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Abstract-We present a model for the mathematical 
analysis of the control of the spread of  an infectious 
disease in a predator-prey ecosystem. In this work, we 
present a compartmental mathematical model 
expressed by a systems of differential equations based 
on the dynamics of the Infection. We discuss the Disease 
Free Equilibrium(DFE) and the Endemic Disease 
Equilibrium(EDE). In this study, we realized that to 
eradicate or reduce the intensity of disease spread in the 
prey-predator ecosystem ,we apply vaccination 
strategies with herd immunity. 
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                  I. INTRODUCTION 
 When species interact, the population dynamics of 

each species is affected. In general there is a whole 
web of interacting species, called a trophic web, 
which makes for structurally complex communities. 
We consider here, systems involving two or more 
species, concentrating particularly on two species 
systems. There are three main types of interaction.(i) 
If the growth rate of one population is decreased and 
the other increased the populations are in a predator-
prey situation.(ii) If the growth rate of each 
population is decreased, then it is competition.(iii) If 
each population’s growth rate is enhanced, then it is 
called mutualism or symbiosis[8].Some mathematical 
models have been developed in this area. In 1926, 
Volterra [13] first proposed a simple model for the 
predation of one species by another to explain the 
oscillatory levels of certain fish catches in the 
Adriatic. This model was based on four assumptions. 

Firstly, the prey grows unboundedly in a Malthusian 
way in the absence of any predation. Secondly, the 
effect of the predation is to reduce the prey’s per 
capita growth rate by a term proportional to the prey 
and the predator populations. 

Thirdly, in the absence of any prey for sustenance 
the predator’s death rate results in exponential decay. 
Fourthly, the prey’s contribution to the predator’s 
growth is proportional to the available prey as well as 
the size of the predator population. The model is 

)( bpaN
dt
dN

  and )( dcNP
dt
dP

  where 

N is the prey population and P is the predator  
Population. This model also called Lokta-Volterra 
model was analyzed. Murray [8] modified the Lokta-
Volterra model by changing of the assumptions made  
by Volterra. In the model he obtained: 
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 Where 

r1,k1,r2,k2,b12,b21 are all positive constants. This 
model was analyzed and the conditions for stability 
established. Bedington et al [2] presented some 
results on the dynamic complexity of coupled 
predator-prey systems. Dunbar [3,4] studied in detail 
a modified Lokta-Volterra system with logistic 
growth of the prey and with both predator and prey 
dispersing by diffusion.”Predator-Prey model are 
arguably the building blocks of the bio and 
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ecosystems as biomasses are grown out of their 
resources to sustain their struggle for their very 
existence. Depending on their specific settings of 
applications, they can take the forms of resource-
consumer, plant-herbivore, parasitic-host, tumor cells 
(virus)-immune system, susceptible-infectious 
interactions, etc. They deal with the general loss-win 
interactions and hence may have applications outside 
of ecosystems. When seemingly competitive 
interactions are carefully examined, they are often in 
fact some facts of predator-prey interaction in 
disguise”[5]. Another approach to modeling the 
interaction between prey and predators was 
developed to account as well for organisms (such as 
bacteria) taking up nutrients and this is called Jacob-
Mond Model. This model was discovered 
independently in the several diverse applications. It is 
akin to the Haldane-Briggs Model and Michaelis-
Menten Model in Biochemistry the Jacob-Mond 
Model in microbial ecology and the Beaverton-Holt 
model in fisheries. It serves as one of the important 
building blocks in studies of complex biochemical 
reactions and in ecology [12]. B.Dubey and R.K 
Upadhay, in their paper, a mathematical model is 
proposed and analyzed to study the dynamics of one-
prey two-predator system with ratio-dependent 
predators’ growth rate. Criteria for local stability, 
instability and global stability of the nonnegative 
equilibria are obtained. The permanent co-existence 
of the three species is also discussed. Finally, 
computer simulations are performed to investigate 
the dynamics of the system. S.Pathak et al in his 
work, we discovered that over the past hundred years, 
mathematics has been used to understand and predict 
the spread of disease, relating important public-health 
questions to basic transmission parameters. From 
prehistory to the present day, diseases have been a 
source of fear and superstition. A comprehensive 
picture of disease dynamics requires a variety of 
mathematical tools, from model creation to solving 
differential equations to statistical analysis. Although 
mathematics has been so far done quite well in 
dealing with epidemiology but there is no denying 
that there are certain factors which still lack proper 
mathematization. 

Almost all mathematical models of disease start 
from the base premise: that the population can be 
subdivided into a set of distinct classes dependent 
upon their experience with respect to the disease. One 
line of investigation classifies individuals as one 
susceptible, infectious or recovered. Such a model is 
termed as an SIR model. Disease transmission is a 
dynamical process driven by the interaction between 
the susceptible and the infective. Many models of 
epidemiology are based on the so called “mass 

action” assumption for transmission. In this work, we 
have considered the case of the mathematical 
modeling of the spread of disease (infection) in 
Predator-Prey ecosystems. This paper is organized as 
follows. In the next section, we present the model 
assumptions. In the third section, we present the 
model equations and described various parameters 
and terms in the model. In the fourth section, we 
carry out the qualitative analysis of the model. 
Stability criteria’s for the disease free equilibrium 
and the endemic equilibrium are derived. Basic 
reproductive number  were also discussed. The fifth 
section presents an illustrative example for the 
model. In the sixth section, we present different 
computer simulations of the system. In the last 
section, the biological significance of our analytical 
and numerical findings are discussed. 

          
 
                II.MODEL ASSUMPTIONS  
The following examines the evolution of a 

predator-prey system, after an infectious disease has 
been introduced into the colony. We assume the 
following: 

(a) The disease is benign to the prey; that is, the 
prey are carriers. The relative birth rate for Infected 
prey remains the same as that of the healthy 
susceptible prey. 

(b) The disease is debilitating and ultimately fatal 
for the predators. Once a predator is Infected, it can 
be assumed to be dead. We will therefore consider 
only one population  of predators, those that are 
susceptible. 

(c) The disease is spread among the prey by 
contact, and the rate of infection is  proportional to 
the infected and the susceptible population. 

(d) The predators make no distinction between 
susceptible and infected members of the Prey 
population. 

(e) The predator contract the disease by consuming 
the prey. The rate of predator infection is 
proportional to the product of infected prey and 
susceptible predators. 

(f) The model is applied to study the effect of 
vaccination strategies on the disease.  

 
             
 
 

III. THE MODEL EQUATION 
The model we analyzed in this paper is considered 
under the framework of the following nonlinear 
ordinary differential equations:  
ௗோమ
ௗ௧

= -ܽଵܴଶ + ܾଵܴଶܴଵ,௦ − ܿଵܴଶܴଵ,௜(1− θ)                                                          
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ௗோభೞ
ௗ௧

= ܽଶܴଵ,௦ − ܾଶܴଶܴଵ,௦ − ܿଶܴଵ,௦ܴଵ,௜(1− θ) + ݀ଶܴଵ,௜                    

  
ௗோభ೔
ௗ௧

= ܽଶܴଵ,௜ − ܾଶܴଶܴଵ,௜ + ܿଶܴଵ,௦ ଵܴ,௜(1− θ)− ݀ଶܴଵ,௜                                                     

(3.1) 

  

  At this points we will observe a qualitative 
change when a smooth small change is made to the 
parameter values(bifurcation parameters). 

 
TABLE1 

Description of variables for transmission model 
   Variable                                     descriptions 
R1i Number of Infected Prey at 

time t 
 

R1,s Number of Susceptible 
Prey at time t 

 
R2 Number of healthy 

Susceptible Predators at 
time t 

                                       
TABLE 2 

Description of constants for transmission model 
Constant                                   descriptions 
a1      Natural death of the Healthy 

Susceptible Predator 
a2              per capita birth rate of Susceptible 

Prey (per time) and Infected Prey 
 

b1 Number of contact between 
Healthy Susceptible Prey and 
Healthy Predator.                                        

 
b2 Number of contact between 

HealthySusceptiblePredator and 
infected prey.  

                                                    
c1 Number of contact between 

Healthy Susceptible Predator and 
Infected Prey 

 
d2 rate at which infected Prey 

(carriers) are removed. 
c2 Number of contact between 

Healthy Susceptible Prey and 
Infected Prey 

 
θ Proportion of those successively 

vaccinated at birth. 

      
 
    IV. ANALYSIS OF THE MODEL 

 
ௗோమ
ௗ௧

= -ܽଵܴଶ + ܾଵܴଶܴଵ,௦ − ܿଵܴଶܴଵ,௜(1− θ)                                                         

 
ௗோభೞ
ௗ௧

= ܽଶܴଵ,௦ − ܾଶܴଶܴଵ,௦ − ܿଶܴଵ,௦ܴଵ,௜(1− θ) + ݀ଶܴଵ,௜                    

  
ௗோభ೔
ௗ௧

= ܽଶܴଵ,௜ − ܾଶܴଶܴଵ,௜ + ܿଶܴଵ,௦ ଵܴ,௜(1− θ)− ݀ଶܴଵ,௜                     

                                                                                          

From          (3.1) 

The equilibria are obtained by setting the right-hand 

side of system (3.1) equal to zero, giving the 

following: 

Solution 

-ܽଵܴଶ + ܾଵܴଶܴଵ,௦ − ܿଵܴଶܴଵ,௜(1− θ) = 0                                                                 

ܽଶܴଵ,௦ − ܾଶܴଶ ଵܴ,௦ − ܿଶܴଵ,௦ ଵܴ,௜(1− θ) + ݀ଶܴଵ,௜=0                                               

ܽଶܴଵ,௜ − ܾଶܴଶܴଵ,௜ + ܿଶܴଵ,௦ ଵܴ,௜(1− θ) − ݀ଶܴଵ,௜ = 0                                             

(4.1) 

The system in (3.1) has two equilibrium solutions  
A disease-free equilibrium at (0, 0, 0) =(ܴଶ∗,ܴଵ,௦

∗  ,ܴଵ,௜
∗ ) 

An  endemic  equilibrium  at 
(௔మ
௕మ

, ௗమ
௖మ(ଵିθ)

, ି௔భ௖మ(ଵିθ)ା௕భௗమ
௖భ௖మ(ଵିθ)మ

)= (ܴଶ∗,ܴଵ,௦
∗  ,ܴଵ,௜

∗ ) 
We determine the stability of the equilibrium 

points by computing the Jacobian Matrix of the 
system (3.1) at each equilibrium point 

J(ܴଶ,ܴଵ,௦ ,ܴଵ,௜) =
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A. The stability of the disease free state 

The Jacobian of equation (1.1) at the equilibrium 
point is  
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J-λI = อ
−ܽଵ − λ 0 0

0 ܽଶ ݀ଶ
0 0 (ܽଶ − ݀ଶ)− λ

อ 

         −ܽଵ − λ[(ܽଶ − λ)(ܽଶ − ݀ଶ) − λ)] = 0 

        [ (−ܽଵ − λଵ)(aଶ − λଶ)(ܽଶ − dଶ) − λଷ)] = 0 

        λଵ =  −ܽଵ,  λଶ =  ܽଶ  ,   λଷ = ܽଶ − dଶ  

Theorem1: The disease-free equilibrium V0 is locally 

stable if ܴఏ< 1 and Unstable if  ܴఏ> 1 where 

       ܴఏ = (1- θ) ௖మ
ௗమ

 

Proof : λଵ is negative, it remains to prove that  λଶ  
and  λଷ, the roots of the quadratic part of the 
characteristic polynomial of J are both positive. We 
know that using Routh-Hurwitz Conditions (theorem) 
it is the case when   λଶ +  λଷ > 0 and  λଶ λଷ>0  

As   λଶ +  λଷ = (ܽଶ+ܽଶ − ݀ଶ) > 0 is true, (݂݅ ܽଶ >
0 ܽ݊݀ ݀ଶ > 0) 

We are done with λଶ λଷ =  ܽଶ(ܽଶ − ݀ଶ) > 0 (if 
ܽଶ > 0 ܽ݊݀ ݀ଶ > 0)                                              ∎ 

Note: 

. ܴఏ is the effective reproduction number in the 
presence of vaccination. 

.If  ߠ = 0 , we have the basic reproduction number   
ܴ଴ = ௖మ

ௗమ
 

 
V.OPTIMAL VACCINATION STRATEGIES: 

CONTROLLING the SPREAD of the DISEASE in 
the ECOSYSTEM by HERD IMMUNITY 

A. Herd Immunity 
Many Infectious diseases can be controlled when 

there is availability of effective and cheap 
vaccination. Although, it is totally impossible to 
vaccinate everyone in the system against the disease. 

We need to determine the percentage of a 
population that needs to be vaccinated in order  to 
eliminate the disease from the population. 

A population of people(animals) is said to have 
HERD IMMUNITY to a disease when enough 
people(animals) are immune to the disease so that if 
it is introduced into the population, it will not spread 
throughout the population. To have herd immunity, 
an infected person must infect less than one 
uninfected person during the time that the person is 
infectious. 

Herd immunity can also be referred to has the 
level of immunity in a population which prevents 
epidemics, even if some transmission may still occur. 
For instance, when a cohort of 1000000 newborns 
benefit a 90% vaccine coverage, it yields 900,000 
vaccinated and 100,000 unvaccinated. If vaccine 
efficacy is only 95%, it gives 855000 immune and 
45000 vaccinated but non-immune. Thus, it sums up 
to 855000 immune and 145000 susceptible and  the 
corresponding herd immunity is 85.5%. 

It is well-known that the higher R0 is for a disease, 
the higher the proportion of the population will have 
to be vaccine to achieve her immunity. Although, this 
statement could seem very theoretical it was almost 
the perspective followed by WHO’s technical 
working group, when devising strategies to control a 
full range of diseases; for instance, this procedure has 
succeeded during the worldwide campaign for small 
pox eradication in the 1960s 

B. The criteria for the Control  
Let  ߠ be the proportion immune after  a 

vaccination campaign. To reach  the critical 
proportion  ߠ௖,we need the control condition ( 
To have herd immunity, an infected person(animal)  
must infect less than one uninfected person during 
the time that the person(animal) is infectious. Thus, 
we must have ܴ଴ܵ<1) 

Consequently herd immunity is achieved when   
ܴ଴(1− (௖ߠ < 1  it means that    ܴ଴(1− (௖ߠ = 1  ⟺ 
௖= ଵߠ-1

ோబ
௖ߠ ⟺ = 1− ଵ

ோబ
 then ܴ଴ −ܴ଴ߠ௖ <

− ݐℎܽݐ ℎܿݑݏ 1 ܴ଴ߠ௖ < 1− ܴ଴  
∴ ௖ߠ >  ோబିଵ

ோబ
 = 1 - ଵ

ோబ
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For Instance, in most sub-Saharan Africa 
Countries, the basic reproductive number for (e.g. 
measles is approximately 18) so  ߠ௖= 0.94. 

Under the schedule of a unique dose, the ,minimal 
coverage to control measles is such that everyone 
does not need to be immune through vaccination to 
control measles. We need high herd immunity to 
succeed control, it may require everyone receiving a 
95% efficacious  vaccine as  Coverage × efficacy = 
0.94  � coverage = 0.99 .We conclude that it is quite 
impossible via a single opportunity schedule. 
Similarly, for disease like chickenpox the basic 
reproduction number ܴ଴ is  approximately 11.3,so  
 .௖= 0.91ߠ

Under the schedule of a unique dose, the minimal 
coverage to control chickenpox is such that everyone 
does need to be immune through vaccination to 
control chickenpox(varicella). We need high herd 
immunity to succeed control. It may require everyone 
receiving a 95% efficacious vaccine as Coverage × 
efficacy = 0.91 � coverage = 0.96. 

We conclude that this coverage is also quite 
impossible via a single opportunity schedule. 

             
VI. NUMERICAL SIMULATION 

Numerical simulations are carried out to illustrate 
some of the theoretical results in this paper .We take 
parameters of the system as a1= 1.0, a2 = 1.0, b1 = 
1.0, b2 = 1.0, c1 = 1.0, c2 = 0.5, d1 = 1.0,  ߠ = 0.94 . 
We take parameters of the system also as R2(0)= 0.9, 
R1,s(0)= 1.90,R1,i(0)=0.80 at time t = 0,over the time 
interval [0,20].               

 
Fig 5a: Describes the rate of change of population of R2 with 
respect to time 

 
Fig 5b:Describes the rate of change of population of R1,S with 
respect to time  

 
Fig 5c: Describes the rate of change of population of R1,i with 
respect to time 
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Fig 5d: Describes the rate of change of population of R1,S, R1,I 
and R2 with respect to time  

                   VII. CONCLUSIONS 

A deterministic model for the transmission dynamics 
of a disease in  a Prey-Predator ecosystem  is 
designed and rigorously analysed. The study, which 
allows for the assessment of an intervention strategy 
based on vaccination of the Predator and 
population.The basic reproduction number, R0 is a 
key concept in epidemiology, and is arguably one of 
the foremost and valuable ideas that mathematical 
thinking has brought to epidemic theory (Heesterbeek 
and Dietz 1996). Most importantly, R0 often serves as 
a threshold parameter that predicts whether an 
infection will spread. It is very important to found 
that conceptual tool as R0 can solve concrete problem 
as devising optimal vaccination strategies for all 
range of diseases. Determination of the threshold 
parameter R0 theoretically is of important public 
health interest. 
Although the simulation results above are based on a 
set of parameter values, for which uncertainties in 
parameter estimates may exist, the study suggests 
that a potential epidemic can be effectively controlled 
using basic public health control measures such as 
isolation of symptomatic individuals and infection-
reduction measures (such as taking precautions 
against handling poultry products, wearing face-
masks, minimizing contacts etc.). 

Mathematically, our results stand upon local 
stability of the disease-free equilibrium point (DFE). 
We have observed and studied the local stability of 
endemic equilibrium again by linearization, Jacobian 
matrix and Routh-Hurwitz theorem. We hope to do 
further work on this much later. 
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