
International Journal of Computer & Organization Trends –Volume 2 Issue 2 March to April 2012

ISSN: 2249-2593 http://www.ijcotjournal.org Page 1

Implementation and Analysis of Modified

Double Precision Interval Arithmetic Array

Multiplication
Krutika Ranjan Kumar Bhagwat

#1
, Prof. Tejas V. Shah

*2
, Prof. Deepali H. Shah

 #3

#
 Instrumentation & Control Engineering Department,

*
Instrumentation & Control Engineering Department, Gujarat Technological University

L. D. College of Engineering, Ahmedabad-380015, Gujarat, India
*
S.S College of Engineering, Bhavnagar - 364060, Gujarat, India

Abstract— This paper presents the design of a 64 bit array

multiplier that performs interval multiplication. This

multiplier requires carry save adders instead of full adders

that reduces the delay i n r e s p e c t o f conventional

array multiplier. The 64 bit multiplication requires 53 x

53 multiplication which is done by array multiplier it

has n*(n-1) CSA, where n=53 so, n*(n-1) = 53 *52=

2756 CSA is used. Arrangement of 2756 CSA is used

to add partial products of multiplier. This multiplier is

based on interval arithmetic which provides the better

accuracy, b y removing rounding off error over conventional

floating point multiplier. There is performance improvement

over software implementation of interval arithmetic, but it

requires slightly more area rather than conventional floating

point unit.

Keywords- Double Precision, Interval Multiplication,

Significand multiplier , Array Multiplier.

I. DOUBLE PRECISION

 IEEE 754 standard defines double precision as 1

sign bit , 11 bits for exponent ,53 bits for (52 explicitly

stored) significand precision .

The format is written with the significand having an

implicit integer bit of value 1, unless the written

exponent is all Zeros. With the 52 bits of the

fraction significand appearing in the memory format,

the Total precision is therefore 53 bits

(approximately 16 decimal digits, 53 log10 (2) ≈

15.955) . [4]

II. INTERVAL MULTIPLICATION

Multiplication of the intervals x = [xl , xu] and y =

[yl , yu] is defined as:

 Z = x *y

 = [min(xlyl, xlyu ,x uyl , xuyu),max(xlyl, x lyu, xuyl,

xuyu)]

The interval multiplier shown in figure 2 has input

and output registers, sign logic, an exponent adder and

a significand multiplier with rounding and

normalization logic. The input and output registers are

each 64 bits and two multiplexer with control signal tx

,ty are used .

Fig. 1 Interval multiplier

The sign logic computes the sign of the result by

performing the exclusive-or of the sign bits of the

input operands. The exponent adder performs an 11-

bit addition of the two exponents and subtracts the

exponent bias of 1023. The significand multiplier

performs a 53-bit by 53-bit array multiplication. If

the most signicant bit of the product is one, the

normalization logic shifts the product right one bit

and increments the exponent. The rounding logic

rounds the product to 53 bits based on a rounding

mode (r m) is round to nearest even. [10]

III.

III. SIGNIFICAND MULTIPLIER(ARRAY

MULTIPLIER USING CSA)

m x n bit multiplication can be viewed as forming

n partial products of m bits each, and then summing

the appropriately shifted partial products to produce

an m+n bit result p. Therefore, generating partial

products consist of the logical Anding of the

appropriate bits of the multiplier and multiplicand.

Each column of partial products must then be

added and, if necessary, any carry values passed to

the Next column. Simple array multiplication using

full adder is shown in figure 2. [4]

 Partial products are added using carry save adder

instead of full adder which reduces delay. Full adder

is replaced with CSA given in figure 3. The idea is

http://en.wikipedia.org/wiki/Exponent
http://en.wikipedia.org/wiki/Significand
http://en.wikipedia.org/wiki/Significand

International Journal of Computer & Organization Trends –Volume 2 Issue 2 March to April 2012

ISSN: 2249-2593 http://www.ijcotjournal.org Page 2

to take 3 numbers that we want to add together, x + y

+ z, and convert it into 2 numbers c + s such that x +

y + z = c + s. In carry save addition, we

refrain from directly passing on the carry information

until the very last step. [13]

Figure 2: simple array multiplication

Figure 3: Full adder is replaced with CSA

 The significand multiplier performs a 53-bit by 53-bit

multiplication. If the most significant bit of the product

is one, the normalization logic shifts the product right

one bit and increments the exponent. Arrangement of

CSA for

p [22:0] is shown in figure 5.

The inputs are a [52:0] and b [52:0] to generate

product p [105:0]. Consider j as carry save adder and

s as sum of CSA and c as carry of CSA and aobo as

partial product of a[0] and b[0], and Kxy as partial

product of a[x] and b[y] in modify array multiplication

for half precision as reference to double precision

arrangement shown in figure 4 which has product

p[22:0] when the inputs are a[10:0] and b[10:0].

Arrangement of CSA for half precision the

significand multiplier performs an 11-bit by 11-bit

multiplication is given in figure4. If the most signicant

bit of the product is one, the normalization logic shifts

the product right one bit and increments the exponent.

N-bit unsigned array multiplier required

 n*(n-1) CSA= 53 *52 = 2756.

 IV. IMPLEMENTATION

The signs of the endpoints of the intervals x and y

indicate whether x and y are greater than Zero, less

than Zero, or contain Zero. This results in nine

possible cases, as shown in Table1 .

 All 9 cases for interval multiplication for

lower

Interval Zl and upper interval Zu are given in Table 1,

when both x and y contain Zero,

 mn = min (xlyu, xuyl) and

 mx=max(xlyl, xuyu) .

Take exl as (10101010101)b = (555)h and exu as
(11001100110)b = (666)h and eyl as (11100011100)b

= (71c)h and eyu as (11110000111)b = (787)h and fxl

as (15555555555555)h and fxu as (19999999999999)h

and fyl as (1c71c71c71c71c)h ,fyu as

(1e1e1e1e1e1e1e)h .

 For case 1 Inputs are Sxl =0 , Sxu=0,Syl =0, Syu=0

that generates outputs are Szl = xor(Sxl , Syl) = 0 and

output Szu= xor (Sxu,Syu)= 0. For exponent add internal

wire ezl is the addition of exl and eyl. That generates

output ezl = (10001110001) b and overflow_flag1

(o_f1) = 1. For bias 1023 output ezl= ezl-1023 =

(00001110010) b and flag1 =0. For exponent add

Internal wire ezu = exponent add(exu, eyu) =

(10111101101)b and overflow_flag2(o_f2) = 1. For

bias 1023 output ezu = ezu-1023 = 00111101110 and

flag1=0.And outputs are fzl = (fxl*fyl) is equals to

(ecf684bda12f684c)h, fzu = (fxu * fyu) is equals to

(2ededededededee) h.

In figure 5 and 6 case1 simulation reports are

given. Same calculation up to cases for 64 bit interval

arithmetic array multiplication is given in Table 1.

For case nine inputs are Sxl =1 ,Sxu =0 ,Syl =1 , Syu

=0 generate outputs are Szl= xor(Sxl , Syu)=1, Szu= xor

(Sxl , Syl)= 0,exl = 3’h= 555 ,exu = 3’h= 666,eyl =

3’h=71c ,eyu=3’h= 787.

For case nine consider four different conditions

1. fxl > fxu and fyl > fyu,

2. fxl > fxu and fyl < fyu,

3. fxl < fxu and fyl < fyu,

4. fxl < fxu and fyl > fyu

VERILOG HDL is used for programming by

Xilinx ISE Design Suite 13.2 for synthesis and

schematic and simulation is done here with the help

of ISIM 13.2.

International Journal of Computer & Organization Trends –Volume 2 Issue 2 March to April 2012

ISSN: 2249-2593 http://www.ijcotjournal.org Page 3

Figure 4. Modify array multiplication for half precision as reference to double precision arrangement

Fig.5 case1 inputs waveforms

International Journal of Computer & Organization Trends –Volume 2 Issue 2 March to April 2012

ISSN: 2249-2593 http://www.ijcotjournal.org Page 4

Fig.6 case1 outputs waveforms

TABLE I

CASES FOR 64 BIT INTERVAL ARITHMETIC ARRAY MULTIPLICATION

 INPUT o/p Z Ex ADD Bias 1023

Case Condition Sxl Syl SZl Zl= Xl Yl Internal wire ezl OF EZl = eZl-1023 f fZl (16'h)

1 Xl >0,Yl > 0 0 0 0 10001110001 1 1110010 0 ECF684BDA12F684C

 Sxu Syu SZu Zu=XuYu Internal wire ezu OF EZu= eZu-1023 f fZu (16'h)

 0 0 0 10111101101 1 111101110 0 2EDEDEDEDEDEDEE

2 Xl>0,Yu< 0 0 1 1 Zl = XuYl 10110000010 1 110000011 0 82BBBBBBBBBBBBBC

 0 1 1 Zu=XlYu 10011011100 1 1101110 0 8275F5F5F5F5F5F6

3 Xu<0,Yl>0 1 0 1 Zl=Xlyu 10011011100 1 11011101 0 8275F5F5F5F5F5F6

 1 0 1 Zu=XuYl 10110000010 1 110000011 0 82BBBBBBBBBBBBBC

4 Xu<0,Yu<0 1 1 0 Zl=XuYu 10111101101 1 111101110 0 2EDEDEDEDEDEDEE

 1 1 0 Zu=XlYl 10001110001 1 1110010 0 ECF684BDA12F684C

5 Xl<0<Xu ,Yl>0 1 0 1 Zl=XlYu 10011011100 1 110000011 0 8275F5F5F5F5F5F6

 0 0 0 Zu=XuYu 10111101101 1 111101110 0 2EDEDEDEDEDEDEE

6 Xl<0<Xu ,Yl <0 1 1 1 Zl=XuYl 10110000010 1 110000011 0 82BBBBBBBBBBBBBC

 0 1 0 Zu=XlYl 10001110001 1 1110010 0 ECF684BDA12F684C

7 Xl>0,Yl<0<Yu 0 1 1 Zl=XuYl 10110000010 1 110000011 0 82BBBBBBBBBBBBBC

 0 0 0 Zu=XuYu 10111101101 1 111101110 0 2EDEDEDEDEDEDEE

8 Xu<0,Yl<0<Yu 1 1 1 Zl=XlYu 10011011100 1 110000011 0 8275F5F5F5F5F5F6

 1 0 0 Zu=XlYl 10001110001 1 1110010 0 ECF684BDA12F684C

9 Xl<0<Xu ,Yl<0<Yu 1 1 1 Zl=Xuyu 10111101101 1 111101110 0 2EDEDEDEDEDEDEE

 0 0 0 Zu=XlYu 10111101101 0 110000011 0 8275F5F5F5F5F5F6

International Journal of Computer & Organization Trends –Volume 2 Issue 2 March to April 2012

ISSN: 2249-2593 http://www.ijcotjournal.org Page 5

 TABLE II

 ANALYSIS REPORT

Device utilization summary for 64 bit multiplication

Area analysis

floating

point

interval

arithmetic

Number of Slices 4212 8603

Number of Slice Flip Flops 234

Number of 4 input LUTs 7326 14967

Number of Ios 261 499

Number of bonded IOBs 261 499

IOB Flip Flops 2

Number of GCLKs 1 1

Real time delay 220 ns 358 ns

Maximum combinational path delay analysis in ns

Critical path delay 465.005 421.563

Memory in kilobytes

Total memory usage 287584 334140

V. CONCLUSION

Interval arithmetic provides reliability and

accuracy by computing a lower and upper

bound in which result is guaranteed to reside.

Concept of carry look ahead for 11 bit

exponent adder is used which reduces the

delay. Concept of carry save adder in array

multiplication is used instead of half adders

and full adders which reduces the number of

gates and delay. 334140 kilobytes memory is

required. 421.563 ns is the maximum critical

path delay for 64 bit interval arithmetic array

multiplier.

64 bit interval arithmetic array multiplier

requires almost twice real time delay compared

to 64 bit floating point array multiplier. So

speed of interval arithmetic array multiplier

decreases and area increases.

REFERENCES

[1] Josh Milthorpe and Alistair Rendell ―Learning to live

with errors: A fresh look at floating-point
computation‖, Australian National University,

Computing Conference 2005
[2] Gupte, ruchir ―Interval arithmetic logic unit for dsp

and control applications‖, Electrical and Computer

Engineering, Raleigh 2006

[3] Rajashekar Shettar, Dr.R.M.Banakar and Dr.
P.S.V.Nataraj, ―Design and Implementation of

Interval Arithmetic Algorithms‖, First International

Conference on Industrial and Information Systems,
ICIIS 2006, 8 - 11 August 2006, Sri Lanka

[4] Wikipedia, the free encyclopedia
[5] Rajashekar Shettar, Dr.R.M.Banakar and Dr.

P.S.V.Nataraj, ―Implementation of Interval

Arithmetic Algorithms on FPGAS‖, International

Conference on Computational Intelligence and
Multimedia Applications 2007, © 2007 IEEE

[6] Alexandru Amaricai Mircea Vladuaiu Lucian

Prodan Mihai Udrescu Oana Boncalo ―Design of
Addition and Multiplication Units for High

Performance Interval Arithmetic Processor‖,

Computer Science and Engineering Department,

©2007 IEEE
[7] Michael J. Schulte, Member, IEEE, and Earl E.

Swart Zlander Jr. , Fellow, IEEE, ―A

Performance Comparison Study on Multiplier
Designs‖ , IEEE Transaction On Computers, May

2000
[8] Yong Dou S. Vassiliadis G. K. KuZmanov G. N.

Gaydadjiev , ―64-bit Floating-Point FPGA Matrix

Multiplication‖ , National Laboratory for Computer

Engineering, FPGA’05, Monterey, California, USA,
February 20–22, 2005

[9] Anane Nadjia, Anane Mohamed, Bessalah Hamid,

Issad Mohamed & Messaoudi khadidja, ―Hardware
Algorithm for Variable Precision Multiplication on

FPGA‖ © 2009 IEEE
[10] James E. Stine and Michael J. Schulte ―A

Combined Interval and Floating Point Multiplier‖,

Computer Architecture and Arithmetic Laboratory,

Electrical Engineering and Computer Science
Department, Lehigh University, Bethlehem, PA

18015
[11] Sparc Architecture Manual
[12] Lab-Report ECAD, ―4-bit multiplier using Mentor

Graphics‖
[13] Prof. LohCS3220- Processor Design ―Carry-Save

Addition‖ - Spring 2005, February 2, 2005
[14] ―Carry Save Adder Trees in Multipliers‖ E C E N 6 2

6 3 A d v a n c e d V L S I D e s i g n November 3,

1999
[15] C. N. Marimuthu1, P. Thangaraj ―Low Power High

Performance Multiplier‖, Anna University,Tamil

nadu , India

