
International Journal of Computer & Organization Trends –Volume 2 Issue 4 July to August 2012

ISSN: 2249-2593 http://www.ijcotjournal.org Page 1

An Integrated Approach to Measurement

Software Defect using Software Matrices
Dheeraj Agrawal

1
, Prof. Megha Mishra

2

Depatrment of Computer Science SSCET Bhilai, India

Abstract— Software measurement is a quantified attribute

of a characteristic of a software product or the software

process. It is a discipline within software engineering.

Measurement programs in software organizations are an

important source of control over quality, defects evaluation

and cost in software development. Software measurement

has evolved into a key software engineering discipline. It

introduces the concept of software measurement and its

broad application areas. An effective measurement process

requires continuous evaluation of different software metrics

and integrating them into the software development process.

This paper presents our approach analyses the metrics

results using a number of statistical techniques. Interesting

relationships between system size and the calculated metrics

are explored. A software quality estimation model allows

the software development team to track and detect potential

software defects relatively early on during development.

Recovering design patterns based on matrices and weights.

Software metrics evaluation and analysis application and

provides metrics results by applying Chidamber & Kemerer

and MOOD metrics. A software metrics database can serve

this purpose.

Keywords— defects, design patterns, matrices,

measurement, estimation.

I. INTRODUCTION

 Software development time and cost estimation are

the process of estimating the most realistic use of time

and cost required for developing a software.[21]

cost estimation methodology for web-based

application is very important for software

development as it would be able to assist the

management team to estimate the cost. Furthermore, it

will ensure that the development of cost is within the

planned budget and provides a fundamental

motivation towards the development of web-based

application project.[22] Software development effort

typically includes human effort expended for high-

level design, detailed design, coding, unit testing,

integration testing, and customer acceptance testing.

The measurement of software quality is

traditionally based upon 1) complexity and 2) design

quality Metrics. The first research contributions were

aimed at providing operating definitions and metrics

of software complexity, focusing on the analysis of the

code’s information flow.[14] The object-oriented

programming paradigm, coupling, cohesion,

inheritance, and information hiding have been

identified as the basic properties of software design

quality [9], [14], [23], [24]. Based on these four basic

properties, a number of metrics have been proposed to

evaluate the design quality of object-oriented software.

The most widely known metrics were first proposed

by Chidamber and Kemerer [25] (WMC, NOC, DIT,

RFC, LCOM, and CBO) and by Brito e Abreu

[9](COF, PF, AIF, MIF, AHF, and MHF).

Software defects play a key role in software

reliability, and the number of remaining defects is one of

most important software reliability indexes. Observing

the trend of the number of remaining defects during the

testing process can provide very useful information on

the software reliability.[4] Software reliability modeling

& estimation plays a critical role in software

development, particularly during the software testing

stage. [5]

II. LITERATURE REVIEW

A. Metrics and Measures

A metric is a quantitative measure of the degree to

which a system, component, or process. Software

measurement applies to a software engineering

process there by measuring numerous entities

encountered along the way. According to Dumke [28],

software measurement is directed to three main

components in the object-oriented software

development. The process measurement for

understanding, evaluation and improvement of the

development method, the product measurement for the

quantification of the product (quality) characteristics

and validation of these measures, the resource

measurement for the evaluation of the supports (CASE

tools, measurement tools etc.) and the chosen

implementation system.

B. Chidamber & Kemerer Metrics Suite

This metrics suite was proposed in [25] by S. R.
Chidamber and C. F. Kemerer. The structural design
metrics proposed by them are explained here.
• Weighted Method per Class (WMC)
It is sum of complexities of all methods in a class.
Consider a class C1 with methods M1, Mn
that are defined in the class. Let c1, . . . ,cn be
complexities of each of these methods.
For this work, complexity of each method is
assumed to be unity and so WMC is simply sum of
all defined methods.
C&K-Java Binding: This work considers WMC as
count of all defined methods inside a class with any
access modifier. This does not include inherited and
abstract methods. This is because inherited methods
do not actually belong to this class. Abstract
methods do not have a body and so no complexity

International Journal of Computer & Organization Trends –Volume 2 Issue 4 July to August 2012

ISSN: 2249-2593 http://www.ijcotjournal.org Page 2

measure is possible for them.
 • Depth of Inheritance Tree (DIT)
Depth of inheritance of the class is the DIT metric
for the class. C&K-Java Binding: This study takes
DIT as the maximum length of the inheritance tree
up to the root. A class may implement an interface
and that interface may extend one or more
interfaces.
• Number of Children (NOC)
Number of immediate sub-classes subordinated to a
class in class hierarchy. C&K-Java Binding: It is the
number of immediate sub-classes of a class. For an
interface it is the number of classes implementing it
plus number of other interfaces extending this
interface.
• Coupling between Objects (CBO)
CBO for a class is count of the number of other
classes to which it is coupled. Two classes are
coupled together if methods of one use methods or
instance variables of other. Excessive coupling
between object classes is detrimental to modular
design and prevents reuse. The more independent a
class is, the easier it is to reuse it in another
application.
C&K-Java Binding: A class can call methods from
another class either through inheritance or using an
object of the other class. CBO should measure both
forms of these couplings.
• Response for a Class (RFC)
RFC = | RS | where RS is response set for the class.
This is a set of methods that can potentially be
executed in response to a message received by an
object of that class. Since it specifically includes
methods called from outside the class, it is also a
measure of the potential communication between
the class and other classes.
C&K-Java Binding: This includes all defined and
inherited methods inside this class plus methods
called on objects of other classes in any method of
this class.
• Lack of Cohesion in Methods (LCOM)
The LCOM is a count of the number of method
pairs whose similarity is 0 minus the count of
method pairs whose similarity is not zero. The
degree of similarity for two methods M1 and M2 in
class C1 is given by: s() = {I1}\{I2} where {I1} and
{I2} are the sets of instance variables used by M1
and M2 The larger the number of similar methods,
the more cohesive the class, which is consistent with
traditional notions of cohesion that measure the
inter-relatedness between portions of a program. A
high cohesion is favored in class designs.
C&K-Java Binding: Instance variables are the ones
with any access modifier.

C. MOOD Metrics Set

F. B. Abreu proposed these system-level metrics
in [27]. This set of six metrics measures four main
structural mechanisms of object-oriented design
that is encapsulation (Method Hiding Factor and

Attribute Hiding Factor), inheritance (Method
Inheritance Factor and Attribute Inheritance
Factor), polymorphism (Polymorphism Factor) and
message-passing (Coupling Factor).An explanation
of the metrics with Java bindings follows except for
coupling factor which was not measured. Common
Java Binding Note: This set of metrics applies to
system level.
 Method Hiding Factor (MHF)

𝑀𝐻𝐹 =
 (1 − 𝑉(𝑀𝑚𝑖))

𝑀𝑑 (𝐶𝑖)
𝑚=1

𝑇𝐶
𝑖=1

 𝑀𝑑 𝐶𝑖 𝑇𝐶
𝑖=1

Where:

V (Mmi) =
 𝑖𝑠_𝑣𝑖𝑠𝑖𝑏𝑙𝑒 (𝑀𝑚𝑖 ,𝐶𝑗)𝑇𝐶
𝑗=1

𝑇𝐶−1

And:

is_visible (Mmi, Cj) =
1 𝑖𝑓𝑓 𝑗 ≠ 𝑖 𝑎𝑛𝑑 𝐶𝑗 𝑚𝑎𝑦

𝑐𝑎𝑙𝑙 𝑀𝑚𝑖
 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

MOOD-Java Binding:
TC– total number of classes in the system/package
Md (Ci)– number of constructors and methods
defined with any access modifier excluding abstract
and inherited methods.

• Attribute Hiding Factor (AHF)

𝐴𝐻𝐹 =
 (1 − 𝑉(𝐴𝑚𝑖))

𝐴𝑑 (𝐶𝑖)
𝑚=1

𝑇𝐶
𝑖=1

 𝐴𝑑 𝐶𝑖 𝑇𝐶
𝑖=1

Where:

V (Mmi) =
 𝑖𝑠_𝑣𝑖𝑠𝑖𝑏𝑙𝑒 (𝐴𝑚𝑖 ,𝐶𝑗)𝑇𝐶
𝑗=1

𝑇𝐶−1

And:

is_visible (Ami, Cj) =
1 𝑖𝑓𝑓 𝑗 ≠ 𝑖 𝑎𝑛𝑑 𝐶𝑗 𝑚𝑎𝑦

𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝐴𝑚𝑖
 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

MOOD-Java Binding: Ad (Ci) – number of all
attributes with any access modifier but not
including inherited.

• Method Inheritance Factor (MIF)

𝑀𝐻𝐹 =
 𝑀𝑖(𝐶𝑖)𝑇𝐶

𝑖=1

 𝑀𝑎 𝐶𝑖 𝑇𝐶
𝑖=1

Where Ma (Ci) = Md (Ci) + Mi (Ci)

The numerator is the sum of inherited methods in
all classes of the system.The denominatoris the total
number of available methods in all classes.
MOOD-Java Binding:
Mi (Ci) – number of inherited methods but not
overridden
Md (Ci) – number of defined non-abstract methods
with any access modifier.
Ma (Ci) – number of methods that class Ci can call.

• Attribute Inheritance Factor (AIF)

 𝐴𝐼𝐹 =
 𝐴𝑖(𝐶𝑖)𝑇𝐶

𝑖=1

 𝐴𝑎 𝐶𝑖 𝑇𝐶
𝑖=1

International Journal of Computer & Organization Trends –Volume 2 Issue 4 July to August 2012

ISSN: 2249-2593 http://www.ijcotjournal.org Page 3

Where, Aa (Ci) = Ad (Ci)+Ai (Ci)
It is defined analogous to MIF.
MOOD- Java Binding:
Ai (Ci) – number of inherited attributed
Ad (Ci) – number of defined attributes with any
access
Modfier. Aa (Ci)– number of attributes that Class
Ci can reference.

D. Software Defect Estimation

 Software defects play a key role in software
reliability, and the number of remaining defects is
one of most important software reliability indexes.
Observing the trend of the number of remaining
defects during the testing process can provide very
useful information on the software reliability.
However, the number of remaining defects is not
known and has to be estimated. Therefore, it is
important to study the trend of the remaining
software defect estimation (ISCA algorithm
describe next section). [9] There has been some
research on the trend of the software defects. Early
studies of defect occurrences suggest that it follows
a Rayleigh curve [30], [31] roughly proportional to
project staffing. McConnell [32] discusses the
relationship between defect rate and development
time, indicating that the projects achieving the
lowest defect rates also achieve the shortest
schedules.

E. Design Patterns

Design patterns describe good solutions to
common and recurring problems in software design.
They have been widely applied in many software
systems in industry. However, pattern related
information is typically not available in large
system implementations. Recovering these design
pattern instances in software systems can help not
only to understand the original design decisions
and tradeoffs but also to change the systems with
quality assurance. The design patterns using an
XML file, which include their structural,
behavioural, and semantic characteristics. These
pattern characteristics are used in different phases.
During structural analysis phase, our tool extracts
the structural information of the pattern and
encodes it into a matrix and weights in a similar
way as we encode the system. Thus, the structural
analysis can be reduced to the matching of the
design pattern matrix with the system matrix as
well as the weights of the design pattern classes
with the weights of the system classes. [1]

III. APPROACH OVERVIEW

The system will automate the process of the
estimation using the COCOMO II model [21] for
effort estimation. The system will also help in
tracking the status of project by taking daily input
from each developer in the organization and will
show the status in the form of a Gantt chart. The

system will generate the reports for the projects.
Identify Software defects play a key role in software
reliability, investigates an approach to incorporate
the time dependencies between the fault detection,
and the number of remaining defects is one of most
important software reliability indexes.
Administrator control overall system.
A. Development Phase

The proposed System has three development phases.

1. Phase I

Phase I was dedicated to the database design,

designing the system and for developing the part

which estimates the size, effort and schedule for the

project along with the programs for inserting the data

into the backend and for its manipulation. An

interactive and user friendly interface with an accurate

estimation model was the goal of this phase [12].

1. Estimation of the size of the intended project.

This results in either source lines of code (SLOC) or

function point counts (FPC) or new object points

(NOP) for the project but other measures for the size

are also available.

2. Estimation of the effort for the project in man-

months or man-hours.

3. Estimation of the schedule in calendar-months.

The information source for estimation can be the

project proposal, system specification or software

requirement specification. If the size estimation is

being done in the later stages such as design or during

coding, then design specifications and other work

products can be used as information source for

estimation [12], [7].

1. By Analogy: If similar projects have been

experienced by the organization then with the help of

past experience the size for the new project can be

estimated. This is performed by dividing the new

project into small modules and comparing those

modules with the past project data. This method can

give almost the accurate estimate for the project size if

the past projects were similar to the new one [19].

2. By Parametric Measurement: The size could be

estimated by counting features of the project and using

them as parameter for any parametric measurement

approach like object point analysis or function point

analysis. Even if the organization has no experience of

the intended project, the features of the project can be

used for parametric measurement.

2. Phase II

Phase II develop a Metrics Attributes Calculation

Module (MACM). These modules are used to

Calculate Attributes of Mood and Ck matrices.

Fig. 1 Design a tool for calculating the Matrices attribute.

International Journal of Computer & Organization Trends –Volume 2 Issue 4 July to August 2012

ISSN: 2249-2593 http://www.ijcotjournal.org Page 4

3. Phase III

Phase III Design an Algorithm Integrated Software

Calibration Algorithms (ISCA). Using ISCA

algorithm to identify software Defects. Major work

was done in this phase.

STEP-1 Gen_Matric () Algorithm

STEP-2 Gen_Multidimensional_Matric () Algorithm

STEP-3 Cal_Defect ()

Procedure ISCA ()

STEP-1 Gen_Matric ()

STEP-2 Gen_Multidimensional_Matric ()

STEP-3 Cal_Defect ()

End procedure

Algorithm- Gen_Matric ()

//* WMC= Total number of Methods/total number of

class

MHF, AHF, MIF, AIF, CIF, CF

Programmer 1, 2, 3, 4, 5…………………….N.

Mat [1………N][1………N]

*//

Step1 i ← 1

Step2 loop i <=N

Step3 j ← 1

Step4 Mat[i][j] ← LOC i,j

 j ← j+1

 Mat[i][j] ← WMC i,j

 j ← j+1

 Mat[i][j] ← MHF i,j

 j ← j+1

Mat[i][j] ← AHF i,j

 j ← j+1

Mat[i][j] ← AIF i,j

 j ← j+1

Mat[i][j] ← CF i,j

If j ≤ N Then

break

Step6 end Step4 loop

Step7 i ← i+1

Step8 end Step3 loop

 End procedure

Algorithm- Gen_Multidimensional_Matric
Procedure Gen_Multidimensional_Matric (no_of_days, mat)

Step1 NOD ← no_of_days

 //* Mat [1……N] [1……..N] *//

Step2 i ← 1

Step3 j ← 1

Step4 loop i<=N

Step5 loop j<=N

Step6 Mat[i][j] ← Mat[i][j]/NOD

Step7 j ← j+1

Step8 end Step4 loop

Step9 i ← i+1

Step10 end Step3 loop

 End procedure

Procedure Defect (Mat[i][j])

Step1 j ← 1

Step2 While (j<=N)

Step3 i ← 1

Step4 While (i<=N)

Step5 Select (j)

Step6 Case 1

SumDIT ← SumDIT + Mat[i][j]

Break

Case 2

SumWMC ← SumWMC + Mat[i][j]

Break

Case 3

SumMHF ← SumMHF + Mat[i][j]

Break

Case 4

SumAHF ← SumAHF + Mat[i][j]

Break

Case 5

SumMIF ← SumMIF + Mat[i][j]

Break

Case 6

SumAIF ← SumAIF + Mat[i][j]

Break

Case 7

SumCF ← SumCF + Mat[i][j]

Step7 End Select

Step8 i ← i+1

Step9 End While

Step10 j ← j+1

Step11 End While

Step12 SumDIT ← SumDIT ∕ N

 SumWMC ← SumWMC ∕ N

 SumMHF ← SumMHF ∕ N

 SumAHF ← SumAHF ∕ N

 SumMIF ← SumMIF ∕ N

 SumAIF ← SumAIF ∕ N

 SumCF ← SumCF ∕ N

Step13 If (SumDIT ≥ 0.5 and SumDIT≤1)

 And

If (SumMHF ≥ 0.5 and SumMHF ≤1)

 And

 If (SumAHF≥ 0.5 and SumAHF ≤ 1)

 And

If (SumMIF ≥ 0.5 and SumMIF ≤ 1)

 And

 If (SumAIF ≥ 0.5 and SumAIF ≤ 1)

 And

 If (SumCF ≥ 0.5 and SumCF ≤ 1)

Step14 PRINT ―NO DEFECT‖

Step15 Else PRINT ―DEFECT‖

Step16 END IF

International Journal of Computer & Organization Trends –Volume 2 Issue 4 July to August 2012

ISSN: 2249-2593 http://www.ijcotjournal.org Page 5

IV. RESULT OF ISCA

Anecdotal and empirical evidence reported in the

literature suggest, such as reduced time to market,

reduced development costs, improved quality of the

software, reduced costs of planning , and enhanced

trust, motivation, and information and knowledge

transfer among developers and project leader.

V. CONCLUSION

 An effective measurement methodology can

transform programming into an engineering activity.

A metrics based analysis of various programming

language libraries can expose structural and design

commonalities among them. Thus we can obtain more

generalized view of software design heuristics. An

effective measurement process requires continuous

evaluation of different software metrics and

integrating them into the software development

process. Tools available for the project estimation are

great helps in the process. But estimating the project

and then planning it without caring about the status of

project at any instant of time is a problem worth to be

considered. The process known as tracking is an

important process that needs to be integrated with the

estimation and planning process. The core of software

crisis starts with the wrong estimation. We are

introducing software matrices approach to calibrate

software. ISCA algorithm tracks the developer and

with various software matrices attribute are used to

find out software defects cohesion, coupling etc

References
[1] Jing Dong, Senior Member, IEEE, Yajing Zhao, and Yongtao

Sun, "A matrix based approach to recovering design pattern,"

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND

CYBERNETICS—PART A: SYSTEMS AND HUMANS,
VOL. 39, NO. 6, NOVEMBER 2009.

[2] Naeem Seliya, Member, IEEE, and Taghi M. Khoshgoftaar,

"software quality analysis of UP Modules," IEEE
TRANSACTIONS ON SYSTEMS, MAN, AND

CYBERNETICS—PART A: SYSTEMS AND HUMANS,

VOL. 37, NO. 2, MARCH 2007.
[3] Anandasivam Gopal, Tridas Mukhopadhyay, and M.S.

Krishnan, "the impact of on software matrices," IEEE

TRANSACTIONS ON SOFTWARE ENGINEERING, VOL.
31, NO. 8, AUGUST 2005.

[4] Cheng-Gang Bai, Kai-Yuan Cai, Qing-Pei Hu, and Szu-Hui
Ng, "on the trend of remaining software defect estimation,"

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND

CYBERNETICS—PART A: SYSTEMS AND HUMANS,
VOL. 38, NO. 5, SEPTEMBER 2008.

[5] Y. P. Wu,Q. P.Hu,M. Xie and S. H. Ng, Member, IEEE,

"modelling and analysis of software fault detection and
correction process by time dependency," IEEE

TRANSACTIONS ON RELIABILITY, VOL. 56, NO. 4,

DECEMBER 2007.
[6] Jongmoon Baik, Barry Boehm and Bert M. Steece,

"disaggregating and calibrating the case tool variable in

cocomo II," IEEE TRANSACTIONS ON SOFTWARE
ENGINEERING, VOL. 28, NO. 11, NOVEMBER 2002.

[7] Hilda B. Klasky, "A STUDY OF SOFTWARE METRICS,"

thesis submitted to the Graduate School-New Brunswick
New Brunswick, New Jersey May, 2003.

[8] Barbara A. Kitchenham,Robert T. Hughes, and Stephen G.

Linkman, "Modeling Software Measurement Data," IEEE
TRANSACTIONS ON SOFTWARE ENGINEERING, VOL.

27, NO. 9, SEPTEMBER 2001

[9] Ayaz Farooq, "Conception and Prototypical Implementation

of a Web Service as an Empirical-based Consulting about
Java Technologies," Master Thesis October 12, 2005.

[10] Magne Jørgensen and Martin Shepperd, "A Systematic

Review of Software Development Cost Estimation Studies,"
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING,

VOL. 33, NO. 1, JANUARY 2007

[11] Alexander Egyed, "Automatically Detecting and Tracking
Inconsistencies in Software Design Models," IEEE

TRANSACTIONS ON SOFTWARE ENGINEERING, VOL.

37, NO. 2, MARCH/APRIL 2011.
[12] Nilesh Chandra Shukla, "A tool for software project

management for estimation, planning & tracking and

calibration,‖ Indian institute of information technology
Allahabad jun,2007.

[13] Chiaming Yen, Wu-Jeng Li, and Jui-Cheng Lin "A web

based collaborative computer aided sequential control design
tool,‖ April 2003.

[14] Eugenio Capra, Chiara Francalanci, and Francesco Merlo,

"An Empirical Study on the Relationship among Software
Design Quality, Development Effort, and Governance in

Open Source Projects," IEEE TRANSACTIONS ON

SOFTWARE ENGINEERING, VOL. 34, NO. 6,
NOVEMBER/DECEMBER 2008.

[15] Manish Agrawal and Kaushal Chari, "Software Effort,

Quality, and Cycle Time: A Study of CMM Level 5
Projects,"IEEE TRANSACTIONS ON SOFTWARE

ENGINEERING, VOL. 33, NO. 3, MARCH 2007.
[16] Tim Menzies, Zhihao Chen, Jairus Hihn, and Karen Lum,

"Selecting Best Practices for Effort Estimation," IEEE

TRANSACTIONS ON SOFTWARE ENGINEERING, VOL.
32, NO. 11, NOVEMBER 2006.

[17] Bo Yang, Huajun Hu, and Lixin Jia, "A Study of Uncertainty

in Software Cost and Its Impact on Optimal Software Release
Time," IEEE TRANSACTIONS ON SOFTWARE

ENGINEERING, VOL. 34, NO. 6,

NOVEMBER/DECEMBER 2008.
[18] C. van Koten, "An Effort Prediction Model for Data Centred

Fourth Generation Language Software Development," The

Information Science, Discussion Paper Series Number
2003/04 ISSN 1172-6024.

[19] Ning Nan and Donald E. Harter, "Impact of Budget and

Schedule Pressure on Software Development Cycle Time and
Effort," IEEE TRANSACTIONS ON SOFTWARE

ENGINEERING, VOL. 35, NO. 5,

SEPTEMBER/OCTOBER 2009.
[20] Kal Toth, "Experiences with Open Source Software

Engineering Tools,"November/December 2006 IEEE

SOFTWARE.
[21] Attarzadeh, I.; Ow, ―Improved estimation accuracy of

cocomo using an adaptive fuzzy logic model,‖ S.H.

Publication Year: 2011 IEEE CONFERENCE
PUBLICATIONS.

[22] Bin Mansor, Z, ―E-cost estimation using expert judgment

and COCOMOII,‖ appears in information technology (ITSim)
2010 International symposium in volume 3.

[23] F. Brito e Abreu, ―The MOOD Metrics Set,‖ Proc. ECOOP

Work-shop Metrics, 1995.
[24] J.Y. Chen and J.F. Lu, ―A New Metric for Object-Oriented

Design,‖ J. Information System and Software Technology,

vol. 35, no. 4, pp. 232- 240, 1993.
[25] S.R. Chidamber and C.F. Kemerer, ―A Metrics Suite for

Object Oriented Design,‖ IEEE Trans. Software Eng., vol. 20,

no. 6, pp. 476-493, June 1994.
[26] Reiner R. Dumke and Erik Foltin. Metrics-based evaluation

of object-oriented software development methods. In CSMR,

pages 193–196, 1998.
[27] F. B. Abreu and Walcelio Melo. Evaluating the impact of

object-oriented design on software quality. In METRICS ’96:

Proceedings of the 3rd International Symposium on Software
Metrics, page 90, Washington, DC, USA, 1996. IEEE

Computer Society.

[28] Reiner R. Dumke and Erik Foltin. Metrics-based evaluation
of object-oriented software development methods. In CSMR

1998.

International Journal of Computer & Organization Trends –Volume 2 Issue 4 July to August 2012

ISSN: 2249-2593 http://www.ijcotjournal.org Page 6

[29] D. N. Card, ―Managing software quality with defects,‖ in

Proc. Comput. Softw. Appl. Conf., Aug. 2002, pp. 472–474.
[30] C. Y. Huang, S. Y. Kuo, and I. Y. Chen, ―Analysis of a

software reliability growth model with logistic testing-effort

function,‖ in Proc. 8th Int. Symp. Softw. Rel. Eng., Nov.
1997, pp. 378–388.

[31] B. Boehm, C. Abts, A.W. Brown, S. Chulani, B.K. Clark, E.

Horowitz, R. Madachy, D. Reifer, and B. Steece, Software
Cost Estimation with COCOMO II. Prentice Hall, 2000.

[32] S. McConnell, ―Software quality at top speed,‖ Softw.

Develop., vol. 4,no. 8, pp. 38–42, Aug. 1996.

