candidate elements, and (3) number of 

detected clickables and states, which are the 

characteristics that we measure for the six cases. To 

test the capability of our method in crawling real sites 

and coping with unknown environments, we run 

CRAWLJAX on four external cases, C3–C6. We run 

CRAWLJAX with depth level 2 on C3 and C5, each 

having a huge state space to examine the scalability 

of our approach in analyzing tens of thousands of 

candidate clickables and finding clickables. 

 

J. Findings.  

Concerning the time needed to crawl the internal 

sites, we see that it takes CRAWLJAX 14 and 26 

seconds to crawl C1 and C2, respectively. The 

average DOM size in C2 is five times bigger, and the 

number of candidate elements is three times higher. 

In addition to this increase in DOM size and in the 

number of candidate elements, the C2 site does not 

support the browser‘s built-in Back method. Thus, as 

discussed in Section 3.6, for every state change on the 

browser, CRAWLJAX has to reload the application 

and click through to the previous state to go further. 

This reloading and clicking through naturally has a 

negative effect on the performance. Note that the 

performance is also dependent on the CPU and 

memory of the machine CRAWLJAX is running on, 

as well as the speed of the server and network 

properties of the case site. C6, for instance, is slow in 

reloading and retrieving updates from its server, 

which increases the performance measurement 

numbers in our experiment. CRAWLJAX was able to 

run smoothly on the external sites. Except a few 

minor adjustments, we did not witness any 

difficulties. C3 with depth level 2 was crawled 

successfully in 83 minutes, resulting in 19,247 

examined candidate elements, 1,101 detected 

clickables, and 1,071 detected states. For C5, 

CRAWLJAX was able to finish the crawl process in 

107 minutes on 32,365 candidate elements, resulting 

in 1,554 detected clickables, and 1,234 states. As 

expected, in both cases, increasing the depth level 

from 1 to 2 greatly expands the state space. 

 

K. Concurrent Crawling 

In our final experiment, the main goal is to assess the 

influence of the concurrent crawling algorithm on the 

crawling runtime. 

 

Experimental Object. Our experimental object for 

this study is Google ADSENSE11, an AJAX 

application developed by Google, which empowers 

online publishers to earn revenue by displaying 

relevant ads on their Web content. The ADSENSE 

interface is built using GWT (Google Web Toolkit) 

components and is written in Java. The index page of 

ADSENSE. On the top, there are four main tabs 

(Home, My ads, Allow & block ads, Performance 

reports). On the top left side, there is a box holding 

the anchors for the current selected tab. Underneath 

the left-menu box, there is a box holding links to 

help-related pages. On the right of the left-menu we 

can see the main contents,which are loaded by AJAX 

calls. 

 

L. Applications of Crawljax 

As mentioned in the introduction, we believe that the 

crawling and generating capabilities of our approach 

have many applications for modern Web applications. 

We believe that the crawling techniques that are part 

of our solution can serve as a starting point and be 

adopted by general search engines to expose the 

hidden-web content induced by JAVASCRIPT, in 

general, and AJAX, in particular. In their proposal for 

making AJAX applications crawlable,15 Google 

proposes using URLs containing a special hash 

fragment, that is, #!, for identifying dynamic content. 

Google then uses this hash fragment to send a request 

to the server. The server has to treat this request in a 

special way and send an HTML snapshot of the 

dynamic content, which is then processed by 

Google‘s crawler. In the same proposal, they suggest 

using CRAWLJAX for creating a static snapshot for 

this purpose. Web developers can use the model 

inferred by CRAWLJAX to automatically generate a 

static HTML snapshot of their dynamic content, 

which then can be served to Google for indexing. The 

ability to automatically detect and exercise the 

executable elements of an AJAX site and navigate 

between the various dynamic states gives us a 

powerful Web-analysis and test-automation 

mechanism. In the recent past, we have applied 

CRAWLJAX in the following Web-testing domains. 

(1) Invariant-based testing of AJAX user interfaces 

[Mesbah and van Deursen 2009], 

(2) Spotting security violations in Web widget 

interactions [Bezemer et al. 2009] (3) Regression 

testing of dynamic and nondeterministic Web 

interfaces [Roest et al. 2010], 

(4) Automated cross-browser compatibility testing 

[Mesbah and Prasad 2011]. 
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M. HTTP Request Origin Identification 

The main challenge of detecting the origin widget of 

a request is to couple the request to the DOM element 

from which it originated. This is not a trivial task, 

since HTTP requests do not carry information about 

the element that triggered the request. To be able to 

analyze HTTP requests, all requests must be 

intercepted. For this purpose, we pro- pose to place 

an HTTP proxy between the client browser and the 

server, which bu_ers all outgoing HTTP requests. 

The only way to attach information about DOM 

elements to an HTTP request, without a_ecting the 

behavior of the web server handling the request, is by 

adding data to the re- quest query string (e.g., 

?wid=w23&requestForProxyId=123). This data 

should be selected carefully, to ensure it does not 

interfere with other parameters being sent to the 

server. If the request parameters contain the value of 

a unique at- tribute, such as the element's ID, it can be 

extracted and used to identify the element in the 

DOM. Enforcing all HTTP requests to contain a 

value with which the origin widget can be detected 

requires having mechanisms for the enforcement of a 

unique attribute in each DOM element, and the 

attachment of the unique attribute of the originat- ing 

element to outgoing requests. First we need to 

consider ways HTTP requests can be triggered in 

Ajax-based web applications. Static Elements. HTTP 

requests triggered by the src attribute of an static 

element, for instance in a SCRIPT or IMG element in 

the source code of the HTML page, are sent 

immediately when the browser parses them. This 

leaves us no time to dynamically annotate a unique 

value on these elements, as the requests are sent 

before we can access the DOM. The solution we 

propose is to use the proxy for inter- cepting 

responses as well. The responses can be adjusted by 

the proxy to ensure that each element with a src 

attribute is given a unique identifying attribute. Note 

that the attribute is annotated twice: in the URL so 

that it reaches the proxy, and as an attribute for easy 

identication on the DOM tree using XPath when the 

violation validation process is carried out. 

 

Dynamic Elements. The src attribute of an element 

that is dynamically created on the client through 

JavaScript and added to the DOM tree, can also 

trigger an HTTP request. Annotating attributes 

through the proxy has limitations for this type of 

request, since elements that are added dynamically on 

the client-side are missed. During dynamic annotation 

these elements are missed as well, because the 

request is triggered before the element can be 

annotated. Because we assume every element has a 

unique attribute in our approach, requests triggered 

from dynamically generated elements can be detected 

easily as they do not contain a unique attribute. We 

believe dynamically generated elements with a src 

attribute are rare in modern web applications, and 

since this attribute should point to, for instance, a 

JavaScript or image, the HTTP request they trigger 

should be easy to verify manually by a tester. 

Therefore, all requests made from elements which are 

not annotated, should be aged as suspicious and 

inspected by the tester.  

 

Ajax Calls. HTTP requests sent through an Ajax call, 

via the XMLHttpRequest object, are the most 

essential form of sending HTTP requests in modern 

single-page web appli- cations [2]. These requests are 

often triggered by an event, e.g., click, mouseover, on 

an element with the corresponding event listener. 

Note that this type of elements could also be created 

dynamically, and therefore proxy annotation is not 

desirable. Hence, we propose to dynamically annotate 

such elements. To that end, we annotate a unique 

attribute on the element right before an event is red. 

Note that this annotation is easiest to implement by 

means of aspects, as explained in Section 6. After the 

annotation, the attribute (and its value) must be 

appended to all HTTP requests that the event triggers. 

To that end, we take advantage of a technique known 

as Prototype Hijacking[17], in which the Ajax call 

responsible for client/server communication can be 

subverted using a wrapper function around the 

XMLHttpRequest object. Dur- ing the subversion, we 

can use the annotated attribute of the element, on 

which the event initiating the call was _red, to add a 

parameter to the query string of the Ajax HTTP call. 

It is possible that the annotated origin element is 

removed from the DOM by the time the request is 

validated. To avoid this problem, we keep track of the 

DOM history. After an event is red, and a DOM 

change is occurred, the state is saved in the history 

list. Assuming the history size is large enough, a 

request can always be coupled to its origin element, 

and the state from which it was triggered, 

bysearching the DOM history. 

 

N. Trusted Requests 

After detecting the origin widget of a request, the 

request must be validated to verify whether the 

widget was allowed to send this request. To this end, 

a method must be denied for specifying which 

requests a widget is allowed to make. Our approach 

uses an idea often applied in Firewall technology, in 

which each application has an allowed list of 

URLs[10]. For each widget, we can automatically 

create a list of allowed URLs by crawling it in an 

isolated environment. This way, every request 

intercepted by the proxy can be assigned to that 

specific widget. At the end of the crawling process, 

the proxy buyer contains all the requests the widget 

has triggered. This list can be saved, edited by the 

tester, and retrieved during the validation phase of a 

request. In addition, it is possible for a tester to 

manually ag URLs in the list as suspicious. If during 

the validation process a request URL does not exist in 

the allowed URL list of its origin widget, or if the 
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URL is aged as suspicious, we assume the widget 

does not have permission to trigger the request and 

thus an HTTP request violation has occurred. 

Assuming a request contains the annotated attribute 

of the origin element, Algorithm can be used to 

automatically detect the origin widget of the request 

and report HTTP request violations. Note that this 

approach also works for requests that do not originate 

from a widget, but from a non-widget element 

instead. By crawling the framework with only an 

empty widget, an allowed URL list can be created for 

the frame- work. A request which originates from an 

element that does not have a widget boundary will be 

validated against the allowed URL list of the overall 

framework. 

 

O. Framework and Language Contributions 

FORWARD facilitates the development of Ajax 

pages by treating them as rendered views. The pages 

consist of a page data tree, which captures the data of 

the page state at a logical level, and a visual layer, 

where a page unit tree maps to the page data tree and 

renders its data into an html page, typically including 

JavaScript and Ajax components also. The page data 

tree is populated with data from an SQL statement, 

called the page query. SQL has been minimally 

extended with (a) SELECT clause nesting and (b) 

variability of schemas in SQL's CASE statements so 

that it creates nested heterogeneous tables that the 

programmer easily maps to the page unit tree. A user 

request from the context of a unit leads to the 

invocation of a server-side program, which updates 

the server state. In this paper, which is focused on the 

report part of data-driven pages and applications, we 

assume that the server state is captured by the state of 

an SQL database and therefore the server state update 

is fully captured by respective updates of the tables of 

the database, which are expressed in SQL. 

Conceptually, the updates indirectly lead to a new 

page data tree, which is the result of the page query 

on the new server state, and consequently to a new 

rendered page. FORWARD makes the following 

contributions towards rapid, declarative programming 

of Ajax pages: 

 

A minimal SQL extension that is used to create the 

page data tree, and a page unit tree that renders the 

page data tree. The combination enables the 

developer to avoid multiple language programming 

(JavaScript, SQL, Java) in order to implement Ajax 

pages. Instead the developer declaratively describes 

the reported data and their rendering into Ajax pages. 

 

We chose SQL over XQuery/XML because (a) SQL 

has a much larger programmer audience and installed 

base (b) SQL has a smaller feature set, omitting 

operators such as // and * that have created challenges 

for efficient query processing and view maintenance 

and do not appear to be necessary for our problem, 

and (c) existing database research and technology 

provide a great leverage for implementation and 

optimization, which enables focus on the truly novel 

research issues without having to re-express already 

solved problems in XML/X- Query or having to re-

implement database server functionality. Our 

experience in creating commercial level applications 

and prior academic work in the area indicate that if 

the application does not interface with external 

systems then SQL's expressive power is typically 

sufficient.  

 

A FORWARD developer avoids the hassle of 

programming JavaScript and Ajax components for 

partial updates. Instead he specifies the unit state 

using the page data tree, which is a declarative 

function expressed in the SQL ex- tension over the 

state of the database. For example, a map unit (which 

is a wrapper around a Google Maps component) is 

used by specifying the points that should be shown on 

the map, without bothering to specify which points 

are new, which ones are updated, what methods the 

component covers for modifications, etc. Roadmap 

we present the framework in with a running example. 

A naive implementation of the FORWARD's simple 

programming model would exhibit the crippling 

performance and interface quality problems of pure 

server-side applications. Instead FORWARD 

achieves the performance and interface quality of 

Ajax pages by solving performance optimization 

problems that would otherwise need to be hand- 

coded by the developer. In particular:  

 

Instead of literally creating the new page data tree, 

unit tree and html/JavaScript page from scratch in 

each step, FORWARD incrementally computes them 

using their prior versions. Since the page data tree is 

typically fueled by our extended SQL queries, 

FORWARD leverages prior database research on 

incremental view maintenance, essentially treating 

the page data tree as a view. We extend prior work on 

incremental view maintenance to capture (a) nesting, 

(b) variability of the output tuples and (c) ordering, 

which has been neglected by prior work focusing on 

homogeneous sets of tuples. 

 

FORWARD provides an architecture that enables the 

use of massive JavaScript/Ajax component libraries 

(such as Dojo [30]) as page units into FORWARD's 

framework. The basic data tree incremental 

maintenance algorithm is modified to account for the 

fact that a component may not over methods to 

implement each possible data tree change. Rather a 

best-effort approach is enabled for wrap- ping data 

tree changes into component method calls. The net 

effect is that FORWARD's ease-of-development is 

accomplished at an acceptable performance penalty 

over hand-crafted programs. As a data point, revising 

an existing review and re-rendering the page takes 42 

ms in FORWARD, which compares favorably to 



International Journal of Computer & Organization Trends –Volume 2 Issue 6 November to December 2012 

ISSN: 2249-2593                                  http://www.ijcotjournal.org                              Page 174 

WAN network latency (50-100 ms and above), and 

the average human reaction time of 200 ms. 

 

IV. CHARACTERIZING COMPLEXITY 

Our analysis of our measurement dataset is two-

pronged. First, in this section, we analyze web pages 

with respect to various complexity metrics. Next, we 

analyze the impact of these metrics on performance. 

Note that our focus is on capturing the complexity of 

web pages as visible to browsers on client devices; 

we do not intend to capture the complexity of server-

side infrastructure of websites [43]. We consider two 

high-level notions of web page complexity. Content 

complexity metrics capture the number and size of 

objects fetched to load the web page and also the 

different MIME types (e.g., image, javascript, CSS, 

text) across which these  objects are spread. Now, 

loading www.foo.com may require fetching content 

not only from other internal servers such as 

images.foo.com and news.foo.com, but also involve 

third-party services such as CDNs (e.g., Akamai), 

analytics providers (e.g., Google analytics), and 

social network plugins (e.g., Facebook). Service 

complexity metrics capture the number and 

contributions of the various servers and 

administrative origins involved in loading a web 

page. We begin with the content-level metrics before 

moving on to service-level metrics. In each case, we 

present a breakdown of the metrics across different 

popularity rank ranges (e.g., top 1–1000 vs. 10000–

20000) and across different categories of websites 

(e.g., Shopping vs. News). Here, we only show 

results for one of the vantage points as the results are 

(expectedly) similar across vantage points.  

 

A. Content Complexity 

Number of objects: We begin by looking, at the total 

number of object requests required, i.e., number of 

HTTP GETs issued, to load a web page. Across all 

the rank ranges, loading the base web page requires 

more than 40 objects to be fetched in the median 

case. We also see that a non-trivial fraction (20%) of 

websites request more than 100–125 objects on their 

landing web page, across the rank ranges. While the 

top 1– 400 sites load more objects, the distributions 

for the different rank ranges are qualitatively and 

quantitatively similar; even the lower rank websites 

have a large number of requests. Next, we divide the 

sites by their categories. For clarity, we only focus on 

the top-two-level categories. To ensure that our 

results are statistically meaningful, Median number of 

requests for objects of different MIME-types across 

different rank ranges. The categories that have at least 

50 websites in our dataset. The breakdown across the 

categories shows a pronounced difference between 

categories; the median number of objects requested 

on News sites is nearly 3× the median for Business 

sites. We suspect that this is an artifact of News sites 

tending to cram in more content on their landing 

pages compared to other sites to give readers quick 

snippets of information across different news topics. 

Types of objects: Having considered the total number 

of object requests, we next consider their breakdown 

by content MIME types. For brevity, only the median 

number of requests for the four most popular content 

types across websites of different rank ranges. The 

first order observation again is that the different rank 

ranges are qualitatively similar in their distribution, 

with higher ranked websites having only slightly 

more objects of each type. However, we find several 

interesting patterns in the prevalence of different 

types of content. While it should not come as a 

surprise that many websites use these different 

content types, the magnitude of these fractions is 

surprising. For example, we see that, across all rank 

ranges, more than 50% of sites fetch at least 6 

Javascript ob- jects. Similarly, more than 50% of the 

sites have at least 2 CSS objects. The median value 

for Flash is small; many websites keep their landing 

pages simple and avoid rich Flash content. These 

results are roughly consistent with recent independent 

measurements [31]. The corresponding breakdown 

for the number of objects requested of various content 

types across different categories of websites. Again, 

we see the News category being dominant across 

different content types. News sites load a larger 

number of objects overall compared to other site 

categories. Hence, a natural follow-up question is 

whether News sites issue requests for a 

proportionately higher number of objects across all 

content types. Therefore, for each website, we 

normalize the number of objects of each content type 

by the total number of objects for that site. The 

distribution of the median values of the normalized 

fraction of objects of various content types (not 

shown) presents a slightly different picture than that 

seen with absolute counts. Most categories have a 

very similar normalized contribution from all content 

types in terms of the median value. The only 

significant difference we observe is in the case of 

Flash objects. Kids and Teens sites have a 

significantly greater fraction of Flash objects than 

sites in other categories.  

 

Bytes downloaded: The above results show the 

number of objects requested across different content 

types, but do not tell us the contribution of these 

content types to the total number of bytes 

downloaded. Again, for brevity, we summarize the 

full distribution with the median values for different 

website categories. Surprisingly, we find that 

Javascript objects contribute a sizeable fraction of the 

total number of bytes downloaded (the median 

fraction of bytes is over 25% across all categories). 

Less surprising is that images contribute a similar 

fraction as well. For websites in the Kids and Teens 

category, like in the case of number of objects, the 

contribution of Flash is significantly greater than in 
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other categories. As in the case of the number of 

objects, we see no significant difference across 

different rank ranges. Fraction of objects accounted 

for by Flash objects, normalized per category. 

 

B. Service Complexity 

Anecdotal evidence suggests that the seemingly 

simple task of loading a webpage today requires the 

client-side browser to connect to multiple servers 

distributed across several administrative domains. 

However, there is no systematic understanding of 

how many different services are involved and what 

they contribute to the overall task. To this end, we 

introduce several service complexity metrics. Number 

of distinct servers: the distribution across websites of 

the number of distinct webservers that a client 

contacts to render the base web page of each website. 

We identify a server by its fully qualified domain 

name, e.g., bar.foo.com. Across all five rank ranges, 

close to 25–55% of the websites require a client to 

contact at least 10 distinct servers. Thus, even loading 

simple content like the base page of websites requires 

a client to open multiple HTTP/TCP connections to 

many distinct servers. News sites have the most 

number of distinct servers as well. Number of non-

origin services: Not all the servers contacted in 

loading a web page may be under the web page 

provider‘s control. For example, a typical website 

today uses content distribution networks (e.g., 

Akamai, Limelight) to distribute static content, 

analytics services (e.g., google-analytics) to track 

user activity, and advertisement services (e.g., 

doubleclick) to monetize visits. Identifying non-

origins, however, is slightly tricky. The subtle issue at 

hand is that some providers use multiple origins to 

serve content. For example, yahoo.com also owns 

yimg.com and uses both domains to serve content. 

Even though their top-level domains are different, we 

do not want to count yimg.com as a non-origin for 

yahoo.com because they are owned by the same 

entity. To this end, we use the following heuristic. 

We start by using the two level domain identifier to 

identify an origin; e.g., x.foo.com and y.foo.com are 

clustered to the same logical origin foo.com. Next, 

we consider all two-level domains involved in 

loading the base page of www.foo.com, and identify 

all potential non-origin domains (i.e., two-level 

domain not equal to foo.com). We then do an 

additional check and mark domains as belonging to 

different origins only if the authoritative name servers 

of the two domains do not match [33]. Because 

yimg.com and yahoo.com share the same 

authoritative name servers, we avoid classifying 

yimg.com as having a different origin from 

yahoo.com. 
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